
Fault-tolerant Nonlinear MPC using Particle Filtering *

Laurentz E. Olivier1 and Ian K. Craig2

1 Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, Pretoria, South Africa,
(e-mail: laurentz.olivier@sasol.com)
2Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, Pretoria, South Africa,
(e-mail: ian.craig@up.ac.za)

Abstract: A fault-tolerant nonlinear model predictive controller (FT-NMPC) is presented in this paper. State
estimates, required by the NMPC, are generated with the use of a particle filter. Faults are identified with the nonlinear
generalized likelihood ratio method (NL-GLR), for which a bank of particle filters is used to generate the required fault
innovations and covariance matrices. A simulated grinding mill circuit serves as the platform for illustrating the use of
this fault detection and isolation (FDI) scheme along with the NMPC. The results indicate that faults can be correctly
identified and compensated for in the NMPC framework to achieve optimal performance in the presence of faults.

Keywords: Fault-tolerant, generalized likelihood ratio, model predictive control, nonlinear, particle filter.

1. Introduction

Model predictive control (MPC) is a very successful con-
trol technology and has been widely applied in the process-
ing industry (Bauer and Craig, 2008). A good overview
of available industrial MPC applications is presented in
Qin and Bagwell (2003). MPC makes use of an explicit
plant model to predict the future behaviour of the plant
with a proposed set of control actions. The control actions
that produce the most optimal plant outputs over the
prediction horizon are the optimal control values. There
are therefore a number of reasons why the control perfor-
mance of MPC could degrade over time (Morari and Lee,
1999). Morari and Lee (1999) stressed the need to detect
abnormality and diagnose its root cause in order to sustain
the benefits of model predictive control over a long period
of time.

It is well known that control performance degrades in the
event of malfunctions in actuators, sensors, or other system
components (Zhang and Jiang, 2008), and easily develops
into production stoppages (Blanke et al., 1997). The way in
which MPC is formulated leads to a natural representation
of faults within the system. Actuator failures are easily
represented as control constraints, and faults that change
the process dynamics can be accommodated by modifying
the internal MPC model.

Fault-tolerant control (FTC) strategies can broadly be
classified as either passive FTC or active FTC (Zhang and
Jiang, 2008). With passive FTC the objective is to design
the controller such that it is robust enough to handle a

? This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Number
90533).

class of presumed faults. Active FTC has the objective of
isolating faults and adapting the control strategy such that
the stability and control performance of the entire system
may be maintained.

Zhang and Jiang (2008) provides a good overview of active
fault-tolerant control systems, and Prakash et al. (2005)
shows how fault-tolerant control may be implemented
in the MPC framework. Reviewing the integration of
fault-tolerant control with MPC, it is evident that the
design of the state observer is the key to being successful
(Deshpande et al., 2009). This is because the observer
generates outputs based on a proposed set of faults,
which may be compared to the plant outputs for fault
identification. One promising fault identification method
for nonlinear systems, the nonlinear generalized likelihood
ratio (NL-GLR) method used in this work (Deshpande
et al., 2009), is based on this idea.

Particle filtering is an estimation technique based on
representing probability densities with weighted samples
(particles) (Arulampalam et al., 2002). Because this rep-
resentation does not make any assumption about the form
of the distribution, it can be used in general nonlinear,
non-Gaussian systems. Particle filters have been used for
fault detection and isolation before, see e.g. Wang and
Syrmos (2008). To the knowledge of the authors they have
however not previously been used in the GLR framework
for integration with NMPC.

This paper presents the use of particle filters in the GLR
framework for fault detection and isolation. The fault
information is integrated with an NMPC controller. A
grinding mill simulator is used as the platform to illustrate

1

the effective use of this method to provide optimal control
performance in the presence of faults.

2. Fault Tolerant non-linear MPC

The discussion in the rest of this article pertains to
the general discrete time state-space representation of a
dynamic system

xk = f (xk−1, uk−1, θk−1, vk−1) (1)

yk = g (xk, θk, ek) (2)

where x ∈ Rn is the state vector and y ∈ Rm is the output
vector, f(·) and g(·) are possibly nonlinear functions de-
scribing the state transitions and the outputs respectively,
uk contains the exogenous inputs, θk represents the pa-
rameters, vk is the state noise and ek is the measurement
noise.

