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Abstract

In this paper, continuous observer is designed for a class of multi-output nonlinear systems with multi-rate sampled and
delayed output measurements. The time delay may be larger or less than the sampling intervals. The sampled and delayed
measurements are used to update the observer whenever they are available. Sufficient conditions are presented to ensure global
exponential stability of the observation errors by constructing a Lyapunov-Krasovskii function. A numerical example is given
to illustrate the effectiveness of the proposed methods.
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1 Introduction

Recently, the problem of design global convergent ob-
servers for nonlinear systems has made great progress.
For the observation of nonlinear systems, one can
use extended Luenberger observers (Zeitz, 1987),
normal form observers (Xia and Gao, 1988; Xia
and Gao, 1989; Bestle and Zeitz, 1983; Krener and
Isidori, 1983), Lyapunov based observers (Raghavan
and Hedrick, 1994; Thau, 1973), high-gain observers
(Gauthier, Hammouri and Othman, 1992; Gauthier and
Kupka, 1994), sliding mode observers (Haskara, Özgüner
and Utkin, 1998) and moving horizon/optimization
based observers (Michalska and Mayne, 1995). Among
these methods, high-gain observers play an important
role and can be used to a large class of nonlinear systems
with a triangular structure after a coordinate change.
New developments of high gain observers have been car-
ried out in various directions (Gauthier, Hammouri and
Othman, 1992; Praly, 2003; Deza, 1991; Deza, Bossanne,
Busvelle, Gauthier and Rakotopara, 1993; Andrieu,
Praly and Astolfi, 2009). For example, the result
of (Gauthier, Hammouri and Othman, 1992) is ex-
tended to a class of nonlinear systems where the non-
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linear terms admit an incremental rate depending on
the measured output (Praly, 2003). In (Deza, 1991),
the authors considered observer design for multi-input
and multi-output (MIMO) nonlinear systems. The re-
sult has been extended to a class of MIMO nonlinear
systems, in which interconnection between the blocks
are not allowed (Deza, Bossanne, Busvelle, Gauthier
and Rakotopara, 1993). Based on the observer normal
form, another extension for the multi-output systems
has been studied in (Rudolph and Zeitz, 1994). How-
ever, the nonlinearity of each block does not allow the
unmeasurable states of its own block. Semi-global ob-
server has been designed for nonlinear systems with
interconnections between the subsystems (Shim, Son
and Seo, 2001). The estimation errors can converge to
the origin in finite-time by using high gain observers in
conjunction with applications of geometric homogeneity
and Lyapunov theories (Shen and Xia, 2008; Shen and
Huang, 2009; Li, Xia and Shen, 2013).

It should be noted that the above results on observer
design are based on continuous-time analysis. How-
ever, for a networked control system, the output is
only available at discrete-time instants since it is usu-
ally transmitted through a shared band-limited digital
communication network. Therefore, observer design for
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continuous systems with sampled and delayed output
measurements has attracted the control community
wide attention. There exist three main approaches
to design observer for continuous systems with sam-
pled and delayed measurements, for example, discrete
time analysis based on a discretized model (Arcak
and Nešić, 2004; Barbot, Monaco and Normand-
Cyrot, 1999), continuous time analysis followed by dis-
cretization (Khalil, 2004; Nešić and Teel, 2004; Nešić,
Teel and Kokotović, 1999), and a mixed continuous
and discrete time analysis without discretization (Deza,
Busvelle, Gauthier and Rakotopora, 1992; Ahmed-
Ali and Lamnabhi-Lagarrigue, 2012; Raff, Kögel and
Allgöwer, 2008; Van Assche, Ahmed-Ali, Ham and
Lamnabhi-Lagarrigue, 2011; Nadri, Hammouri and
Grajales, 2013; Karafyllis and Kravaris, 2009; Ahmed-
Ali, Van Assche, Massieu and Dorléans, 2013; Zhang,
Shen and Xia, 2014). More specifically, two classes
of global exponential observers have been presented
for a class of continuous systems with sampled and
delayed measurements in (Ahmed-Ali, Van Assche,
Massieu and Dorléans, 2013). By using the same meth-
ods, exponential convergent observers were proposed
for nonlinear systems with sampled and delayed mea-
surements in (Ahmed-Ali, Karafyllis and Lamnabhi-
Lagarrigue, 2013). The observers designed in (Ahmed-
Ali, Van Assche, Massieu and Dorléans, 2013; Ahmed-
Ali, Karafyllis and Lamnabhi-Lagarrigue, 2013) are in
essence discontinuous. The authors in (Zhang, Shen
and Xia, 2014) proposed a continuous observer for a
class of nonlinear systems with sampled and delayed
measurements based on an auxiliary integral technique.
But a harsh condition is imposed on time delay, that
is the maximum delay must be less than the mini-
mum sampling interval as in (Ahmed-Ali, Van Assche,
Massieu and Dorléans, 2013; Ahmed-Ali, Karafyllis and
Lamnabhi-Lagarrigue, 2013).

