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Abstract: This paper considers the output consensus problem of high-order leader-following multi-
agent systems with unknown nonlinear dynamics, in which the delayed and sampled outputs of the
system are the only available data. The unknown nonlinear dynamics are assumed to satisfy the
Lipschitz condition and the interconnected topologies are assumed to be undirected and connected.
A distributed observer-based output feedback controller is proposed for the system to reach output
consensus. Both of the bounds of the allowable delay and sampling period are also obtained. Sta-
bility analysis shows that the considered systems are globally exponentially stable under the output
feedback controller. Finally, a simulation example is given to validate our theoretical results.

1. Introduction

The autonomy, distribution and coordination render the multi-agent systems have strong robustness
and reliability in solving practical problems. Its wide range of applications can be found in various
areas, including flocking, swarming, distributed sensor fusion, distributed coordination of mobile
robots, congestion control in communication networks, synchronization of dynamical networks,
and so on. The distributed coordination problem also attracted the attention of scientists in control
theory and many well known works have been done in the context of control theory, for example,
[1, 2, 3, 4, 5], to name just a few.

In the past decades, the related topics on consensus problems have been comprehensively fur-
ther studied in different situations, for example, consensus in networks with time-delays [6, 7, 8],
finite time consensus [9, 10, 11, 12, 13], consensus in stochastic networks [14, 15], quantized
consensus [16, 17, 18], and so on.

With the rapid development of intelligent instrument and digital measurement, the information
of modern control systems tend to be sampled and sent periodically furthermore through the digi-
tal communication channels. Thus, the consensus with sampled-data and time-delay is meaningful
research topic. The articles studying sampled-data systems mainly include: discrete-time models
[19, 20, 21], impulsive models [22, 23, 24], quantized models [16, 25], and time-delay systems
[26, 27, 28]. Most of the works mentioned above are concerned with state consensus. In prac-
tical cases, most real world systems are uncertain, and the full states of agents maybe unknown.
Therefore, output consensus has attracted numerous papers’ attention in recent years, such as,
[26, 29, 30, 31, 32]. Some representative works are summarized as follows. In [19], the authors
studied the multi-consensus problem and multi-tracking problem of second-order multi-agent sys-
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tems by using only sampled current and past position data, a necessary and sufficient condition on
gains and sampled period was given under directed topology. In [22], two kinds of impulsive dis-
tributed consensus algorithms which only utilize the sampled information were proposed to investi-
gate the distributed consensus problem for second-order continuous-time multi-agent systems with
sampled-data communication. In [27, 33], the authors studied the state consensus in multi-agent
dynamical systems with sampled-data, and distributed linear consensus protocols were proposed.
In [33], both the current and some past sampled position data were utilized to design consensus
protocols. While, using less information and saving energy, a protocol with more sampled data
and no current data was further designed in [27]. To the best of our knowledge, the studies on
the output consensus problem of multi-agent systems with unknown nonlinear dynamics and both
delayed and sampled data are rare.

In this paper, the output consensus problem of high-order leader-following multi-agent systems
with unknown nonlinear dynamics is considered. The only available data of the system outputs
is assumed to be sampled and delayed. The unknown nonlinear dynamics are assumed to satisfy
the Lipschitz condition, and the interconnected graphs of the multi-agent systems are assumed to
be undirected and connected. A distributed observer-based output feedback controller is proposed
for the sampled-data multi-agent systems to reach output consensus. The stability analysis is con-
ducted based on Lyapunov theory and algebraic graph theory, and shows that the error system is
globally exponentially stable. Finally, the bounds of the allowable delay and sampling period are
also given.

The contributions of this paper are mainly in three aspects. First, a novel distributed observer-
based output feedback controller is presented for the considered sampled-data multi-agent systems
to reach output consensus. Second, a sufficient condition is obtained to ensure the global expo-
nential stability of the considered systems. Finally, we give the bounds of the allowable sampling
period and time delays.

This paper is organized as follows. In Section 2, some preliminary results and model formu-
lation are presented, the related observer-based output feedback controller is also proposed in this
section. In Section 3, the main results are given and proved. In Section 4, an example is given to
illustrate the validity of the proposed design method. Finally, the paper is concluded in Section 5.

2. Problem Statement

For the multi-agent system, the information exchange among N agents can be conveniently de-
scribed by a simple and undirected graph G(V , E). V = {1, 2, · · · , N} is the node set in which
each node can be regarded as the N agents, respectively. E ⊂ V×V is the edge set, a pair (i, j) ∈ E
if and only if (j, i) ∈ E , and an edge (i, j) in G means that agents i and j can obtain information
from each other. The set of neighbors of node i is denoted by Ni = {j ∈ V|(i, j) ∈ E , j ̸= i}.
A path is a sequence of connected edges in a graph. If there is a path between any two nodes
of a graph G, then graph G is said to be connected, otherwise disconnected. To model the in-
terconnection relationship between N agents and the leader, we introduce another graph Ḡ on
nodes 0, 1, 2, · · · , N , where 0 represents the leader agent. Obviously, G is a subgraph of Ḡ. Let
A = [aij] ∈ RN×N be the adjacency matrix of graph G, where aij = 1 if (i, j) ∈ G, otherwise
aij = 0. The index number between the ith agent and the leader agent is denoted by bi, where
bi = 1 if the leader agent is the neighbor of the ith agent, otherwise bi = 0. The degree matrix D
of graph G is a diagonal matrix with the ith diagonal element being |Ni|. The Laplacian of graph
G is defined as L = D−A, which is symmetric. Let H = L+B, and B be a diagonal matrix with
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diagonal elements b1, b2, · · · , bN .
We consider a multi-agent system consisting of N agents and a leader. The dynamics of the ith