2.1 Non-linear MPC

Considering the system presented in equations (1) and
(2), the objective of a model predictive controller at each
sampling instant is to minimise the scalar performance
index

min
u

V (u, xk) (3)

s.t. x ∈ X,u ∈ U (4)

θc(x, u) ≤ 0 (5)

where x : R→ Rnx is the state trajectory, u : R→ Rnu is
the control trajectory, xk is the state at time step k and
θc(x, u) is the constraint vector.

The performance index (or objective function) to be mini-
mized penalizes output values different from the reference
values as well as excessive control moves. This ensures that
the output values will tend to the reference values without
making undue control moves or violating constraints. The
flexibility with which control objectives can be incorpo-
rated into the objective function is partly why MPC is
such a popular technology. The objective function used
in this work is similar to that shown in Qin and Bagwell
(2003) as:

V (u, xk) =

Np∑
i=1

[
(yr,i − yi)TQr(yr,i − yi) +Qlyi

]
+

Nc−1∑
i=0

∆uTi R∆ui

(6)

where Np and Nc are the prediction and control horizons
respectively; Qr, Ql, and R are weighting matrices cor-
responding to the reference tracking, linear optimization
objectives (LP weights), and control movements; yr is the
output reference and y is the output prediction. If any
plant output variable does not have a specific reference
value, but should rather be minimized, the corresponding
entry in the Qr matrix could be made zero while the
corresponding entry in the Ql matrix is given a positive
weighting value (or negative if the value should be maxi-
mized).

The only difference in this formulation between the linear
and nonlinear versions of the MPC is whether the output
predictions are supplied by propagating the control vector
through a linear or nonlinear model.

2.2 Fault detection and isolation

There are many ways in which model based fault detection
and isolation (FDI) can be done, see e.g. Alcorta Garcia
and Frank (1997) for an overview on methods for nonlinear
systems.

Consider the innovation sequence calculated from the state
observer:

γ(k) = y(k)− g(x̂k, θk), (7)

with k ∈ [t, t + N]. Without any faults the innovation
sequence should be Gaussian white noise. If however there
are any faults, we can use the test statistic over the
innovation sequence window

ε(t,N) =
t+N∑
k=t

γ(k)TV (k)−1γ(k) (8)

to detect the fault. Note that V (k) is the innovation
covariance. If this test statistic exceeds a threshold the
fault is confirmed. The threshold and window length are
tuning parameters for the fault detection test.

Now suppose a set of observers is used, each operating with
a different postulated fault, and each generates outputs
along with the nominal observer. The problem of fault
isolation is then finding the fault mode observer that
best explains the measurement sequence {y(t) . . . y(t+N)}
generated over the time window for which the fault was
detected. The NL-GLR method can then be stated in
mathematical form as:

min
bfj

(
Jfj
)

=

t+N∑
i=t

γTfj (i)Vfj (i)
−1γfj (i), (9)

where γfj (i) and Vfj (i) are respectively the innovations
and innovation covariance matrices generated by the fault
mode observer corresponding to fault fj . The isolated fault
corresponds to the fault mode observer for which Jfj is the

smallest, with b̂fj , the fault magnitude that produces this
minimum value.

Because the innovation sequence of (7) and the innovation
covariance matrix (V (k)) appear directly in the Kalman
filtering framework, it is natural to make use of the
Kalman filter as the state observer (or the extended
Kalman filter (EKF) in the nonlinear case). In the linear
case the use of the Kalman filter is wholly justified as
it is the optimal estimator (Arulampalam et al., 2002)
(assuming also that the noise is Gaussian). The EKF
however, as is often used in the nonlinear case, suffers some
known limitations (see Julier and Uhlmann (2004) for a
more complete discussion). If is for this reason that particle
filtering is rather used in this work as further discussed in
Section 3.

2.3 Representing faults

There is a set of faults for which fault isolation is a
trivial task. Examples include gross sensor faults and faults
for which there are direct measurements available. Many
modern sensors will inform the user when it has exceeded
the calibration range, and if such a violation is impossible
it is trivial to state that the sensor has failed at the
corresponding condition.

2

Also consider a flow valve on a line where a flow measure-
ment is made. If the valve is stuck while the controller is
trying to manipulate the flow, the flow reading will be a
direct indication of the magnitude of the fault. This class
of faults is not considered in this work. Focus will be placed
on actuator errors where no direct indication is available
and that are much more difficult to isolate (Prakash et al.,
2005).

