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Abstract. The necessary conditions for existence of a common fixed point of two mappings satisfying
generalized b-order contractive condition in the setting of a partially ordered b-complete b-metric space
are presented. Also, we study well-posedness of common fixed point problem for generalized b-order
contractive mappings. We employ our result to establish an existence of a solution of an integral equation.

1. Introduction

Alber and Guerre-Delabrere [6] proved that a weakly contractive mapping defined on a Hilbert space is
a Picard operator. Rhoades [35] established the same result considering the domain of mapping a complete
metric space instead of Hilbert space. The study of common fixed points of mappings satisfying certain
contractive conditions can be employed to establish existence of solutions of certain operator equations
such as differential and integral equations. Beg and Abbas [10] obtained common fixed points extending
a weak contractive condition to two maps . In 2009, Dorić [17] proved common fixed point theorems
for generalized

(
ψ,φ

)
-weakly contractive mappings. Abbas and Dorić [4] obtained a common fixed point

theorem for four maps. For more work in this direction, we refer to [1−4, 8, 10, 15, 16, 21−28, 33−35, 37−39]
and references mentioned therein.

The study of fixed points of mappings on complete metric spaces equipped with a partial ordering �
was first investigated in [34] Ran and Reurings, and then by Nieto and Lopez [31] subsequently extended
the result of Ran and Reurings [34] for non-decreasing mappings and applied to obtain a unique solution
for a first order ordinary differential equation with periodic boundary conditions (see also [31]).

The concept of b-metric space was introduced by Czerwik in [14]. Since then, several papers have
been published on the fixed point theory of various classes of single-valued and multi-valued operators in
b-metric spaces (see also [11, 12, 36]). Pacurar [32] proved some results on sequences of almost contractions
and fixed points in b-metric spaces. Hussain and Shah [20] obtained some results on KKM mappings in
cone b-metric spaces. Recently, Khamsi [29] and Khamsi and Hussain [30] have dealt with spaces of this
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kind, although under different names (in the spaces called “ metric-type”) and obtained (common) fixed
point results. In particular, they showed that most of the new fixed point existence results of contractive
mappings defined on such metric spaces are merely copies of the classical ones.

Consistent with [14] and [36], the following definitions and results will be needed in the sequel.

Definition 1.1. ([14]) Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X × X→ R+ is a
b-metric iff, for all x, y, z ∈ X, the following conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.
It should be noted that, the class of b-metric spaces is effectively larger than that of metric spaces, since

a b-metric is a metric when s = 1.
Following example show that in general a b-metric need not necessarily be a metric. (see also [36, p.

264]):

Example 1.2. Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p,where p > 1 is a real number. Then ρ is a b-metric
with s = 2p−1.

Obviously conditions (b1) and (b2) of definition 1.1 are satisfied.
If 1 < p < ∞, then the convexity of the function f (x) = xp (x > 0) implies(

a + b
2

)p

≤
1
2

(ap + bp) ,

and hence, (a + b)p
≤ 2p−1(ap + bp) holds.

Thus, for each x, y, z ∈ X we obtain

ρ(x, y) = (d(x, y))p
≤ (d(x, z) + d(z, y))p

≤ 2p−1 (
(d(x, z))p + (d(z, y))p) = 2p−1(ρ(x, z) + ρ(z, y)).

So condition (b3) of definition 1.1 is satisfied and ρ is a b-metric.
However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.
For example, if X = R ( set of real numbers ) and d(x, y) =

∣∣∣x − y
∣∣∣ is the usual metric, then ρ(x, y) = (x− y)2

is a b-metric on R with s = 2, but is not a metric on R.
Also the following example of a b-metric space is given in ([30]).

Example 1.3. ([30]) Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0

∣∣∣ f (x)
∣∣∣2 dx < ∞. Define

D : X × X→ [0,∞) by

D( f , 1) =

∫ 1

0

∣∣∣ f (x) − 1(x)
∣∣∣2 dx.

Then D satisfies the following properties

(b4) D( f , 1) = 0 if and only if f = 1,
(b5) D( f , 1) = D(1, f ), for any f , 1 ∈ X,
(b6) D( f , 1) ≤ 2(D( f , h) + D(h, 1)), for any points f , 1, h ∈ X.

Khamsi ([29]) also showed that each cone metric space has a b-metric structure. In fact he proved the
following interesting result.
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Theorem 1.4. ([29]) Let (X, d) be a metric cone over the Banach space E with the cone P which is normal with the
normal constant K. The mapping D : X×X→ [0,∞) defined by D(x, y) =

∥∥∥d(x, y)
∥∥∥ satisfies the following properties

(b7) D(x, y) = 0 if and only if x = y,
(b8) D(x, y) = D(y, x), for any x, y ∈ X,
(b9) D(x, y) ≤ K(D(x, z1) + D(z1, z2) + · · · + D(zn, y)), for any points x, y, zi ∈ X, i = 1, 2, . . . ,n.

Let S be the class of all mappings β : [0,∞) → [0, 1) which satisfy the condition: βtn → 1 whenever

tn → 0. Note that S , φ. For instance, a mapping f : [0,∞) → [0, 1) given by f x =
1

1 + x
qualifies for a

membership of S. Let f and 1 be two self mappings on a nonempty set X. If x = f x (respectively, f x = 1x and
x = f x = 1x) for some x in X, then x is called a fixed point of f (respectively, coincidence and common fixed
point of f and 1). We define the following sets F( f ) = {x ∈ X : x = f x} and C( f , 1) = {x ∈ X := x = 1x = f x}
. For a complete metric space (X, d), we say that f is a Picard operator if the sequence xn+1 = f xn = f nx0,
n = 0, 1, 2, ..., converges to x∗ for each x0 ∈ X, that is, the set F( f ) = {x∗}. The set {x0, f x0, f 2x0, f 3x0, · · · } is
called an orbit of f at the point x0 and denoted by O f (x0).