agent, i = 1, 2, · · · , N , are described by{
ẋi(t) = A0x

i(t) + f i(xi(t)) + b̄ui(t),
yi(t) = Cxi(t),

(1)

where

A0 =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1
0 0 · · · 0

 , b̄ =


0
...
0
1

 , C = (1, 0, · · · , 0) ,

xi(t) = (xi
1(t), x

i
2(t), · · · , xi

n(t))
T ∈ Rn is the position state of the ith agent, ui(t) ∈ R is the

control input of the ith agent, which will be designed later, f i(xi(t)) = (f i
1(x

i(t)), f i
2(x

i(t)), · · · ,
f i
n(x

i(t)))T is assumed to be unknown and nonlinear with f i
m(x

i(t)) = f i
m(x

i
1(t), x

i
2(t), · · · , xi

m(t)),
m = 1, 2, · · · , n, and yi(t) is the output of the system.

We assume that the leader-agent moves in Rn and its underlying dynamics are described by{
ẋ0(t) = A0x

0(t) + f 0(x0(t)),
y0(t) = Cx0(t),

(2)

where x0(t) = (x0
1(t), x

0
2(t), · · · , x0

n(t))
T ∈ Rn is the position state of the leader agent, and

f 0(x0(t)) = (f 0
1 (x

0(t)), f 0
2 (x

0(t)), · · · , f 0
n(x

0(t)))T is a vector function with f 0
m(x

0(t)) = f 0
m(x

0
1(t),

x0
2(t), · · · , x0

m(t)), which is also assumed to be unknown and nonlinear, and y0(t) is its output.

Remark 1. From the linear system theory, if the linear system ẋ = Fx + gu is controllable, then
it can be transformed into the Brunovsky controller form [34], that is the linear part of the system
(1). The system (1) is widely applied to some real world systems, such as two-link planar robots,
aircraft wing rock control systems and induction motor systems [35, 36, 37, 38].

In this paper, the output yi(t) of system (1) and y0(t) of system (2) are assumed to be sampled
at time instants tk and are available at tk + τk, where {tk}, k = 1, 2, · · · ,∞, is a strictly increasing
sequence such that limk→∞ tk = ∞ and τk > 0, that is the sampled-data yi(tk) and y0(tk) are
available with a time-delay τk. The sampling interval [tk−1, tk) satisfies 0 < Tmin 6 tk − tk−1 =
Tk 6 Tmax for all k = 1, 2, · · · ,∞, where Tk is the length of the kth sampling interval, Tmin =
min{Tk} and Tmax = max{Tk}. We assume that τ is one of the upper bound of τk, that is τk 6 τ ,
and satisfy τ < Tmin, which means that the sampled-data at time tk can be used before next
sampling time instant.

In this setting, the considered system (1) and (2) can be rewritten as:
ẋi(t) = A0x

i(t) + f i(xi(t)) + b̄ui(t),
yi(t) = Cxi(tk), i = 1, 2, · · · , N,
t ∈ [tk + τk, tk+1 + τk+1), k > 0,
xi(tk+1 + τk+1) = limt→(tk+1+τk+1)− xi(t),

(3)

and 
ẋ0(t) = A0x

0(t) + f 0(x0(t)),
y0(t) = Cx0(tk),
t ∈ [tk + τk, tk+1 + τk+1), k > 0,
x0(tk+1 + τk+1) = limt→(tk+1+τk+1)− x0(t).

(4)
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Since the states of (3) and (4) are unmeasurable, an observer-based output feedback controller is
proposed as follows:

˙̂xi(t) = A0x̂
i(t) +Maei1(tk) + f i(x̂i(t)) + b̄ui(t),

˙̂x0(t) = A0x̂
0(t) +Mae01(tk) + f 0(x̂0(t)),

x̂i(tk+1 + τk+1) = limt→(tk+1+τk+1)− x̂i(t),
x̂0(tk+1 + τk+1) = limt→(tk+1+τk+1)− x̂0(t),
ui(t) = −KW [