If the j-th actuator is stuck abruptly at time t then the
corresponding plant input can be represented as:

uuj (k) = m(k) +
[
buj − eTujm(k)

]
eujσ(k − t) (10)

where buj represents the constant value at which the j-th
actuator is stuck, euj is the fault vector with element j
equal to one and all other elements equal to zero, and σ(t)
is the unit step function:

σ(t) = 0 if t < 0; σ(t) = 1 if t ≥ 0. (11)

Similarly, if a bias occurs in the j-th sensor a time t, then
the measured output can be represented as:

yyj (k) = g(xk, θk) + byjeyjσ(k − t) + v(k), (12)

where byj is the bias present in the j-th sensor. If the
j-th sensor fails abruptly at time instant t, then the
measurement can be represented as:

yyj (k) = g(xk, θk) +
[
byj − eTyjg(xk, θk)

]
·

eyjσ(k − t) + v(k),
(13)

where byj is the constant output value of the j-th sensor. If
there is a drift in the j-th sensor from time t, the measured
output can be represented as:

yyj (k) = g(xk, θk) + byjeyjζ(k − t) + v(k), (14)

where byj is the drift slope present in the j-th sensor and

ζ(t) = 0 if t < 0; ζ(t) = t if t ≥ 0. (15)

Any of these fault representations may be considered
by the fault mode observers as used in the NL-GLR
framework.

3. Particle Filtering

Let Yt = {y0, . . . , yt} represent the sequence of all mea-
surements up to the current time, then the general state
estimation problem is formulated as the solution of the
conditional distribution function p(xt|Yt), which is the
distribution of the state given all the observations up to
time t. The idea behind the particle filter (Arulampalam
et al., 2002) is to represent the required posterior density
function (PDF) by a set of random samples and associated
weights as

p(xt|Yt) ≈
Ns∑
i=1

witδ(xt − xit) (16)

where Ns is the number of particles and {xit, wit}
Ns
i=1 is the

set of particle locations and weights. This representation
is illustrated in Fig. 1 where the sizes of the dots represent
the weights of the particles. If Ns →∞, this representation
becomes equivalent to the functional description of the
PDF.

The weights are defined to be (Ristic et al., 2004):

wit ∝ wit−1

p(yt|xit)p(xit|xit−1)

q(xit|xit−1, yt)
, (17)

p(xt|Yt)

{xi
t, w

i
t}

Fig. 1. Distribution representation with particles

where q(xit|xit−1, yt) is a proposal distribution called an
importance density. Ideally the importance density should
be the true posterior distribution p(xt|Yt) but as this is
not known in general, a proposal distribution is used. One
popular suboptimal choice, that is used in this work, is the
transitional prior

q(xit|xit−1, yt) = p(xt|xt−1). (18)

This is a conceptual description of how the particle filter
works. There are many variations on the particle filter, but
the variation used in this work is the sampling importance
resampling (SIR) particle filter, for which the algorithm
can be stated as:

• Initialize: For t = 0 draw Ns states (x0) from the
prior PDF p(x0).
• Propagate particles: For each t > 0 sample
x̃t ∼ p(xt|xt−1) using the state transition function
(1) and the state noise distribution.
• Calculate weights: The weight of each particle is

given by: wt = p (yt|g(x̂t, vt)), which can be evaluated
based on the output function (2) and the shape of the
output distribution.
• Normalize weights: Normalize the weights as

w̃it =
wit∑Ns
j=1 w

j
t

.

• Resample: Multiply particles with high importance
weights and suppress particles with low importance
weights. This is to overcome the degeneracy problem
present in the normal sequential importance sampling
algorithm (Arulampalam et al., 2002). More informa-
tion on the details of the resampling algorithm can
be seen in Olivier et al. (2012).

• PDF: The required PDF is then given by

p(xt|Yt) ≈
1

Ns

Ns∑
i=1

δ(xt − xit).

• State estimates: Once the PDF p(xt|Yt) is known,
the state estimate is calculated as a point estimate
from the distribution. In this work we use the mean,
which with the particle representation after resam-
pling simply becomes:

x̂t =
1

Ns

Ns∑
i=1

xit.