In 1973, Geraghty [19] gave following generalization of a Banach fixed point theorem.

Theorem 1.5. Let (X, d) be a complete metric space and f a self map on X. If there exists β ∈ S such that

d( f x, f y) ≤ β(d(x, y))d(x, y)

for all x, y ∈ X. Then f is a Picard operator.

In the following Harandi and Emami [9] reconsidered Theorem 1.5 in the framework of a partially
ordered metric spaces. Note that the condition that

every pair of elements has a lower bound or an upper bound (1)

is equivalent to the condition that for every x, y ∈ X, there exists z ∈ X which is comparable to x and
y. For more details we refer to Nieto and Lopez [31]. This condition is crucial to prove the uniqueness of
fixed point of mapping satisfying certain contractive condition in the framework of partially ordered metric
spaces.

Theorem 1.6. Let (X,�, d) be a partially ordered complete metric space. Let f : X → X be an increasing mapping
such that there exists an element x0 ∈ X with x0 � f x0. If

d( f x, f y) ≤ α(d(x, y))d(x, y)

for each x, y ∈ X with x � y, where α ∈ S. Then f has a fixed point provided that either f is continuous or X is such
that if an increasing sequence {xn} → x in X; then xn � x, for all n. Besides, if for each x, y ∈ X there exists z ∈ X
which is comparable to x and y. Then f has a unique fixed point.

We also need the following definitions:

Definition 1.7. ([25]) Let f and 1 be two self-maps defined on a set X. Then f and 1 are said to be weakly compatible
if they commute at every coincidence point.

Definition 1.8. Let (X, d) be a metric space. Then the pair { f , 1} is said to be compatible if and only if lim
n→∞

d( f1xn, 1 f xn) = 0, whenever {xn} is a sequence in X such that lim
n→∞

f xn = lim
n→∞
1xn = t for some t ∈ X.

Definition 1.9. Let X be a nonempty set. Then (X, d,�) is called partially ordered b-metric space if and only if d is a
b-metric on a partially ordered set (X, �).
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A subset K of a partially ordered set X is said to be totally ordered if every two elements of K are
comparable.

Definition 1.10. Let (X, d) be a metric space and x, y, z ∈ X. An element y is said to be closer to x than z if
d(x, y) ≤ d(x, z).

Definition 1.11. Let (X,�) be a partially ordered set and f a self mapping on X. A mapping f is said to have a
noncompetitive farthest property if x, y ∈ X which are not comparable, there exists z ∈ X which is (a) comparable to x
and y (b) z is closer to x and y than f z.

Example 1.12. Let X = {1, 2, 3}. Define a � b if and only if a ≤ b, where ≤ is usual order on R. Thus

�:= {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} ⊆ X × X.

Define self map f on X such that

f =

(
1 2 3
2 1 3

)
.

Note that (2, 1), (3, 1) and (3, 2) <�, there exits an element 3 ∈ X, which is comparable to (2, 1), (3, 1) and (3, 2). Also
3 is closer to (2, 1), (3, 1) and (3, 2) than f 3. Hence f is a noncompetitive farthest property.

Definition 1.13. ([7]) Let (X,�) be a partially ordered set. Two mappings f , 1 : X → X are said to be weakly
increasing maps, if f x � 1 f x and 1x � f1x hold for all x ∈ X .

Example 1.14. Let X = R+ be endowed with usual order and usual topology. Let f , 1 : X→ X be defined by

f x =

{
x

1
2 , if x ∈ [0, 1]

x2, if x ∈ [1,∞)
, 1x =

{
x, if x ∈ [0, 1)

2x, if x ∈ [1,∞) .

Then, the pair ( f , 1) is weakly increasing maps, where 1 is a discontinuous mapping on R+.

We also need the following definitions and propositions in the setup of b-metric spaces.

Definition 1.15. ([13]) Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:

(a) convergent if and only if there exists x ∈ X such that d(xn, x) → 0 as n → +∞. In this case, we write
lim
n→∞

xn = x.

(b) Cauchy if and only if d(xn, xm)→ 0 as n,m→ +∞.

Proposition 1.16. (see remark 2.1 in [13]). In a b-metric space (X, d) the following assertions hold:

(p1) a convergent sequence has a unique limit,
(p2) each convergent sequence is Cauchy,
(p3) in general, a b-metric is not continuous.

Definition 1.17. ([13]) Let (X, d) be a b-metric space. If Y is a nonempty subset of X, then the closure Y of Y is the
set of limits of all convergent sequences of points in Y, i.e.,

Y =
{
x ∈ X : there exists a sequence {xn} in Y such that lim

n→∞
xn = x

}
.

Taking into account of the above definition, we have the following concepts.

Definition 1.18. ([13]) Let (X, d) be a b-metric space. Then a subset Y ⊂ X is called closed if and only if for each
sequence {xn} in Y which converges to an element x, we have x ∈ Y (i.e. Y = Y ).
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Definition 1.19. ([13]) The b-metric space (X, d) is complete if every Cauchy sequence in X converges.