∑
j∈N i aij(x̂

i(t)− x̂j(t)) + bi(x̂
i(t)− x̂0(t))],

t ∈ [tk + τk, tk+1 + τk+1), k > 0,

(5)

where x̂i(t) = (x̂i
1(t), x̂

i
2(t), · · · , x̂i

n(t))
T , ei1(tk) = xi

1(tk) − x̂i
1(tk), i = 1, 2, · · · , N , x̂0(t) =

(x̂0
1(t), x̂

0
2(t), · · · , x̂0

n(t))
T , e01(tk) = x0

1(tk) − x̂0
1(tk), W = diag(ln, ln−1, · · · , l)T , with l > 1,

M = diag(l, l2, · · · , ln), f i(x̂i(t)) = (f i
1(x̂

i(t)), f i
2(x̂

i(t)), · · · , f i
n(x̂

i(t)))T , i = 0, 1, · · · , N , and
f i
m(x̂

i(t)) = f i
m(x̂

i
1(t), x̂

i
2(t), · · · , x̂i

m(t)),m = 1, 2, · · · , n. K ∈ R1×n and a = (a1, a2, · · · , an)T
will be determined later.

Remark 2. From the literature, the consensus problem of multi-agent systems with sampled-data,
time-delay, or sampled-data and time-delay has been extensively studied in the past years. Most of
the existing literature are on state consensus problem. The papers on output consensus problem are
rare. We consider the output consensus problem of multi-agent systems with delayed sampled-data
and unknown nonlinear dynamics in this paper. To the best of our knowledge, for the considered
problem in this paper, no similar results appear in the existing literature. In this paper, a novel
distributed controller is proposed for the considered system to reach output consensus globally
exponentially. The essential difficulties to solve the problem are mainly in three aspects: firstly,
the construction of the distributed controller. The distribution of the controller is very important
in multi-agent systems, the design of distributed controller depends on the choice of the Lyapunov
function; secondly, the construction of appropriate Lyapunov function and auxiliary integral func-
tion to deal with the delayed sampled-data and derive the global exponential stability; thirdly, the
derivation of the sufficiency conditions guaranteing global exponential convergence. For this end,
some inequality techniques are applied to solve the considered problem and give both the bounds
of the allowable delay and sampling period.

Note that

lim
t→(tk+1+τk+1)−

xi(t) = lim
t→(tk+1+τk+1)+

xi(t),

and

lim
t→(tk+1+τk+1)−

x̂i(t) = lim
t→(tk+1+τk+1)+

x̂i(t).

Therefore, xi(t), x̂i(t) are continuous in all of the time intervals [tk + τk, tk+1 + τk+1), k =
0, 1, 2, · · · ,∞, that is to say xi(t), x̂i(t) are continuous in the time interval [t0,∞). Since ei1(tk) =
xi
1(tk) − x̂i

1(tk), we have the sequence {ei1(t)}, i = 0, 1, · · · , N is also continuous in the time
interval [t0,∞).
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Definition 1. [39] Let xi
1(t) = xi

0, x̂
i
1(t) = x̂i

0 , i = 0, 1, · · · , N for t ∈ [t0−Tmax− τ, t0]. We call
that the system (3-4) is globally exponentially stabilizable , if there exists a system (5) such that
the system (3-4) and (5) satisfies ∥x̂i

1(t)− x̂0
1(t)∥ 6 e−λ(t−t0)φ(∥x̂i

0∥, ∥x̂0
0∥) and ∥x̂i

1(t)−xi
1(t)∥ 6

e−λ(t−t0)φ(∥x̂i
0∥, ∥xi

0∥) for any xi
0, x̂

i
0, where λ > 0 and φ : R+ → R+ is a non-decreasing

function. Or, we call that system (5) globally exponentially stabilizes the system (3-4).

The control objective of this paper is to design distributed controllers ui(t), i = 1, 2, · · · , N ,
such that the system (3) and (4) reach output consensus, that is, limt→∞ |yi(t) − y0(t)| = 0, i =
1, 2, · · · , N .

To proceed, some related assumptions and lemmas are given:

Assumption 1. Graph G is connected.

Lemma 1. [40] Laplacian matrix L of graph G has at least one zero eigenvalue with 1N =
(1, 1, · · · , 1)T ∈ RN as its eigenvector, and all the non-zero eigenvalues of L are positive. Lapla-
cian L has a simple zero eigenvalue if and only if graph G is connected.

Lemma 2. [41] For any positive definite matrix G ∈ Rn×n, scalar γ > 0, vector-function ω :
[0, γ] → Rn such that the integrations concerned are well defined, the following inequality holds:

[

∫ γ

0

ω(s)ds]TG[

∫ γ

0

ω(s)ds] 6 γ[

∫ γ

0

ω(s)TGω(s)ds]

.

Assumption 2. The nonlinear functions f i(x1(t), x2(t), · · · , xm(t)) and f i(y1(t), y2(t), · · · , ym(t)),
m = 1, 2, · · · , n, are assumed to be continuous in the time interval [t0,∞) and satisfying the fol-
lowing Lipschitz condition

|f i(x1(t), x2(t), · · · , xm(t))− f i(y1(t), y2(t), · · · , ym(t))|
6 lim(|x1(t)− y1(t)|+ |x2(t)− y2(t)|+ · · ·+ |xm(t)− ym(t)|),

where lim > 0 is the Lipschitz constants.