In this paper, we address continuous observer design for
a class of multi-output nonlinear systems with multi-
rate sampled and delayed output measurements. This
paper is organized as follows. In Section 2, continuous
observers are presented for a class of multi-output non-
linear systems with multi-rate sampled and time delayed
measurements. In Section 3, an example is used to illus-
trate the validity of the proposed design methods. Fi-
nally, Section 4 concludes the paper.

2 Main results

In this section, we consider the following multi-output
nonlinear systems

{
ẋ(t) = Ax(t) + B(x(t), u(t)),

y(t) = Cx(t) = [C1x
1(t), · · · Cmxm(t)]>,

(1)

where the state x(t) ∈ Rn, the input u(t) ∈ Rp,
the output y(t) ∈ Rm, x(t) = [x1(t)>, · · · , xm(t)>]>,
xi(t) ∈ Rλi (1 ≤ i ≤ m) is the ith partition of the
state x(t); A = diag{A1, · · · , Am}, Ai is λi × λi ma-

trix of Brunovsky form, that is Ai =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0




,

C = diag{C1, · · · , Cm}, Ci = [1, 0, · · · , 0]1×λi
, and

B(x(t), u(t)) = [b1(x(t), u(t))>, · · · , bm(x(t), u(t))>]>
in which the jth element of bi(·), bi

j(·) has the following
structural dependence on the states:

bi
j(t) = bi

j(x
1(t), · · · , xi−1(t);xi

1(t), · · · , xi
j(t);u(t)),

for all 1 ≤ i ≤ m and 1 ≤ j ≤ λi. Thus, bi
j is independent

of the lower states (xi
j+1, · · · , xi

λi
) of the ith block and

the states of the lower blocks (xi+1, · · · , xm). The ith
block of the above system can be expressed as follows





ẋi
1(t) = xi

2(t) + bi
1(x(t)[1,i−1];xi

1(t);u(t)),
...

ẋi
λi−1(t) = xi

λi
(t)

+bi
λi−1(x(t)[1,i−1];x(t)i

[1,λi−1];u(t)),

ẋi
λi

(t) = bi
λi

(x(t)[1,i−1];x(t)i
[1,λi]

;u(t)),

(2)

where xi
j(t) is the jth element of the ith block xi(t).

The abbreviation x(t)[1,k] := [x1(t)>, · · · , xk(t)>]> and
x(t)i

[1,j] := [xi
1(t), · · · , xi

j(t)]
> can be used to simplify the

notation. We assume that there are m sensors in m chan-
nels to sample the output y at sampling instants tik, and
tik < tik+1 (i = 1, · · · ,m and k = 0, 1, 2, · · · ,∞), where
{tik} (i = 1, · · · ,m) are strictly increasing sequences and
satisfy that limk→∞ tik = ∞. The sampled measures are
available at instants tik +τ i

k (i = 1, · · · ,m), where τ i
k > 0

(i = 1, · · · ,m) denote the transmission delay, which are
unknown but have an upper bound τ̄i. The nonlinear
terms bi

j(·) are assumed to satisfy the following global
Lipschitz conditions with Lipschitz constant l1 > 0,

∣∣bi
j(x

1, · · · , xi−1;xi
1, · · · , xi

j ;u)

−bi
j(x̂

1, · · · , x̂i−1; x̂i
1, · · · , x̂i

j ;u)
∣∣

≤ l1
(|x1

1 − x̂1
1|+ |x1

2 − x̂1
2|+ · · · |xi

j − x̂i
j |

)
,

1 ≤ i ≤ m, 1 ≤ j ≤ λi.

(3)

Now, the explicit form of the ith block of the observer is
given as follows:

˙̂x
i

1(t) = x̂i
2(t) + Lia

i
1e

i
1(t

i
k)

2



+bi
1(x̂(t)[1,i−1]; x̂i

1(t);u(t)),
...