Definition 1.20. Let(X,�, d) be a partially ordered b-metric space. If there exist β ∈ S such that

sd( f x, 1y) ≤ β(d(x, y))M(x, y) + LN(x, y), (2)

for all x, y ∈ X with x � y, where L ≥ 0,

M(x, y) = max{d(x, y),
d(x, f x)d(y, 1y)

1 + d( f x, 1y)
},

N(x, y) = min{d(x, y), d(x, f x), d(x, 1y), d(y, f x), d(y, 1y)}.

Then f and 1 are said to satisfy generalized b-order rational contractive condition.

An ordered b-metric space (X, d,�) is said to have sequential limit comparison property if for every
non-decreasing sequence ( non-increasing sequence) {xn} in X such that xn → x implies that xn � x (x � xn).

Recently, Karapınar [28] studied well-posed problem for a cyclic weak φ contraction mapping on a
complete metric space. For our purpose, we define the concept of well-posedness of common fixed point
problems as follows:

Definition 1.21. Let f , 1 : X → X be two self-mappings. Then a fixed point problem for f and 1 is well posed if for
any sequence {xn} in X and x∗ in F( f ) ∩ F(1) with xn � x∗, lim

n→∞
d(xn, 1xn) = 0 or lim

n→∞
d(xn, f xn) = 0 implies that

lim
n→∞

xn = x∗.

The aim of this paper is to establish the necessary conditions for existence of a common fixed point
of two mappings satisfying generalized b- order contractive condition in the setting of a partially ordered
b-complete b-metric space .It is worth mentioning that we do not employ any form of commutativity
condition on mappings involved herein. Presented results extend very recent results obtained by F. Zabihi
and A. Razani [38]. We also study well-posedness of common fixed point problem for generalized b- order
contractive mappings. We employ our result to establish an existence of a solution of an integral equation.

2. Common Fixed Point Results

Since in general a b-metric is not continuous, we need the following simple lemma about the b-convergent
sequences in the proof of our main result.

Lemma 2.1. ([5]) Let (X, d) be a b-metric space with s ≥ 1, and suppose that {xn} and {yn} are b-convergent to x, y
respectively, then we have

1
s2 d(x, y) ≤ lim inf

n−→∞
d(xn, yn) ≤ lim sup

n−→∞
d(xn, yn) ≤ s2d(x, y),

In particular, if x = y, then we have lim
n−→∞

d(xn, yn) = 0. Moreover for each z ∈ X we have 1
s d(x, z) ≤ lim inf

n−→∞
d(xn, z)

≤ lim sup
n−→∞

d(xn, z) ≤ sd(x, z).

We start this section with the following result.

Theorem 2.2. Let (X,�, d) be a partially ordered complete b-metric space. Suppose that f , 1 : X→ X are two weakly
increasing maps which satisfy a generalized b-order rational contractive condition. Also, there exists x0 ∈ X such that
f x0 � 1 f x0. Assume that either f , 1 are continuous or X has a sequential limit comparison property. Then f and 1
have a common fixed point.
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Proof. By given assumption there exists x0 in X such that f x0 � 1 f x0. Define a sequence {xn} in X in the
following way:

x2n+1 = f x2n and x2n+2 = 1x2n+1 for all n ≥ 0.

Note that

x1 = f x0 � 1 f x0 = 1x1 = x2 = 1x1 � f1x1 = f x2 = x3.

Iteratively, we obtain that x1 � x2 � x3 � x4 � · · · � xn � xn+1 � · · · . Note that

M(x2n, x2n+1) = max
{

d(x2n, x2n+1),
d(x2n, f x2n)d(x2n+1, 1x2n+1)

1 + d( f x2n, 1x2n+1)

}
= max

{
d(x2n, x2n+1),

d(x2n, x2n+1)d(x2n+1, x2n+2)
1 + d(x2n+1, x2n+2)

}
= d(x2n, x2n+1), (3)

and

N(x2n, x2n+1) = min{d(x2n, x2n+1), d(x2n, f x2n), d(x2n, 1x2n+1)
, d(x2n+1, f x2n), d(x2n+1, 1x2n+1)}

= min{d(x2n, x2n+1), d(x2n, x2n+2), d(x2n+1, x2n+1), d(x2n+1, x2n+2)}
= min{d(x2n, x2n+1), d(x2n, x2n+2), 0, d(x2n+1, x2n+2)} = 0.

As x2n and x2n+1 are comparable and f and 1 satisfy a generalized b-order rational contractive condition, so
we have

sd(x2n+1, x2n+2) = sd( f x2n, 1x2n+1)
≤ β(d(x2n, x2n+1))M(x2n, x2n+1) + LN(x2n, x2n+1)
≤ β(d(x2n, x2n+1))d(x2n, x2n+1)

<
1
s

d(x2n, x2n+1) < d(x2n, x2n+1).