3. Main results

In this section, we firstly derive the state estimation error system, then, a sufficient condition is
given to guarantee global exponential convergence of the consensus error. Since the systems are
continuous in the time interval [t0,∞), so we can only consider a sampling non-switching time
interval [tk + τk, tk+1 + τk+1), k > 0, in the following derivation.

From(3)-(5) we get the state estimation error system:

ėi(t) = A0e
i(t)−Maei1(tk) + f̃ i, i = 1, 2, · · · , N, (6)

and

ė0(t) = A0e
0(t)−Mae01(tk) + f̃ 0, (7)

where ei(t) = xi(t)− x̂i(t), f̃ i = f i(xi(t))− f i(x̂i(t)), i = 0, 1, · · · , N .
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Let εi(t) = (εi1(t), ε
i
2(t), · · · , εin(t))T , εim(t) = eim(t)

lm−1 , i = 0, 1, · · · , N,m = 1, 2, · · · , n, we
have

ε̇i(t) = lA0ε
i(t)− laεi1(tk) + g̃i, i = 1, 2, · · · , N, (8)

and

ε̇0(t) = lA0ε
0(t)− laε01(tk) + g̃0, (9)

where εi1(tk) = xi
1(tk)− x̂i

1(tk) = ei1(tk), g̃
i = (g̃i1, g̃

i
2, · · · , g̃in)T , g̃im = f̃ i

m

lm−1 , i = 0, 1, · · · , N .
Let zi(t) = (zi1(t), z

i
2(t), · · · , zin(t))T , zim(t) =

x̂i
m(t)−x̂0

m(t)
lm−1 , i = 1, 2, · · · , N , we get

żi(t) = lA0z
i(t) + la(εi1(tk)− ε01(tk)) + ḡi +

b̄

ln−1
ui(t), (10)

where ḡi = (ḡi1, ḡ
i
2, · · · , ḡin)T , ḡim = f̄ i

m

lm−1 , f̄
i
m = f i

m(x̂
i(t))− f 0

m(x̂
0(t)).

Let ε(t) = ((ε0(t))T , (ε1(t))T , · · · , (εN(t))T )T , ε1(tk) = (ε01(tk), ε
1
1(tk), · · · , εN1 (tk))T , i =

0, 1, · · · , N , we get the matrix form of equation (8) and (9):

ε̇(t) = l(IN+1 ⊗ A0)ε(t)− lε1(tk)⊗ a+ g̃, (11)

where g̃ = ((g̃0)T , (g̃1)T , · · · , (g̃N)T )T , IN+1 is the (N + 1)× (N + 1) identity matrix.
Let z(t) = ((z1(t))T , (z2(t))T , · · · , (zN(t))T )T , we get the matrix form of equation (10) as

follows:

ż(t) = l(IN ⊗ A0)z(t) + l(η1(tk)− 1N ⊗ ε01(tk))⊗ a+ ḡ +
u⊗ b̄

ln−1
, (12)

where η1(tk) = (ε11(tk), ε
2
1(tk), · · · , εN1 (tk))T , ḡ = ((ḡ1)T , (ḡ2)T , · · · , (ḡN)T )T , u = (u1(t), u2(t),

· · · , uN(t))T , IN is the N ×N identity matrix.

Theorem 1. Under Assumption 1 and 2, there exists an output feedback controller (5) such that
the multi-agent system (3)-(4) is globally exponentially stable, if there exist symmetric positive
definite matrices P and Q satisfying

DT
1 P + PD1 6 −r1I, (13)

AT
0Q+QA0 − 2λHK

TK 6 −r2I,K = b̄TQ (14)

and l satisfying

l > max{1, l1,
4n

√
Nl1λ̄P

r1
,
4n

√
Nl1λ̄Q

r2
}, (15)

and

Tmax + τ 6 1

c3l
, Tmin − τ > (

c2
c1 − c2

)
1

c1l
, (16)
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where r1, r2 are two positive constants, c1 = min{ r1
8λ̄P

, r2
8λ̄Q

}, c2 = κ1

c23
,κ1 =

λ̄2
P

r1λP
(12nā1 +

8nā1c
2
3),c3 > max{4, 12nλ̄

2
P ā1

r1
+ c1,

√
κ1+1
c1

,
κ1+

√
κ2
1+4c31κ1

2c21
}, a1 = max{a2i }, l1 = max{lim},

D1 =


−a1 1 · · · 0

...
... . . . ...

−an−1 0 · · · 1
−an 0 · · · 0

, λ̄P = λmax(P ), λP = λmin(P ), λ̄Q = λmax(Q), λQ = λmin(Q), in

which λmax(·), λmin(·) denote the maximum, minimum eigenvalues of a matrix, respectively.