˙̂x
i

λi−1(t) = x̂i
λi

(t) + Lλi−1
i ai

λi−1e
i
1(t

i
k)

+bi
λi−1(x̂(t)[1,i−1]; x̂(t)i

[1,λi−1];u(t)),
˙̂x
i

λi
(t) = Lλi

i ai
λi

ei
1(t

i
k)

+bi
λi

(x̂(t)[1,i−1]; x̂(t)i
[1,λi]

;u(t)),

x̂i
j(t

i
k+1 + τ i

k+1) = limt→ti
k+1+τ i

k+1
− x̂i

j(t),

j = 1, 2, · · · , λi, t ∈ [tik + τ i
k, tik+1 + τ i

k+1), k ≥ 0,

(4)

where x̂i
j(t) = x̂i

j0
for t ∈ [t0, t0 + τ i

0] (t0 = ti0), i =
1, · · · ,m and j = 1, · · · , λi, ei

1(t
i
k) = xi

1(t
i
k) − x̂i

1(t
i
k),

Li ≥ 1 and ai
j (1 ≤ i ≤ m, 1 ≤ j ≤ λi) are positive

real numbers, and will be given later. The definition of
global exponential stable observer for the system (2) is
given as follows.

Definition 1 We say that the system (4) is a global
exponential stable observer for the system (2), if there
exist a non-decreasing function N : R+ × R+ → R+

and a positive constant κ such that ‖x̂(t) − x(t)‖ ≤
exp(−κ(t−t0))N(‖x0‖, ‖x̂0‖) for any x0 ∈ Rn, x̂0 ∈ Rn.

Remark 1 The outputs yi (i = 1, · · · ,m) are transmit-
ted through m channels, respectively. We can use m sen-
sors to detect them. Therefore, although τ i

k are unknown,
we can obtain the instant that the sampled data at in-
stants tik is available. In other word, ei

1(t
i
k) is updated au-

tomatically whenever the sampled and delayed measure-
ment yi(tik) arrives.

From (2) and (4), the dynamics of the state error can be
obtained




ėi
1(t) = ei

2(t)− Lia
i
1e

i
1(t

i
k) + b̃i

1,
...

ėi
λi−1(t) = ei

λi
(t)− Lλi−1

i ai
λi−1e

i
1(t

i
k) + b̃i

λi−1,

ėi
λi

(t) = −Lλi
i ai

λi
ei
1(t

i
k) + b̃i

λi
,

ei
j(t

i
k+1 + τ i

k+1) = limt→ti
k+1+τ i

k+1
− ei

j(t),

j = 1, · · · , λi, t ∈ [tik + τ i
k, tik+1 + τ i

k+1), k ≥ 0,

(5)

or,

ėi
1(t) = ei

2(t)− Lia
i
1e

i
1(t) + Lia

i
1

∫ t

ti
k
ėi
1(s)ds + b̃i

1,

...

ėi
λi−1(t) = ei

λi
(t)− Lλi−1

i ai
λi−1e

i
1(t)

+Lλi−1
i ai

λi−1

∫ t

ti
k
ėi
1(s)ds + b̃i

λi−1,

ėi
λi

(t) = −Lλi
i ai

λi
ei
1(t) + Lλi

i ai
λi

∫ t

ti
k
ėi
1(s)ds + b̃i

λi
,

ei
j(t

i
k+1 + τ i

k+1) = limt→ti
k+1+τ i

k+1
− ei

j(t),

j = 1, · · · , λi, t ∈ [tik + τ i
k, tik+1 + τ i

k+1), k ≥ 0,
(6)

where e = [e1(t)>, · · · , em(t)>]>, ei(t) = [ei
1(t), · · · , ei

λi
(t)]>,

ei
j(t) = xi

j(t) − x̂i
j(t), b̃i

j = bi
j(x(t)[1,i−1];x(t)i

[1,j]; u(t))
−bi

j(x̂(t)[1,i−1]; x̂(t)i
[1,j];u(t)), (1 ≤ i ≤ m, 1 ≤ j ≤ λi).

Next, we represent tik in (6) as

tik = t− ηi(t), ηi(t) = t− tik. (7)

Then,

0 < ηi(t) = t− tik ≤ tik+1 + τ i
k+1 − tik < hi,

where hi > 0. Our aim is to find the bounds of hi such
that the error system (5) is globally exponentially stable.

Remark 2 Note that limt→ti
k+1+τ i

k+1
ei
j(t) = ei

j(t
i
k+1 +

τ i
k+1), then ei(t) is continuous on [tik + τ i

k, tik+1 + τ i
k+1].