That is,

sd(x2n+1, x2n+2) < d(x2n, x2n+1). (4)

Similarly,

M(x2n+2, x2n+1) = max
{

d(x2n+2, x2n+1),
d(x2n+2, f x2n+2)d(x2n+1, 1x2n+1)

1 + d( f x2n+2, 1x2n+1)

}
= max

{
d(x2n+2, x2n+1),

d(x2n+2, x2n+3)d(x2n+1, x2n+2)
1 + d(x2n+3, x2n+2)

}
= d(x2n+2, x2n+1),

and

N(x2n+2, x2n+1) = min{d(x2n+2, x2n+1), d(x2n+2, f x2n+2), d(x2n+2, 1x2n+1)
, d(x2n+1, f x2n+2), d(x2n+1, 1x2n+1)}

= min{d(x2n+2, x2n+1), d(x2n+2, x2n+3), d(x2n+2, x2n+2)
, d(x2n+1, x2n+3), d(x2n+1, x2n+2)}

= min{d(x2n+2, x2n+1), d(x2n+2, x2n+3), 0, d(x2n+1, x2n+3), d(x2n+1, x2n+2)}
= 0
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As x2n+3 and x2n+2 are comparable and f and 1 satisfy a generalized b-order rational contractive condition,
so we have

sd(x2n+3, x2n+2) = sd(x2(n+1)+1, x2n+2)
= sd( f x2n+2, 1x2n+1)
≤ β(d(x2n+2, x2n+1))M(x2n+2, x2n+1) + LN(x2n+2, x2n+1)
≤ β(d(x2n+2, x2n+1))d(x2n+2, x2n+1)

<
1
s

d(x2n+2, x2n+1)

< d(x2n+2, x2n+1). (5)

Hence we conclude that

sd(xn, xn+1) < d(xn−1, xn). (6)

for each n.That is, the sequence {d(xn, xn+1)} is a nonincreasing. Thus lim
n→∞

d(xn, xn+1) exists. Let r ≥ 0 be such

that lim
n→∞

d(xn, xn+1) = r. We claim that r = 0. If not, that is, lim
n→∞

d(xn, xn+1) = r > 0. Then

1
s

r ≤ sr ≤ lim
n→∞

β(d(xn−1, xn))r ≤ r. (7)

Thus we have lim
n→∞

β(d(xn−1, xn)) ≥ 1
s . As β ∈ S, so we have lim

n→∞
d(xn−1, xn) = 0, a contradiction. Hence r = 0.

Now, we prove that the sequence {xn} is Cauchy in X. Note that

d(xn, xm) ≤ M(xn, xm)

= max{d(xn, xm),
d(xn, f xn)d(xm, 1xm)

1 + d( f xn, 1xm)
}

= max{d(xn, xm),
d(xn, xn+1)d(xm, xm+1)

1 + d(xn+1, xm+1)
}. (8)

Taking limit m,n→∞ in the above inequality, we have

lim
n,m→∞

M(xn, xm) = lim
n,m→∞

d(xn, xm). (9)

Also,

lim
n,m→∞

N(xn, xm) = lim
n,m→∞

min{d(xn, xm), d(xn, f (xn)),

d(xn, 1(xm)), d(xm, f (xn)), d(xm, 1(xm))}
= lim

n,m→∞
min{d(xn, xm), d(xn, xn+1),

d(xn, xm+1), d(xm, xn+1), d(xm, xm+1)}
= 0.

Now

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xm+1) + s2d(xm+1, xm)
≤ sd(xn, xn+1) + s2d(xm+1, xm)

+s{β(d(xn, xm))M(xn, xm) + LN(xn, xm)}.

Taking limit as m,n→∞ in the above inequality, we obtain that

lim
n,m→∞

d(xn, xm) ≤ s lim
n,m→∞

β(d(xn, xm)) lim
n,m→∞

d(xn, xm) (10)

1
s
≤ lim

n,m→∞
β(d(xn, xm)).
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As β ∈ S, so lim
n,m→∞

d(xn, xm) = 0. Hence a sequence {xn} is a b-Cauchy sequence in X. Since (X, d) is a complete

b-metric space, there exist x∗ ∈ X such that lim
n→∞

xn = x∗.

Now, we consider two alternative cases. First, suppose that f is continuous, then it is clear that x∗ is a
fixed point of f .

As x∗ � x∗ and f and 1 satisfy a generalized b-order rational contractive condition so we have

sd(x∗, 1x∗) = sd( f x∗, 1x∗)
≤ β(d(x∗, x∗))M(x∗, x∗) + LN(x∗, x∗) = 0.

Hence x∗ = 1x∗ and x∗ is the common fixed point of f and 1.
Now assume that X has a sequential limit comparison property. Hence x∗ � xn. As f and 1 satisfy a

generalized b-order rational contractive condition, so we have

sd( f x∗, xn+1) = sd( f x∗, 1xn)
≤ β(d(x∗, xn))M(x∗, xn) + LN(x∗, xn)
= β(d(x∗, xn))d(x∗, xn).

Taking limit as n→∞, we obtain that sd( f x∗, x∗)) ≤ 0, which shows that f x∗ = x∗. Similarly 1x∗ = x∗.

Remark 2.3. Above theorem gives that C( f , 1) , φ. Note that if x̃, x∗ ∈ C( f , 1) are comparable then x̃ = x∗, where
f and 1 satisfy generalized b-order rational contractive condition. Indeed, if x̃ and x∗ are two comarable elements in
C( f , 1), then from inequality (2) we have

sd(x∗, x̃) = sd( f x∗, 1x̃)
≤ β(d(x∗, x̃))M(x∗, x̃) + LN(x∗, x̃)
= β(d(x∗, x̃))d(x∗, x̃) < d(x∗, x̃),

a contradiction. Hence x̃ = x∗.

Remark 2.4. If x̃, x∗ ∈ C( f , 1) are incomparable and there exists z ∈ X such that every element in the orbit
O1(z) = {z, 1z, 12z, ...} is comparable to x̃ and x∗. Then x̃ = x∗ provided that f and 1 satisfy generalized b-order
rational contractive condition.