4. Application of the FT-NMPC

The efficacy of the FT-NMPC method is now illustrated
through application on a milling circuit simulator. A full

3

Fig. 2. Grinding mill circuit

nonlinear description of the plant is used in the NMPC,
with faults being identified with the NL-GLR method
using particle filters.

4.1 Process description

In this section we give a brief description and show the
model equations for the grinding mill circuit. A much more
complete description of this model can be found in Le Roux
et al. (2013), in which all of the parameter values listed
later in Table 1 were also derived.

The layout of the milling circuit is shown in Fig. 2. Ore
from the mine is added to the grinding mill along with steel
balls and water. Ore is ground down into fine particles
inside the mill, and exits as a slurry through an end-
discharge grate. Note that coarse ore and steel balls cannot
pass through the grate. The slurry is sent to a sump
where further water is added. The slurry is then pumped
to a cyclone for classification. Sufficiently ground down
material leaves the top of the cyclone as the product of
the milling circuit. Material that should be ground down
further leaves the bottom of the cyclone and re-enters the
mill.

The inputs into the milling circuit are the mill water
feed (MIW), mill solids feed (MFS), mill steel balls feed
(MFB), the speed of turning of the mill (αspeed), the
sump water feed (SFW), and the cyclone feed flow-rate
(CFF). These are all the manipulated variables (MVs)
used in the controller. The milling circuit outputs (also
the controlled variables in the NMPC) are the mill load
(LOAD), sump volume (SVOL), particle size estimate
(PSE), circuit throughput (THP), and the mill power draw
(Pmill).

The mill state transitions are given by:

Ẋmw =MIW − Vmwo (19)

Ẋms = (1− αr)
MFS

Ds
− Vmso +RC (20)

Ẋmf = αf
MFS

Ds
− Vmfo + FP (21)

Ẋmr = αr
MFS

Ds
−RC (22)

Ẋmb =
MFB

Db
−BC. (23)

with

Vmwo = VV · ϕ ·Xmw

(
Xmw

Xmw +Xms

)
(24)

Vmso = VV · ϕ ·Xmw

(
Xms

Xmw +Xms

)
(25)

Vmfo = VV · ϕ ·Xmw

(
Xmf

Xmr +Xms

)
(26)

BC =
1

Dbφb
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(27)

RC =
1

Dsφr
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(28)

FP =
Pmill

Dsφf

[
1 + αφf

(
LOAD
vmill

− vPmax
)] (29)

ϕ =

max
[
0,
(
Xmw −

(
1
εws
− 1
)
Xms

)]
Xmw

0.5

(30)

Pmill = Pmax · {1− δPvZ2
x − δPsZ2

r} · (αspeed)
αP (31)

Zx =
LOAD

vPmax · vmill
− 1 (32)

Zr =
ϕ

ϕPmax
− 1 (33)

The sump state transition equations are:

Ẋsw = Vmwo + SFW − Vswo (34)

Ẋss = Vmso − Vsso (35)

Ẋsf = Vmfo − Vsfo. (36)

Vswo =CFF ·
(

Xsw

Xss +Xsw

)
(37)

Vsso =CFF ·
(

Xss

Xss +Xsw

)
(38)

Vsfo =CFF ·
(

Xsf

Xss +Xsw

)
. (39)

The cyclone is described as:

Vccu = (Vsso − Vsfo) ·
(

1− C1 · e−
CFF
εc

)
· (40)(

1−
[
Fi
C2

]C3
)
·
(

1− PC4
i

)
Vcwu = Vswo ·

Vccu − Fu · Vccu
Fu · Vswo + Fu · Vsfo − Vsfo

(41)

Vcfu = Vsfo ·
Vccu − Fu · Vccu

Fu · Vswo + Fu · Vsfo − Vsfo
(42)

Fu = 0.6− (0.6− Fi) · e−
Vccu
αsuεc , (43)

Fi =
Vsso

Vswo + Vsso
(44)

Pi =
Vsfo
Vsso

. (45)

with Vcfo = Vsfo − Vcfu and Vcco = (Vsso − Vsfo)− Vccu.

4

Table 1. Parameters and constants contained
in the milling circuit equations.