Proof. For system (11) and (12), we consider two Lyapunov function candidates as follows

VP = ε(t)T (IN+1 ⊗ P )ε(t),

and

VQ = z(t)T (IN ⊗Q)z(t).

Obviously, VP and VQ are continuously differentiable at any time except for the switching time
instants. At a non-switching time t, we obtain the time derivatives of the two Lyapunov functions,
respectively.

V̇P = lε(t)T [IN+1 ⊗ (DT
1 P + PD1)]ε(t) + 2ε(t)T (IN+1 ⊗ P )g̃

+2lε(t)T (IN+1 ⊗ P )[(ε1(t)− ε1(tk))⊗ a],
(17)

and

V̇Q = −lz(t)T [(H ⊗ b̄K)T (IN ⊗Q) + (IN ⊗Q)(H ⊗ b̄K)]z(t)

+lz(t)T [(IN ⊗ A0)
T (IN ⊗Q) + (IN ⊗Q)(IN ⊗ A0)]z(t)

+2lz(t)T (IN ⊗Q)[η1(tk)− 1N ⊗ ε01(tk)]⊗ a
+2z(t)T (IN ⊗Q)ḡ,

(18)

where ε1(t) = (ε01(t), ε
1
1(t), · · · , εN1 (t))T .

Due to the symmetricity of H , there exists an orthogonal matrix S such that

SHST = Λ = diag{λ1
H , λ

2
H , · · · , λN

H},

where λ1
H , λ

2
H , · · · , λN

H are the N eigenvalues of H , let λH denotes the minimum nonzero eigen-
values of the matrix H , and K = b̄TQ. Then we have

−lz(t)T [(H ⊗ b̄K)T (IN ⊗Q) + (IN ⊗Q)(H ⊗ b̄K)]z(t)

= −lz(t)T [(STΛS ⊗ b̄K)T (IN ⊗Q) + (IN ⊗Q)(STΛS ⊗ b̄K)]z(t)

= −lz(t)T (ST ⊗ In)[(Λ⊗ b̄K)T (IN ⊗Q) + (IN ⊗Q)(Λ⊗ b̄K)](S ⊗ In)z(t)

= −lz(t)T (ST ⊗ In)[(Λ⊗ b̄b̄TQ)T (IN ⊗Q) + (IN ⊗Q)(Λ⊗ b̄b̄TQ)](S ⊗ In)z(t)

= −2lz(t)T (ST ⊗ In)(Λ⊗QT b̄b̄TQ)(S ⊗ In)z(t)

6 −2lz(t)T (IN ⊗ λHQ
T b̄b̄TQ)z(t).

(19)

From (18) and (19) we get:

V̇Q 6 lz(t)T{IN ⊗ [AT
0Q+QA0 − 2λHQ

T b̄b̄TQ]}z(t)
+2lz(t)T (IN ⊗Q)[η1(tk)− 1N ⊗ ε01(tk)]⊗ a
+2z(t)T (IN ⊗Q)ḡ.

(20)

7
IET Review Copy Only



From (13) and (14), we have

lε(t)T [IN+1 ⊗ (DT
1 P + PD1)]ε(t) 6 −r1lε(t)

T ε(t), (21)

and

lz(t)T{IN ⊗ [AT
0Q+QA0 − 2λHQ

T b̄b̄TQ]}z(t) 6 −r2lz(t)
T z(t). (22)

According to the inequality 2aT b 6 aTXa+ bTX−1b, we obtain

2lε(t)T (IN+1 ⊗ P )[(ε1(t)− ε1(tk))⊗ a]

6 1
4
r1lε(t)

T ε(t) + 4nlā1λ̄
2
P (ε1(t)− ε1(tk))

T (ε1(t)− ε1(tk))/r1,
(23)

and

2lz(t)T (IN ⊗Q)(ε̄1(tk)− 1N ⊗ ε01(tk))⊗ a

6 1
4
r2lz(t)

T z(t) + 4nlā1λ̄
2
Q(ε̄1(tk)− 1N ⊗ ε01(tk))

T (ε̄1(tk)− 1N ⊗ ε01(tk))/r2
6 1

4
r2lz(t)

T z(t) + 8nlā1λ̄
2
Qε(tk)

T ε(tk)/r2.

(24)

From the Lipschitz condition, we get

2ε(t)T (IN+1 ⊗ P )g̃ 6 2n
√
Nl1λ̄P ε(t)

T ε(t), (25)

and

2z(t)T (IN ⊗Q)ḡ 6 2n
√
Nl1λ̄Qz(t)

T z(t). (26)

Based on the Cauchy inequality and the Lemma 2, it follows that

|εi1(t)− εi1(tk)|2 6 (t− tk)
∫ t

tk
|ε̇i1(s)|2ds

= (t− tk)
∫ t

tk
|lεi2(s)− la1ε

i
1(tk) +

f̃1
i

l0
|2ds

6 3l2(t− tk)
∫ t

tk
[εi2(s)

2 + a21ε
i
1(tk)

2 + l2

l2
εi1(s)

2]ds

6 3l2(t− tk)
2ā1ε

i
1(tk)

2

+3l2(t− tk)
∫ t

tk
[εi1(s)

2 + εi2(s)
2]ds, i = 0, 1, · · · , N,

that is

(ε1(t)− ε1(tk))
T (ε1(t)− ε1(tk))

6 3l2(t− tk)
2ā1ε1(tk)

T ε1(tk) + 3l2(t− tk)
∫ t

tk
[ε1(s)

T ε1(s)

+ε2(s)
T ε2(s)]ds.