Proof. Suppose that x̃ and x∗ are two incomarable elements in C( f , 1) and there exists an element z ∈ X such
that every element of O1(z) = {z, 1z, 12z, ...} is comparable to x̃ and x∗ ( and hence to f n(x̃) and f n(x∗) for each
n inN ). Then

sd(x∗, x̃) ≤ sd(x∗, 1nz) + sd(x̃, 1nz)
= sd( f nx∗, 1nz) + sd( f nx̃, 1nz)
≤ β(d( f n−1x∗, 1n−1z))M( f n−1x∗, 1n−1z) + LN( f n−1x∗, 1n−1z)

+β(d( f n−1x̃, 1n−1z))M( f n−1x̃, 1n−1z) + LN( f n−1x̃, 1n−1z)

<
1
s

M( f n−1x∗, 1n−1z) + LN( f n−1x∗, 1n−1z)

+
1
s

M( f n−1x̃, 1n−1z) + LN( f n−1x̃, 1n−1z), (11)
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where

M( f n−1x∗, 1n−1z) = max{d( f n−1x∗, 1n−1z),
d(x∗, f nx∗)d(z, 1nz)

1 + d( f nx∗, 1nz)
}

= d( f n−1x∗, 1n−1z),

M( f n−1x̃, 1n−1z) = max{d( f n−1x̃, 1n−1z),
d(x̃, f nx̃)d(z, 1nz)
1 + d( f nx̃, 1nz)

}

= d( f n−1x̃, 1n−1z),
N( f n−1x∗, 1n−1z) = min{d( f n−1x∗, 1n−1z), d( f n−1x∗, f nx∗),

d( f n−1x∗, 1nz), d(1n−1z, f nx∗), d(1n−1z, 1nz)}
= 0 and

N( f n−1x̃, 1n−1z) = min{d( f n−1x̃, 1n−1z), d( f n−1x̃, f nx̃)
, d( f n−1x̃, 1nz), d(1n−1z, f nx̃), d(1n−1z, 1nz)}

= 0.

Thus, we have

sd(x∗, x̃) <
1
s

[d( f n−1x∗, 1n−1z) + d( f n−1x̃, 1n−1z)].

Continuing this way, we obtain that

sd(x∗, x̃) <
1
s

[d( f n−1x∗, 1n−1z) + d( f n−1x̃, 1n−1z)]

=
1
s2 [sd( f n−1x∗, 1n−1z) + sd( f n−1x̃, 1n−1z)]

<
1
s2 [

1
s

d( f n−2x∗, 1n−2z) +
1
s

d( f n−2x̃, 1n−2z)]

...

<
1

s2n−1 [d( f 0x∗, 10z) + d( f 0x̃, 10z)].

On taking limit as n→∞, we have x∗ = x̃.

Remark 2.5. If x̃, x∗ ∈ C( f , 1) are incomparable and the mapping 1 has noncompetitive farthest property, then x̃ =
x∗ provided that f and 1 satisfy generalized b-order rational contractive condition.

Proof. Suppose that x̃ and x∗ are two incomarable elements in C( f , 1). By given assumption there exists an
element z ∈ X comparable to x̃ and x∗ and closer to x̃ and x∗ than 1z. Thus

sd(x∗, x̃) ≤ sd(x∗, z) + sd(z, x̃)
≤ sd(x∗, 1z) + sd(x̃, 1z)
= sd( f x∗, 1z) + sd( f x̃, 1z)
≤ β(d(x∗, z))M(x∗, z) + LN(x∗, z)

+β(d(x̃, z))M(x̃, z) + LN(x̃, z)
= β(d(x∗, z))d(x∗, z) + β(d(x̃, z))d(x̃, z)
< d(x∗, z) + d(z, x̃),

gives a contradiction. Hence x̃ = x∗ .
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Let Ψ be the class of all nondecreasing mappings ψ : [0,∞) → [0,∞) which satisfy the condition:
lim

n→∞
ψn(t) = 0 whenever t > 0.

Lemma 2.6. ([38]) If ψ ∈ Ψ, then the following are satisfied,
(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

Theorem 2.7. Let (X,�, d) be a partially ordered b-complete b-metric space. Suppose that f , 1 : X → X are two
weakly increasing maps and there exists x0 ∈ X such that f x0 � 1 f x0. Suppose that if there exist ψ ∈ Ψ such that

sd( f x, 1y) ≤ ψ(M(x, y)), (12)

for all x, y ∈ X with x � y, where

M(x, y) = max{d(x, y),
d(x, f x)d(y, 1y)

1 + d( f x, 1y)
}.

Assume that either f , 1 are continuous or X has a sequential limit comparison property. Then f and 1 have a common
fixed point.

Proof. By given assumption there exists x0 in X such that f x0 � 1 f x0. Define a sequence {xn} in X in the
following way:

x2n+1 = f x2n and x2n+2 = 1x2n+1 for all n ≥ 0.

Note that

x1 = f x0 � 1 f x0 = 1x1 = x2 = 1x1 � f1x1 = f x2 = x3.

Iteratively, we obtain that x1 � x2 � x3 � x4 � · · · � xn � xn+1 � · · · . Note that

M(x2n, x2n+1) = max
{

d(x2n, x2n+1),
d(x2n, f x2n)d(x2n+1, 1x2n+1)

1 + d( f x2n, 1x2n+1)

}
= max

{
d(x2n, x2n+1),

d(x2n, x2n+1)d(x2n+1, x2n+2)
1 + d(x2n+1, x2n+2)

}
= d(x2n, x2n+1).