Parameter Value Description

αf 0.055 Fraction of fines in the ore
αr 0.465 Fraction of rocks in the ore
φf 29.57 Power per ton of fines produced [kW·h/t]
φr 6.03 Rock abrasion factor [kW·h/t]
φb 90 Steel abrasion factor [kW·h/t]
εws 0.6 Maximum water-to-solids volumetric

flow at zero slurry flow
VV 84 Volumetric flow per “flowing volume”

driving force [h−1]
Pmax 1661 Maximum mill motor power [kW]
δPv 0.5 Power change parameter for volume of

mill filled
δPs 0.5 Power change parameter for fraction

solids in the mill
vPmax 0.34 Fraction of mill volume filled for maxi-

mum power
ϕPmax 0.57 Rheology factor for maximum mill

power
αP 1.0 Fractional power reduction per frac-

tional reduction from maximum mill
speed

vmill 59.1 Mill volume [m3]
αφf 0.01 Fractional change in kW/fines produced

per change in fractional filling of mill
εc 128.85 Coarse split parameter
αsu 0.87 Parameter related to solids in cyclone

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4 Constant
C4 4 Constant

The milling circuit outputs are:

LOAD = Xmw +Xms +Xmr +Xmb

SV OL = Xsw +Xss

PSE =
Vfo

Vco+Vfo
THP = Vco + Vfo

(46)

as well as Pmill given in (31). The parameter values con-
tained in the process equations are listed in Table 1 (units
are shown next to parameters that are not dimensionless).

4.2 Implementation details

The specific values used in each subsystem for the simula-
tion are listed in Table 2. Note that only LOAD and PSE
have setpoints. The sump level (SV OL) does not need to
be at any specific value, as long as the sump does not run
dry or overflow. The mill power draw (Pmill) should be
minimized and the circuit throughput (THP) should be
maximized, hence they have LP weights.

4.3 Simulation results

The simulation is set-up with the parameters and tuning
values as shown in Tables 1 and 2. The simulation is run
for a total of 3 hours, and is propagated at a sampling
period of 10 seconds. After 0.8 hours the valve supplying
the mill feed water (MIW) gets stuck such that the feed
water remains constant at a value of 10 for the rest of the
simulation run. One hour into the simulation the PSE
setpoint is increased by 15 % (such a large change will
typically not be performed in practice and is used here for

Table 2. Values used for implementation.

Parameter SymbolValue

NMPC parameters

MV high limits U [100 200 10 1 300 450]
MV low limits U [0 0 0 0.4 0 200]
Prediction horizon Np 20
Control horizon Nc 3
Execution interval tS 1 minute
Setpoints yr [0.32 − 0.67 − −]
Reference weight Qr diag([1 0 500 0 0])
LP weight Ql diag([0 0 0 − 1 1])
MV move weight R diag([0.08 0.02 2.5 25 0 2.5])

FDI parameters
Window length
(samples)

N 60

Fault confirmation
threshold

− 10

Particle filter parameters
Number of particles Ns 1000
State noise matrix Qy diag([5 × 10−4, 0.1, 5 ×

10−4, 0.05, 5, 0.01])
Output noise
matrix

Ru 10−5 ×
diag([1, 1, 0.1, 0.1, 1, 1, 0.1, 0.1])

illustration purposes only). Two hours into the simulation
the PSE setpoint is returned to its original value. The
setpoint changes illustrate the control performance in the
presence of faults.

In the first simulation run the fault information is artifi-
cially supplied to the NMPC after 1.5 hours. This is done
to illustrate the control performance when the fault infor-
mation is not available against when the fault information
is available. It is visible from Fig. 3 that the controller
struggles to achieve acceptable reference tracking perfor-
mance without the fault information (the first setpoint
change), but when this information is available the perfor-
mance is vastly improved. Without the fault information
the controller incorrectly believes that the changes it is
making in the MIW are reflected in the plant. With the
fault information available however the controller knows
that it cannot make use of MIW to achieve the required
PSE, and compensates by using the other manipulated
variables.

In the second simulation run the full FT-NMPC is used
with no artificial fault information supplied to the con-
troller. The same simulation setup is used and the PSE
reference tracking is shown in Fig. 4. The fault is correctly
detected as an MIW actuator error, shortly after 1 hour
into the simulation. The actual value at which the MIW
was frozen is 10, and the detected fault magnitude is 9.23.
The MIW values are shown in Fig. 5.