On the other hand, the evolution process ei
1(t

i
k) =

xi
1(t

i
k) − x̂i

1(t
i
k) is updated at instants tik + τ i

k, whereas
the sampled measurement yi(t) is sampled at instants
tik. Therefore, the system (6) is continuous, delayed and
hybrid in nature. Similar systems have been investi-
gated in (Karafyllis, 2007a; Karafyllis, 2007b; Karafyllis
and Jiang, 2007; Ahmed-Ali, Van Assche, Massieu and
Dorléans, 2013).

Consider the following change of coordinates εi
j =

ei
j

L
λi

j
−1

i

, 1 ≤ i ≤ m, 1 ≤ j ≤ λi, where λi
j = Σi−1

k=1λk + j,

(1 ≤ i ≤ m, 1 ≤ j ≤ λi). Then,





ε̇i
1(t) = Liε

i
2(t)− Lia

i
1ε

i
1(t)

+Lia
i
1

∫ t

t−ηi(t)
ε̇i
1(s)ds + b̃i

1

L
λi
1
−1

i

,

...

ε̇i
λi−1(t) = Liε

i
λi

(t)− Lia
i
λi−1ε

i
1(t)

+Lia
i
λi−1

∫ t

t−ηi(t)
ε̇i
1(s)ds +

b̃i
λi−1

L
λi

λi−1
−1

i

,

ε̇i
λi

(t) = −Lia
i
λi

εi
1(t) + Lia

i
λi

∫ t

t−ηi(t)
ε̇i
1(s)ds

+
b̃i

λi

L
λi

λi
−1

i

, i = 1, · · · ,m.

(8)

Now, we give the following result for the system (2).

Theorem 1 Consider the system (2) with the condi-
tion (3). If Li satisfy Li > max{1, l1, 8λi

λi
l1p̄

i
2, Li−1},

and ai
j > 0 (1 ≤ i ≤ m, 1 ≤ j ≤ λi) are given such that

3



there exists a symmetric positive definite matrix P such
that

Ā>P + PĀ ≤ −I, (9)

and

hi < min
{

1
4Li(3+λi

1)
2(1+ai

1
2)

, 1
16Liλiλ̄2

i
āi

,

1

2Li

√
(3+λi

1)a
i
1

}
, i = 1, · · · ,m,

(10)

then, the system (4) is a global exponential sta-
ble observer for the system (2), where L0 ≥ 1,
Ā = diag{Ā1, · · · , Ām}, P = diag{P1, · · · , Pm}, λi =
λmin(Pi), λ̄i = λmax(Pi), λ̄ = max{1≤i≤m}{λ̄i}, āi =
max{1≤j≤λi}{(ai

j)
2}, P i

j,r is the element of Pi at the jth
line and rth column, p̄i

2 = max{1≤j≤λi,1≤r≤λi}{|P i
j,r|},

(1 ≤ i ≤ m), and Āi =




−ai
1 1 · · · 0

...
...

. . .
...

−ai
λi−1 0 · · · 1

−ai
λi

0 · · · 0



.

Proof: Consider the positive definite function

V1(t) = ε(t)>ε(t) =
m∑

i=1

εi(t)>Piε
i(t),

where ε(t) = [ε1(t)>, · · · , εm(t)>]>, εi(t) = [εi
1(t), · · · ,

εi
λi

(t)]>, (1 ≤ i ≤ m). Then, the derivative of V1(t) along
the system (8) is given by

d
dtV1(t)|(8) =

∑m
i=1[ε̇

i(t)>Piε
i(t) + εi(t)>Piε̇

i(t)]

=
∑m

i=1 Liε
i(t)>(Ā>i Pi + PiĀi)εi(t)

+2
∑m

i=1 Li(ai
1, a

i
2, · · · , ai

λi
)(

∫ t

t−ηi(t)
ε̇i
1(s)ds)Piε

i(t)

+2
∑m

i=1

∑λi

r=1

∑λi

j=1

b̃i
j

L
λi

j
−1

i

εi
j(t)P

i
j,r

≤ −∑m
i=1 Liε

i(t)>εi(t) + 1
4

∑m
i=1 Liε

i(t)>εi(t)

+4
∑m

i=1 Li(ai
1, a

i
2, · · · , ai

λi
)

× ∫ t

t−ηi(t)
ε̇i
1(s)dsPiPi(ai

1, a
i
2, · · · , ai

λi
)>

∫ t

t−ηi(t)
ε̇i
1(s)ds

+2l1
∑m

i=1

∑λi

r=1

∑λi

j=1 |εi
j(t)P

i
j,r|

×(
∑j

k=1

∑λb

a=1

∑i−1
b=1 |εb

a|+ |εi
k|)

≤ −∑m
i=1(

3
4Li − 2λi

λi
l1p̄

i
2)ε

i(t)>εi(t)

+4
∑m

i=1 Liλiλ̄
2
i āi(

∫ t

t−ηi(t)
ε̇i
1(s)ds)2.