As x2n and x2n+1 are comparable with f and 1 satisfy (12), so we have

d(x2n+1, x2n+2) ≤ sd(x2n+1, x2n+2)
= sd( f x2n, 1x2n+1)
≤ ψ(M(x2n, x2n+1))
≤ ψ(d(x2n, x2n+1)). (13)

It is clear that the expression (13) turns into

d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)). (14)

Similarly,

M(x2n+2, x2n+1) = max
{

d(x2n+2, x2n+1),
d(x2n+2, f x2n+2)d(x2n+1, 1x2n+1)

1 + d( f x2n+2, 1x2n+1)

}
= max

{
d(x2n+2, x2n+1),

d(x2n+2, x2n+3)d(x2n+1, x2n+2)
1 + d(x2n+3, x2n+2)

}
= d(x2n+2, x2n+1),
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As x2n+3 and x2n+2 are comparable with f and 1 satisfy (12), so we have

d(x2n+3, x2n+2) ≤ sd(x2(n+1)+1, x2n+2)
= sd( f x2n+2, 1x2n+1)
≤ ψ(M(x2n+2, x2n+1))
≤ ψ(d(x2n+2, x2n+1)). (15)

Hence we conclude that

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ d(xn−1, xn)

for each n. That is, the sequence {d(xn, xn+1)} is a nonincreasing. Thus lim
n→∞

d(xn, xn+1) exists. Now by
induction

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ ... ≤ ψn(d(x1, x0)). (16)

As ψ ∈ Ψ, we conclude that

lim
n→∞

d(xn, xn+1) = 0. (17)

In what follows, we shall prove that the sequence {xn} is Cauchy in X. So, it is sufficient to prove that
lim

n,m→∞
d(xn, xm) = 0. Suppose, on the contrary that, there exists ε > 0 for which we can find two subsequences

{xmi } and {xni } of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi , xni ) ≥ ε. (18)

Implies, we have

d(xmi , xni−1) < ε. (19)

From (18) and using the triangular inequality, we get

ε ≤ d(xni , xmi ) ≤ sd(xmi , xmi+1) + sd(xmi+1, xni ).

Taking i→∞ in the above inequality, we get

ε
s
≤ lim sup

i→∞
d(xmi+1,xni ). (20)

Using the triangular inequality, we get

d(xmi , xni ) ≤ sd(xmi , xni−1) + sd(xni−1, xni ).

Taking i→∞ in the above inequality, we get

lim sup
i→∞

d(xmi,xni ) ≤ εs.

From the definition of M(x, y) and the above limits,

M(xmi , xni−1) = max{d(xmi , xni−1),
d(xmi , f xmi )d(xni−1, 1xni−1)

1 + d( f xmi , 1xni−1)
}

= max{d(xmi , xni−1),
d(xmi , xmi+1)d(xni−1, xni )

1 + d(xmi+1, xni )
}

= d(xmi , xni−1)
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and if i→∞ by (19), we get

lim sup
i→∞

M(xmi , xni−1) ≤ ε.

Now

sd(xmi+1, xni ) = sd( f xmi , 1xni−1)
≤ ψ(M(xmi , xni−1))
= ψ(d(xmi , xni−1)).

Again, if i→∞ by (19) and (20), we obtain

s = s(
ε
s

) ≤ (slim sup
i→∞

d(xmi+1,xni )) ≤ ψ(ε) < ε,

which is a contradiction. Thus, {xn} is a b-Cauchy sequence. Completeness of X yields that {xn} converges
to a point x∗ ∈ X such that lim

n→∞
xn = x∗.

Now, we shall consider two alternative cases. First, suppose that f is continuous, then it is clear that x∗

is a fixed point of f . Now we show that x∗ = 1x∗. Suppose, on the contrary, that d(x∗, 1x∗) > 0. Regarding
x∗ � x∗ together with the inequality (12), we conclude that

sd(x∗, 1x∗) = sd( f x∗, 1x∗)
≤ ψ(M(x∗, x∗))
= ψ(0) = 0,

a contradiction. Hence x∗ = 1x∗ and x∗ is the common fixed point of f and 1.
For the second case, we assume that X has a sequential limit comparison property. Thus, we have

x∗ � xn. Consequently, we find that

sd( f x∗, xn+1) = sd( f x∗, 1xn)
≤ ψ(M(x∗, xn))
= ψ(d(x∗, xn)).

Taking limit as n→∞, we have

sd( f x∗, x∗)) ≤ 0,

which shows that f x∗ = x∗. Similarly 1x∗ = x∗.

Remark 2.8. Above theorem gives that C( f , 1) , φ. Note that if x̃, x∗ ∈ C( f , 1) are comparable then x̃ = x∗, where f
and 1 satisfy (12). Indeed, if x̃ and x∗ are two comarable elements in C( f , 1), then from inequality (2) we have

sd(x∗, x̃) = sd( f x∗, 1x̃)
≤ ψ(M(x∗, x̃))
≤ ψ(d(x∗, x̃)) < d(x∗, x̃),

a contradiction. Hence x̃ = x∗.