(27)

From (17)-(27), we have

V̇P 6 (−3
4
r1l + 2n

√
Nl1λ̄P )ε(t)

T ε(t) +
12nā21l

3λ̄2
P (t−tk)

2ε1(tk)
T ε1(tk)

r1

+
12nā1l3λ̄2

P (t−tk)

r1

∫ t

tk
[ε1(s)

T ε1(s) + ε2(s)
T ε2(s)]ds,

V̇Q 6 (−3
4
r2l + 2n

√
Nl1λ̄Q)z(t)

T z(t) + 8nlā1λ̄
2
Qε(tk)

T ε(tk)/r2.
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Construct the following auxiliary integral function

VR =

∫ t

t−Tmax−τ

∫ t

ρ

[ε(s)T ε(s) + z(s)T z(s)]dsdρ.

We have

VR 6 (Tmax + τ)

∫ t

t−Tmax−τ

[ε(s)T ε(s) + z(s)T z(s)]ds.

The derivative of VR is

V̇R = (Tmax + τ)[ε(t)T ε(t) + z(t)T z(t)]−
∫ t

t−Tmax−τ

[ε(s)T ε(s) + z(s)T z(s)]ds.

Let V (t) = VP + VQ + l2VR, we have

V̇ (t) 6 (−3
4
r1l + 2n

√
Nl1λ̄P + (Tmax + τ)l2)ε(t)T ε(t)

+(−3
4
r2l + 2n

√
Nl1λ̄Q + (Tmax + τ)l2)z(t)T z(t)

+(
12nā21l

3λ̄2
P (t−tk)

2

r1
+

8nλ̄2
Qā1l

r2
)ε(tk)

T ε(tk)

+[
12nā1l3λ̄2

P (t−tk)

r1
− l2]

∫ t

t−Tmax−τ
[ε(s)T ε(s) + z(s)T z(s)]ds,

6 −(1
4
r1 − (Tmax + τ)l)lε(t)T ε(t)− (1

4
r2 − (Tmax + τ)l)lzT (t)z(t)

+(
12nā21l

3λ̄2
P (t−tk)

2

r1
+

8nλ̄2
Qā1l

r2
)ε(tk)

T ε(tk)

+[
12nā1l3λ̄2

P (t−tk)

r1
− l2]

∫ t

t−Tmax−τ
[ε(s)T ε(s) + z(s)T z(s)]ds,

6 − 1
λ̄P

(1
4
r1 − (Tmax + τ)l)lVP (t)− 1

λ̄Q
(1
4
r2 − (Tmax + τ)l)lVQ(t)

+ 1
λP

(
12nλ̄2

P l3ā1(t−tk)
2

r1
+

8nλ̄2
Qā1l

r2
)VP (tk)

+
(12nλ̄2

P l3ā1(t−tk)/r1)−l2

Tmax+τ
VR(t).

Because l > max{1, l1, 4n
√
Nl1λ̄P

r1
,
4n

√
Nl1λ̄Q

r2
}, Tmax + τ < 1

c3l
, we have

V̇ (t) 6 − 1
λ̄P

( r1
4
− 1

c3
)lVP (t)− 1

λ̄Q
( r2
4
− 1

c3
)lVQ(t)

+ 1
λP c23

(
12nλ̄2

P ā1
r1

+
8nλ̄2

Qā1c23
r2

)lVP (tk)

+(
12nλ̄2

P ā1
r1

− c3)l
3VR(t).

Since c3 > max{ 8
r1
, 8
r2
,
12nλ̄2

P ā1
r1

+ c1,
√

κ1+1
c1

,
κ1+

√
κ2
1+4c31κ1

2c21
}, c1 6 min{ r1

8λ̄P
, r2
8λ̄Q

}, c2 = κ1

c23
, we

have

V̇ (t) 6 −c1lVP (t)− c1lVQ(t)− c1l
3VR(t) + c2lVP (tk)

6 −c1lV (t) + c2lV (tk).
(28)

Multiplying ec1lt on both sides of (28), we have

ec1lt
d

dt
V (t) + ec1ltc1ltV (t) 6 ec1ltc2lV (tk). (29)
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Integrating both sides of (29) from tk + τk to t, we have

V (t) 6 e−c1l(t−tk−τk)V (tk + τk) +
c2
c1
V (tk)−

c2
c1
e−c1l(t−tk−τk)V (tk).