Note that Li > {8λi
λi

l1p̄
i
2}. Then, we have

d
dtV1(t)|(8) ≤ − 1

2

∑m
i=1 Liε

i(t)>εi(t)

+4
∑m

i=1 Liλiλ̄
2
i āi(

∫ t

t−ηi(t)
ε̇i
1(s)ds)2.

(11)

By Lemma 1 in (Gu, 2000), we have

|
t∫

t−ηi(t)

ε̇i
1(s)ds |2≤ hi

t∫

t−hi

ε̇i
1(s)

2ds. (12)

It follows from (11) and (12) that

d
dtV1(t)|(8) ≤ − 1

2

∑m
i=1 Liε

i(t)>εi(t)

+4
∑m

i=1 Liλiλ̄
2
i āihi

∫ t

t−hi
ε̇i
1(s)

2ds.
(13)

Consider the following auxiliary integral function

V2(t) =
m∑

i=1

t∫

t−hi

t∫

ρ

ε̇i
1(s)

2dsdρ, t ≥ t0 + h̄,

where h̄ = max1≤i≤m{hi}. We have,

dV2(t)
dt =

∑m
i=1 hiε̇

i
1(t)

2 −∑m
i=1

∫ t

t−hi
ε̇i
1(s)

2ds

≤ ∑m
i=1 L2

i hi(3 + λi
1)[ε

i
2(t)

2 + ai
1
2
εi
1(t)

2

+hia
i
1
2 ∫ t

t−ηi(t)
ε̇i
1(s)

2ds

+λi
1

ε1
1(s)

2+L2
1ε1

2(s)
2+···+L

2λi
1−6

i−1 εi−1
λi−1

(s)2

L
2(λi

1
−2)

i

]

−∑m
i=1

∫ t

t−hi
ε̇i
1(s)

2ds

≤ ∑m
i=1 L2

i (3 + λi
1)

2(1 + ai
1
2)hiε

i(t)T εi(t)

+
∑m

i=1 L2
i (3 + λi

1)a
i
1
2
h2

i

∫ t

t−hi
ε̇i
1(s)

2ds

−∑m
i=1

∫ t

t−hi
ε̇i
1(s)

2ds, t ≥ t0 + h̄,

and

V2(t) ≤
m∑

i=1

hi

t∫

t−hi

ε̇i
1(s)

2ds. (14)

Construct the following Lyapunov-Krasovskii function

V (t) = V1(t) + V2(t), t ≥ t0 + h̄. (15)

From (13) and (14), we have

dV (t)
dt |(8) ≤ −

m∑
i=1

( 1
2 − (3 + λi

1)
2(1 + ai

1
2)hiLi)

×Liε
i(t)>εi(t) +

∑m
i=1(4Liλiλ̄

2
i āihi

+(3 + λi
1)a

i
1
2
h2

i L
2
i − 1)

∫ t

t−hi
ε̇i
1(s)

2ds, t ≥ t0 + h̄.

From (10) it follows that

d

dt
V (t)|(8) ≤ − L

4λ̄
V (t), t ≥ t0 + h̄,

4



where L = min{1≤i≤m}{Li}. Then, V (t) ≤ exp(− L

4λ̄
(t−

t0 − h̄))V (t0 + h̄), t ≥ t0 + h̄. Since the nonlinear terms
in the system (2) and (4) satisfy the global Lipschitz
conditions (3), then, the solutions of (2) and (4) exist
and are continuous on [t0, t0 + h̄]. Therefore, there exists
a non-decreasing function N : R+×R+ → R+ such that
‖x̂(t) − x(t)‖ ≤ exp(− L

4λ̄
(t − t0 − h̄))N(‖x0‖, ‖x̂0‖) for

any x0 ∈ Rn, x̂0 ∈ Rn. Thus, the system (4) is a global
exponential stable observer for the system (2).