Remark 2.9. If x̃, x∗ ∈ C( f , 1) are incomparable and there exists z ∈ X such that every element in the orbit
O1(z) = {z, 1z, 12z, ...} is comparable to x̃ and x∗. Then x̃ = x∗ provided that f and 1 satisfy (12).
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Proof. Suppose that x̃ and x∗ are two incomarable elements in C( f , 1) and there exists an element z ∈ X such
that every element of O1(z) = {z, 1z, 12z, ...} is comparable to x̃ and x∗ ( and hence to f n(x̃) and f n(x∗) for each
n inN ). Then we have

sd(x∗, x̃) ≤ sd(x∗, 1nz) + sd(x̃, 1nz)
= sd( f nx∗, 1nz) + sd( f nx̃, 1nz)
≤ ψ(M( f n−1x∗, 1n−1z)) + ψ(M( f n−1x̃, 1n−1z))
= ψ(d( f n−1x∗, 1n−1z)) + ψ(d( f n−1x̃, 1n−1z)),

where

M( f n−1x∗, 1n−1z) = max{d( f n−1x∗, 1n−1z),
d(x∗, f nx∗)d(z, 1nz)

1 + d( f nx∗, 1nz)
}

= d( f n−1x∗, 1n−1z), and

M( f n−1x̃, 1n−1z) = max{d( f n−1x̃, 1n−1z),
d(x̃, f nx̃)d(z, 1nz)
1 + d( f nx̃, 1nz)

}

= d( f n−1x̃, 1n−1z).

Thus, we have

sd(x∗, x̃) < d( f n−1x∗, 1n−1z) + d( f n−1x̃, 1n−1z).

Continuing this way, we obtain that

sd(x∗, x̃) <
1
s

[sd( f n−1x∗, 1n−1z) + sd( f n−1x̃, 1n−1z)]

...

<
1

sn−1 [d( f 0x∗, 10z) + d( f 0x̃, 10z)].

On taking limit as n→∞, we have x∗ = x̃.

Remark 2.10. If x̃, x∗ ∈ C( f , 1) are incomparable and the mapping 1 has noncompetitive farthest property, then x̃ =
x∗ provided that f and 1 satisfy (12).

Proof. Suppose that x̃ and x∗ are two incomarable elements in C( f , 1). By given assumption there exists an
element z ∈ X comparable to x̃ and x∗ and z is closer to x̃ and x∗ than 1z. Thus

sd(x∗, x̃) ≤ sd(x∗, z) + sd(z, x̃)
≤ sd(x∗, 1z) + sd(x̃, 1z)
= sd( f x∗, 1z) + sd( f x̃, 1z)
≤ ψ(M(x∗, z)) + ψ(M(x̃, z))
= ψ(d(x∗, z)) + ψ(d(x̃, z))
< d(x∗, z) + d(z, x̃),

gives a contradiction. Hence x̃ = x∗ .

Example 2.11. Let X = {1, 2, 3, 4}. Define a � b if and only if b ≤ a, where ≤ is usual order on R. Thus we have

�:= {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)} ⊆ X × X.
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Define two self maps f and 1 such that

f =

(
1 2 3 4
1 1 2 1

)
, 1 =

(
1 2 3 4
1 1 1 2

)
.

It is straight forward to check that f and 1 are weakly increasing maps on X. Define the b-metric d on X by d(x, x) = 0,
d(x, y) = d(y, x), d(1, 2) = 1

5 , d(3, 1) = d(4, 1) = d(3, 2) = d(4, 2) = 10, and d(4, 3) = 5. Note that (X, d) is a b-metric

space with s = 11
10 . Suppose that L ≥ 0 is arbitrary real number and the function β is given by βx =

1
1 + x

. Obviously,
sd( f x, 1y) = 0 when (x, y) ∈ {(1, 1), (2, 1), (2, 2), (4, 1), (4, 2), (4, 3)}. Also,

(x, y) sd( f x, 1y) β(d(x, y))M(x, y) + LN(x, y)
(3, 1) 11/50 10/11
(3, 2) 11/50 10/11
(3, 3) 11/50 250/3 + 10L
(4, 4) 11/50 250/3 + 10L

Thus all the conditions of Theorem 2.1 are satisfied. Moreover 1 is the common fixed point of f and 1. Note that, for
(x, y) = (3, 3) or (4, 4), d( f x, 1y) ≤ kd(x, y) is not satisfied for any value of k.

Example 2.12. Let X = {1, 2, 3, 4}. Define a � b if and only if a ≤ b, where ≤ is usual order on R. Thus we have

�:= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} ⊆ X × X.

Define two self maps f and 1 such that

f =

(
1 2 3 4
1 2 2 1

)
, 1 =

(
1 2 3 4
1 2 1 2

)
.

It is straight forward to check that f and 1 are weakly increasing maps on X. Define the b-metric d on X by d(x, x) = 0,
d(x, y) = d(y, x), d(1, 2) = 1

5 , d(1, 3) = d(1, 4) = d(2, 3) = d(2, 4) = 10, and d(3, 4) = 5. Then (X, d) is a b-metric
space with s = 11

10 . Suppose that the function ψ is given by ψx = ln( 3
2 x + 1). Obviously, sd( f x, 1y) = 0 when

(x, y) ∈ {(1, 1), (1, 3), (2, 2), (2, 4), (3, 4)}. Note that

(x, y) sd( f x, 1y) ψ(M(x, y))
(1, 2) 0.22 0.2624
(1, 4) 0.22 2.7726
(2, 3) 0.22 2.7726
(3, 3) 0.22 4.8363
(4, 4) 0.22 4.8363

Thus all the conditions of Theorem 2.2 are satisfied. Moreover 1 is the common fixed point of f and 1. Note
that Theorem 2.1 is not satisfied when (x, y) = (1, 2) for any β ∈ S. Furthermore, for (x, y) = (3, 3) or (4, 4),
d( f x, 1y) ≤ kd(x, y) is not satisfied for any value of k.