Note that ε(t) and z(t) are continuous in the interval [t0,∞), we have

V (tk+1 + τk+1) 6 e−c1l(Tk+1+τk+1−τk)V (tk + τk) +
c2
c1
V (tk)−

c2
c1
e−c1l(Tk+1+τk+1−τk)V (tk), (30)

and

V (tk+1) 6 e−c1l(Tk+1−τk)V (tk + τk) +
c2
c1
V (tk)−

c2
c1
e−c1l(Tk+1−τk)V (tk). (31)

From (30) and (31), we have

V (tk+1 + τk+1) + ρ1V (tk+1)
6 (e−c1l(Tk+1+τk+1−τk) + ρ1e

−c1l(Tk+1−τk))V (tk + τk)
+ c2

c1
[1 + ρ1 − e−c1l(Tk+1−τk)(e−c1lτk+1 + ρ1)]V (tk),

(32)

where ρ1 is a positive constant number.
Since c2 = κ1

c23
. Then c3 > κ1

c1
implies that c1 > κ1

c3
= c2c3 > 8c2, i.e., c2

c1
< 1

8
. From

Tmin − τ > c2
c1(c1−c2)l

> 0, we can choose some ρ1 > 0 such that

η1 = max
k>0

{ c2
c1ρ1

[1 + ρ1 − e−c1l(Tk+1−τk)(e−c1lτk+1 + ρ1)]} < 1, (33)

and

η2 = max
k>0

{ρ1e−c1l(Tk+1−τk) + e−c1l(Tk+1+τk+1−τk)}} < 1. (34)

Let η = max{η1, η2}. From (33) and (34), we have 0 < η < 1. Then, it follows that

V (tk+1 + τk+1) + ρ1V (tk+1) 6 η[V (tk + τk) + ρ1V (tk)]. (35)

Through the iteration for (35), we have

V (tk + τk) + ρ1V (tk) 6 ηk[V (t0 + τ0) + ρ1V (t0)].

Since 0 < η < 1, it is clear that the sequence {V (tk+ τk)+ρ1V (tk)} is convergent to zero, and

V (t) 6 V (tk + τk) + ρ1V (tk) 6 ηk[V (t0 + τ0) + ρ1V (t0)], t ∈ [tk + τk, tk+1 + τk+1).

Since for any t > t0 + τ0, there exists k > 0 such that t ∈ [tk + τk, tk+1 + τk+1). It follows that
t−t0−τ0
Tmax+τ

− 1 6 k. Then

V (t) 6 η
t−t0−τ0
Tmax+τ

−1[V (t0 + τ0) + ρ1V (t0)]

= e
t

Tmax+τ
ln ηη

−t0−τ0
Tmax+τ

−1[V (t0 + τ0) + ρ1V (t0)].

From the Definition 1, we get the system is globally exponentially stable. This completes the proof
of the theorem.
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From Theorem 1, we have the following results which give the estimates of the allowable
sampling interval and time delays.

Corollary 1. There exists an output feedback control law in the form of (5), which globally expo-
nentially stabilizes the system (3-4), if there exist symmetric positive definite matrices P,Q and a
constant l such that (13), (14), (15) and

τ <
1

ρ2l
(
1

c3
− 1

c4
), Tmax <

1

c3l
− 1

ρ2l
(
1

c3
− 1

c4
), Tmin >

1

c4l
+

1

ρ2l
(
1

c3
− 1

c4
), (36)

are satisfied, where ρ2 > 2, c4 =
(c1−c2)c1

c2
, c1, c2, c3 and κ1 are given in Theorem 1.

Proof. From c3 >
κ1+

√
κ2
1+4c31κ1

2c21
, we have c21c

2
3 − c3κ1 − c1κ1 > 0. Then c3 <

c1(c1c23−κ1)

κ1
=

c1(
c1
c2

− 1) = c4. Therefore 1
c3

− 1
c4

> 0. Since c2
c1

< 1
8

and c4 > 0, it is easy to check that the
conditions (36) imply that the conditions (16) are satisfied. The proof is completed.

Remark 3. This corollary does not give the maximum sampling interval and time-delay. The
maximum sampling interval and time-delay depend on the choices of ai, P,Q.

Based on Theorem 1 and Corollary 1, an algorithm to set the design parameters is presented
as follows:

Step 1: Based on the interconnected topology, we construct the matrix H and calculate the
smallest eigenvalue of H which is denoted by λH ;

Step 2: We choose the appropriate values of ai such that the inequality (13) hold and get the
matrix P , λ̄P , λP , then by solving the inequality (14) get the matrix Q, λ̄Q, λQ, and let K = b̄TQ;

Step 3: We select l such that the condition (15) is satisfied;
Step 4: Calculate c1, select ρ2 > 2 and c3 such that c3 > max{4, 12nλ̄

2
P ā1

r1
+ c1,

√
κ1+1
c1

,

κ1+
√

κ2
1+4c31κ1

2c21
}, then calculate c2 and c4.