3 Numerical simulation

In this section, we use an example to show the effective-
ness of our high gain observer design for nonlinear sys-
tems with sampled and time delay measurements. Con-
sider the following multi-output nonlinear system (Shim,
Son and Seo, 2001):





ẋ1(t) = x2(t) + 0.01u(t),

ẋ2(t) = −x1(t) + 0.1(1− x2
1(t))x2(t) + 0.1x2(t)u(t),

ẋ3(t) = x4(t) + 0.01x2(t)x3(t) exp(u(t)),

ẋ4(t) = −x3(t) + 0.1(1− x2
3(t))x4(t)

+ 1
1+(x2(t)x4(t))2

u(t),

y1(t) = x1(t),

y2(t) = x3(t),

where x(t) = (x1(t), x2(t), x3(t), x4(t))T , which is in the
form (3) with m = 2 and x1(t) = (x1(t), x2(t))T , and
x2(t) = (x3(t), x4(t))T . By (4), the observer is given by





˙̂x1(t) = x̂2(t) + 0.01u(t) + 3L1(y1(t1k)− x̂1(t1k)),
˙̂x2(t) = −x̂1(t) + 0.1(1− x̂2

1(t))x̂2(t) + 0.1x̂2(t)u(t)

+2L2
1(y1(t1k)− x̂1(t1k)),

t ∈ [t1k + τ1
k , t1k+1 + τ1

k+1), k ≥ 0,

x̂i(t1k+1 + τ1
k+1) = limt→t1

k+1+τ1
k+1

− x̂i(t), i = 1, 2,

˙̂x3(t) = x̂4(t) + 0.01x̂2(t)x̂3(t) exp(u(t))

+2L2(y2(t2k)− x̂3(t2k)),
˙̂x4(t) = −x̂3(t) + 0.1(1− x̂2

3(t))x̂4(t)

+ 1
1+(x̂2(t)x̂4(t))2

u(t) + L2
2(y2(t2k)− x̂3(t2k)),

t ∈ [t2k + τ2
k , t2k+1 + τ2

k+1), k ≥ 0,

x̂i(t2k+1 + τ2
k+1) = limt→t2

k+1+τ2
k+1

− x̂i(t), i = 3, 4,

where t1k = kT1 − (1.1 · rand)T1 and t2k = kT2 − (1.5 ·
rand)T2, rand is a random number in the interval [0, 1],
τ1
k and τ2

k denote the transmission delays, T1 and T2

are two positive real constants and will be given later.
By simple computation, P = diag{P1, P2}, where P1 =

[
0.8917 −0.5695

−0.5695 1.1735

]
, P2 =

[
0.5062 −0.5052

−0.5052 1.5124

]
. Then

λmax(P ) = 1.7223, λmin(P ) = 0.2963. The other pa-
rameters are given as: l = 1.6, L1 = 40, L2 = 90.
τ1
k and τ2

k are simulated by random numbers in the in-
terval [0, 1.5T1] and [0, 1.8T2]. From the condition (10),
we have h1 = 3.3 × 10−5s and h2 = 1.5 × 10−5s. Let
T1 = 1.0 × 10−5s and T2 = 0.5 × 10−5s. Fig. 1 shows
the simulation results with the initial condition of ob-
server x̂(0) = [−10,−10,−10,−10]. The observer can
also work for T1 = T2 = 0.01s, the simulation results are
shown in Fig. 2.

0 1 2 3 4 5
−25

−20

−15

−10

−5

0

5

10

15

t/s

 

 
e

1
(t)

e
2
(t)

e
3
(t)

e
4
(t)

Fig. 2 Trajectories of the error states ei(t)(1 ≤ i ≤ 4) with x̂(0).
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Fig. 3 Trajectories of the error states ei(t)(1 ≤ i ≤ 4) with x̂(0).

4 Conclusion

In this paper, continuous observers were designed for
a class of multi-output nonlinear systems with multi-
rate sampled and delayed output measurements. The
time delay might be larger or less than the sampling
intervals. Sufficient conditions were presented to ensure
global exponential stability of the observation errors by
constructing a Lyapunov-Krasovskii function.

5



Acknowledgments

This work was supported by the National Science Foun-
dation of China (61374028, 61273183, 51177088), the
Grant National Science Foundation of Hubei Provin-
cial (2013CFA050), the Scientific Innovation Team
Project of Hubei Provincial Department of Education
(T201504).

References

T. Ahmed-Ali and F. Lamnabhi-Lagarrigue. (2012). High gain
observer design for some networked control systems, IEEE
Trans. Automat. Contr., 57(4), 995-1000.

T. Ahmed-Ali, V. Van Assche, J. Massieu and P. Dorléans. (2013).
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