Theorem 2.13. Let (X,�, d) be a partially ordered complete metric space. Let f , 1 : X→ X be two self-mappings as
in Theorem 2.1. Then the fixed point problem for f and 1 is well posed.

Proof. Let {xn} be a sequence in X, and x∗ ∈ F( f ) ∩ F(1) such that xn � x∗. Suppose that lim
n→∞

d(xn, f xn) = 0. If

lim
n→∞

d(xn, x∗) = 0, then we are done. Suppose that lim
n→∞

d(xn, x∗) = r > 0. Consider

sd(xn, x∗) ≤ s{d(xn, f xn) + d( f xn, x∗)}
= s{d(xn, f xn) + d( f xn, 1x∗)}
≤ sd(xn, f xn) + β(d(xn, x∗))M(xn, x∗) + LN(xn, x∗)
≤ sd(xn, f xn) + β(d(xn, x∗))d(xn, x∗)

< sd(xn, f xn) +
1
s

d(xn, x∗)
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On taking limit as n → ∞, we have a contradiction. Similarly, we obtain lim
n→∞

xn = x∗ if we assume

lim
n→∞

d(xn, 1xn) = 0.

3. Main Result

In this section, inspired by the work in [18], we prove the existence of a solution for the integral equation

p(t,u(x, t)) =

1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds. (21)

where u ∈ E = Lp
(C[0, 1] × [0, 1]), 1 < p < ∞ and t, d, s ∈ [0, 1]. Let E be ordered by the cone given by

K = {u ∈ Lp
(C[0, 1] × [0, 1]) : u(x, t) ≤ 0, almost every where}. The space with the b-metric given by

d(x, y) = max
t∈I

∣∣∣x(t) − y(t)
∣∣∣p

for all x, y ∈ X is a complete b-metric space with s = 2p−1 and p ≥ 1. We assume the following:
(i) For all u, v ∈ E with u − v ∈ K,

p(t,u(x, t)) − p(t, v(x, t)) ≤ q(u(x, t) − v(x, t)),

for each t ∈ [0, 1].
(ii) q(t, ζ, s,u(ζ, s)) ≤ u(x, t) for all t ∈ [0, 1].

(iii) p(t,
1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds) ≤
1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds for all ζ, t, s ∈ [0, 1].

(iv) q(t, ζ, s,u(ζ, s)) ≥ p(t,u(x, t)) for all ζ, t, s ∈ [0, 1].
Then, the implicit integral equation (21) has a solution in Lp

(C[0, 1] × [0, 1]).

Proof. Define f (u(x, t)) = p(t,u(x, t)) and 1(u(x, t)) =
1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds. Using (ii), (iii) and (iv), we

obtain that

f (1(u(x, t))) = p(t,

1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds)

≤

1∫
0

1∫
0

q(t, ζ, s,u(ζ, s))dζds = 1(u(x, t)),

and

1( f (u(x, t))) =

1∫
0

1∫
0

q(t, ζ, s, f (u(ζ, s)))dζds

=

1∫
0

1∫
0

q(t, ζ, s, p(ζ,u(ζ, s)))dζds

≤

1∫
0

1∫
0

p(t,u(x, t))dζds = p(t,u(x, t)) = f (u(x, t)).
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So, f and 1 are weakly increasing maps. Finally, we have

2p−1
∣∣∣ f (u(x, t)) − 1(v(x, t))

∣∣∣p = 2p−1

∣∣∣∣∣∣∣∣p(t,u(x, t)) −

1∫
0

1∫
0

q(t, ζ, s, v(ζ, s))dζds

∣∣∣∣∣∣∣∣
p

≤ 2p−1

∣∣∣∣∣∣∣∣p(t,u(x, t)) −

1∫
0

1∫
0

p(t, v(x, t))dζds

∣∣∣∣∣∣∣∣
p

= 2p−1

∣∣∣p(t,u(x, t)) − p(t, v(x, t))
∣∣∣p

= 2p−1qp(max
t∈I
|u(x, t) − v(x, t)|)p

= 2p−1qpd(u, v)

≤ 2p−1qpd(u, v) +
d(u, v)

1 + d(u, v)
≤ β(d(u, v))M(u, v) + LN(u, v),

where L = 2p−1qp. Take βx = 1
1+x . Thus β ∈ S. Therefore f and 1 are generalized β-order contractive

mappings. Thus all the conditions of Theorem 3 are satisfied. Hence given problem has a solution which
in turn to solves the integral equation (21).

Remark 3.1. Since a b-metric is a metric when s = 1, so our results can be viewed as the generalization and extension
of corresponding results in [17, 38, 39] and several other comparable results.
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[27] Z. Kadelburg and S. Radenović, Pata-type common fixed point results in b-metric and b-rectangular metric spaces, J. Nonlinear

Sci. Appl. 8 (2015), 944–954.
[28] E. Karapinar and I. S. Yuce, Fixed point theory for Cyclic Generalized Weak ϕ-Contraction on Partial Metric Spaces, Abstr. Appl.

Anal. Article ID 491542 (2012), 12 pages.
[29] M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl.

Article ID 315398 (2010), 7 pages, doi:10.1155/2010/315398.
[30] M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (9) (2010), 3123–3129.
[31] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential

equations, Order 22 (2005), 223–239.
[32] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Analele Universitatii de Vest, Timisoara Seria

Matematica Informatica XLVIII. 3 (2010), 125–137.
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