4. Simulations

In this section, we give an example to validate our theoretical results. In the example, we consider
a multi-agent system consisting of four agents and a leader. The dynamics of the leader and the
followers are described by  ẋ0

1(t) = x0
2(t) + l0 cos(t)x

0
1(t),

ẋ0
2(t) = x0

3(t) + l0 cos(t)x
0
2(t),

ẋ0
3(t) = l0(sin(t)x

0
2(t) + 2 cos(t)x0

3(t)),

and  ẋi
1(t) = xi

2(t) + l0 cos(t)x
i
1(t),

ẋi
2(t) = xi

3(t) + l0 cos(t)x
i
2(t),

ẋi
3(t) = ui + l0(sin(t)x

i
2(t) + 2 cos(t)xi

3(t)),

respectively, where l is a constant.
An observer-based output feedback controller is proposed as follows:

˙̂x0
1(t) = x̂0

2(t) + la1e
0
1(tk) + l0 cos(t)x̂

0
1(t),

˙̂x0
2(t) = x̂0

3(t) + l2a2e
0
1(tk) + l0 cos(t)x̂

0
2(t),

˙̂x0
3(t) = l3a3e

0
1(tk) + l0(sin(t)x̂

0
2(t) + 2 cos(t)x̂0

3(t)),
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˙̂xi
1(t) = x̂i

2(t) + la1e
i
1(tk) + l0 cos(t)x̂

i
1(t),

˙̂xi
2(t) = x̂i

3(t) + l2a2e
i
1(tk) + l0 cos(t)x̂

i
2(t),

˙̂xi
3(t) = ui + l3a3e

i
1(tk) + l0(sin(t)x̂

i
2(t) + 2 cos(t)x̂i

3(t)),

where
ui(t) = −KW [

∑
j∈N i aij(x̂

i(t)− x̂j(t)) + bi(x̂
i(t)− x̂0(t))],

and W = diag(l3, l2, l)T .
Supposes that the interconnected topology is described as in Fig.1. We obtain that the largest

and smallest nonzero eigenvalue of H = L + B are λ̄H = 2.618 and λH = 0.382. By choosing
appropriate parameters of a = (a1, a2, a3) = (4, 4, 4), and solving the inequality (13), we get the
solution P > 0, and λ̄P = 7.0042, λP = 0.2291. By solving the inequality (14), we get the positive

definite matrix Q =

 2.4841 2.5853 1.1440
2.5853 5.2780 2.8419
1.1440 2.8419 2.9577

, then K = b̄TQ = (1.1440, 2.8419, 2.9577),

λ̄Q = 8.4858, λQ = 0.6646. Simulation is conducted in 30s time, the initial states of the whole sys-
tem (3-4) are x0 = [1.5, 2.6, 0.82, 3, 1.31, 3.27, 3.44, 3.74, 2.25, 0.42, 1.14, 4.57, 0.76, 4.12, 2.69]T ,
and x̂0 = [3.13, 1.46, 2.16, 0.07, 4.92, 0.84, 0.53, 1.86, 0.99, 2.45, 1.69, 4.76]T . Under the observer-
based output feedback control law (5), selecting parameter l0 = 0.1, l = 1.5. The sampling interval
Tk and the time-delay τk are given as Tk = 0.01s and τk = 0.001s, respectively. The simulation
results are shown in Fig.2 and Fig.3. Fig.2 shows that the twelve components of the state esti-
mation errors eim(t) = xi

m(t) − x̂i
m(t),m = 1, 2, 3, i = 1, 2, 3, 4, converge to zero. Fig.3 shows

that the four components of the output error between the follower agents and the leader agents
x̄i
1(t) = xi

1(t)− x0
1(t), i = 1, 2, 3, 4, converge to zero.

Fig. 1: Connected graph

Remark 4. So far, the consensus problem of multi-agent systems with the sampled-data [22, 33],
sampled-data and time-delay [27, 28], nonlinear dynamics and time-delay [42, 43, 44] have been
reported in the literatures. All of the above mentioned literatures are on the state consensus. The
literatures on output consensus problem are summarized as follows:

cases 1: the leader-following systems with unknown nonlinear dynamics without considering
sampled-data and time-delay [30, 45, 46],
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Fig. 3: The output error

cases 2: the leader-following systems with unknown nonlinear dynamics and time-delay with-
out considering sampled-data [47],

cases 3: the leaderless systems with unknown nonlinear dynamics, time-delay and sampled-data
[48].

In this paper, the output consensus problem for leader-following multi-agent systems with un-
known nonlinear dynamics and delayed sampled-data is studied. The algorithm proposed in this
paper is more general.

5. Conclusion

This paper considers the output consensus problem of high-order leader-following multi-agent
systems with unknown nonlinear dynamics, in which the output data of the system are delayed and
sampled. A novel continuous observer-based output feedback controller is presented such that the
outputs of the system reach consensus exponentially. The connectedness of interconnected graphs
is required to guarantee the exponential convergence of the considered systems. Moreover, the
estimates of the allowable sampling period and time-delay were also obtained.
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