Similar FDI results are achieved for faults in the other
actuators mentioned in Section 4.1. Abrupt sensor bias as
shown in (12) is also correctly detected by the method.
The calculations required by the particle filter bank are
completed within the process sampling time of 10 seconds.

There is a trade-off between the speed of fault detection
and the accuracy of the detection. If the detection win-
dow size is increased the detection accuracy of the fault
magnitude will improve, but the time before detection will
increase. If for example the window size is increased to
0.2 hours, the situation would be similar to that shown

5

0 0.5 1 1.5 2 2.5 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (hours)

P
S

E

Fig. 3. PSE tracking performance with MIW fault (un-
known to NMPC between 0.8 h and 1.5 h - indicated
by horizontal dashed lines).

0 0.5 1 1.5 2 2.5 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (hours)

P
S

E

Fig. 4. PSE tracking performance with MIW fault (FT-
NMPC).

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

M
IW

Time (hours)

Fig. 5. MIW (FT-NMPC) where the solid line is the
controller value and the dashed line is the actual value

in Fig. 3 where the plant is operating for quite a while
without the proper fault information.

5. Conclusion

On-line monitoring and maintenance is one of the key
aspects to ensure lasting benefit from MPC installations.
Active fault tolerant control can help in this regard by
detecting faults and adapting the MPC to retain optimal
operation. These faults include actuator and sensor fail-
ures, but also include drifts and biases that are usually
more difficult to detect but still lead to degraded MPC
performance.

The NL-GLR method using particle filters was imple-
mented for FDI along with NMPC. A grinding mill circuit
simulator was used to illustrate the effectiveness of this
method. The fault detection and correct fault identifica-
tion shows how controller performance can be maintained
in the presence of faults. This shows promise for imple-
mentation in real-world applications.

Acknowledgements

The authors would like to thank the South African Na-
tional Research Foundation for their support of this re-
search.

References
Alcorta Garcia, E. and Frank, P.M. (1997). Deterministic

nonlinear observer-based approaches to fault diagnosis:
a survey. Control Eng. Practice, 5, 663 – 670.

Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp,
T. (2002). A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE trans-
actions on signal processing, 50, 174 – 188.

Bauer, M. and Craig, I.K. (2008). Economic assessment
of advanced process control - A survey and framework.
Journal of Process Control, 18, 2 – 18.

Blanke, M., Izadi-Zamanabadi, R., Bøgh, S.A., and Lunau,
C.P. (1997). Fault-tolerant control systems - a holistic
view. Control Eng. Practice, 5, 693 – 702.

Deshpande, A.P., Patwardhan, S.C., and Narasimhan, S.S.
(2009). Intelligent state estimation for fault tolerant
nonlinear predictive control. Journal of Process Control,
19, 187 – 204.

Julier, S.J. and Uhlmann, J.K. (2004). Unscented filtering
and nonlinear estimation. Proceedings of the IEEE, 92,
401 – 422.

Le Roux, J., Craig, I., Hulbert, D., and Hinde, A. (2013).
Analysis and validation of a run-of-mine ore grinding
mill circuit model for process control. Minerals Engi-
neering, 43 - 44, 121 – 134.

Morari, M. and Lee, J.H. (1999). Model predictive control:
Past, present and future. Comput. Chem. Eng., 23, 667
– 682.

Olivier, L.E., Huang, B., and Craig, I.K. (2012). Dual
particle filters for state and parameter estimation with
application to a run-of-mine ore mill. Journal of Process
Control, 22, 710 – 717.

Prakash, J., Narasimhan, S., and Patwardhan, S.C. (2005).
Integrating model based fault diagnosis with model
predictive control. Ind. Eng. Chem. Res., 44, 4344 –
4360.

Qin, S.J. and Bagwell, T.A. (2003). A survey of indus-
trial model predictive control technology. Control Eng.
Practice, 11, 733 – 764.

Ristic, B., Arulampalam, S., and Gordon, N. (2004).
Beyond the Kalman filter: Particle filters for tracking
applications. Artech House, Boston.

Wang, X. and Syrmos, V.L. (2008). Interacting multiple
particle filters for fault diagnosis of non-linear stochastic
systems. In American Control Conference, 4274 – 4279.
Seattle, Washington, USA.

Zhang, Y. and Jiang, J. (2008). Bibliographical review
on reconfigurable fault-tolerant control systems. Annual
reviews in Control, 32, 229 – 252.

6

