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Efficient Computation of Array Factor and Sidelobe Level
(SLL) of Linear Arrays

Warren P. du Plessis

Abstract—The implementation of code to efficiently compute the array
factor and sidelobe level (SLL) of linear antenna arrays in MATLAB and
GNU Octave is considered. The use of a fast Fourier transform (FFT)
to compute the array factor is shown to be more efficient than other
approaches. The automatic determination of the sidelobe region as a
necessary step to computing the SLL is addressed. A number of code-
optimsation techniques in MATLAB and Octave are evaluated, including
vectorisation, memory allocation and the use of built-in functions. Finally,
an efficient function which can be used for the computation of the array
factor and SLL of linear arrays in MATLAB and Octave is presented.

Index Terms—Linear arrays, antenna radiation patterns, software
libraries.

I. INTRODUCTION

THE advent of high-performance desktop computing has led
to the use of a wide range of numerical methods for the

synthesis of antenna arrays. These numerical methods include sim-
ulated annealing (SA) [1], genetic algorithms (GAs) [2], ant-colony
optimisation (ACO) [3], particle-swarm optimisation (PSO) [4], and
the covariance matrix adaptation evolutionary strategy (CMA-ES)
[5], among others. These algorithms have the benefit that they are
able to search an entire problem space, thereby avoiding getting
trapped in poor, but locally-optimal, solutions. The availability of vast
computing resources have even led to exhaustive searches becoming
viable in some cases [6].

The use of these numerical synthesis techniques has allowed the
generation of solutions to problems which were previously considered
intractable, or at best, extremely challenging. A good example is the
synthesis of thinned and sparse antenna arrays, where the underlying
theory was formulated in the mid 1960s [7]. In the case of thinned
arrays, the density-taper algorithm proposed in 1964 [8] was the most
effective synthesis technique for a number of decades, even surpass-
ing some later approaches [9]. However, significant improvements
to these pioneering results have been achieved since the mid 1990s
when algorithms such as those mentioned above became viable.

Despite their significant benefits, the algorithms listed in the first
paragraph all suffer from one major drawback: They require the
computation of vast numbers of array factors (antenna patterns).
While high-performance computing hardware does reduce the need
for efficient software implementations somewhat, efficient imple-
mentations remain crucial to obtaining good results in a reasonable
time. Faster code allows more options to be considered or better
characterisation of the performance of algorithms [10]. And as
stated above, extremely efficient implementations even allow the
opportunity to use exhaustive searches for surprisingly large problems
[6].

This paper thus considers a number of factors relevant to the
efficient implementation of the computation of the array factor and
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TABLE I: The computer hardware used to test the algorithms.

C1 C2 C3

C
PU

Type Intel 2×Intel 2×Intel
Xeon 5140 Xeon 5355 Xeon E5-2630

Architecture Woodcrest Covertown Sandy Bridge-EP
Cores 2 2×4 = 8 2×6 = 12
Clock speed 2.33 GHz 2.66 GHz 2.30 GHz
Cache 4 MB 8 MB 15 MB

Main memory 6 GB 8 GB 32 GB

sidelobe level (SLL) of linear arrays. This discussion will be used
to develop an efficient function which can be used in MATLAB
and GNU Octave, and which can be adapted to other programming
languages. It is believed that this function will be useful in at least two
ways. Firstly, it will provide efficient code to researchers considering
linear-array synthesis which should help to speed their progress, and
secondly, the use of standardised code will facilitate comparisons
of the execution times of different algorithms. Furthermore, it is
hoped that the application of MATLAB and Octave code-optimisation
techniques to a relatively well-known problem will provide electro-
magnetics researchers with a better insight into how to optimise their
code than the application of similar techniques to synthetic problems.

The remainder of the paper starts with Section II providing a
description of the software and hardware systems which will be used
to generate the presented results. Section III describes the use of the
fast Fourier transform (FFT) to compute the array factor of a linear
array, with special attention being paid to the angular distribution of
the points at which the array factor is computed. Section IV describes
a number of optimisations which can be applied to the code including
vectorisation, memory allocation and the use of built-in functions.
The final algorithm which results is then described and evaluated in
Section V, followed by a short conclusion in Section VI.

II. TESTING SYSTEMS

A brief description of the computing hardware and software used
to generate the run-time results presented in this work is provided
below.

The computers were all running Debian GNU/Linux test (stretch)
4.3.5-1 (2016-02-06) x86 64 with Linux kernel 4.3.0-1-amd64 as
their operating systems (OSs). The software used to run the algo-
rithms was MATLAB R2015a (8.5.0.197613) [11] and GNU Octave
4.0.0 [12]. MATLAB is a powerful tool for scientific computing,
while Octave is a free and open-source software (FOSS) tool which
is compatible with many MATLAB scripts, especially when paired
with the Octave-Forge extensions [13].

The main features of the three computers used for testing the
algorithms are summarised in Table I. The central processing units
(CPUs) of the three computers use three different architectures, and
thus represent a wide range of test conditions.

III. CALCULATION OF ARRAY FACTOR

The computation of the array factor using an FFT and the number
of points necessary to obtain accurate SLL values are considered in
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Fig. 1: The geometry of a linear antenna array with the antenna
elements denoted by circles.

this section.

A. Mathematical Analysis

The geometry of a linear antenna array is shown in Fig. 1, and its
pattern can be computed using [14]

P (θ) = F (θ)AF (θ) (1)

where P (θ) is the array pattern and F (θ) is the element pattern
with θ denoting either θb or θe in Fig. 1. The array factor AF (θ) is
given by [14]

AF (θb) =

N−1∑
n=0

ane
jβnd sin(θb) (2)

AF (θe) =

N−1∑
n=0

ane
jβnd cos(θe) (3)

where n is the index of the antenna elements, N is the number of
antenna elements, an are the excitations of the antenna elements, β
is the propagation phase constant defined by 2π/λ with λ denoting
the wavelength, and d is the spacing between the antenna elements.

Defining

u =
d

λ
sin (θb) =

d

λ
cos (θe) (4)

allows the array factor to be rewritten as

AF (θ) =

N−1∑
n=0

ane
j2πnu. (5)

The periodicity of the complex exponential means that

AF (u+ l) =

N−1∑
n=0

ane
j2πn(u+l) (6)

=

N−1∑
n=0

ane
j2πnuej2πnl (7)

=

N−1∑
n=0

ane
j2πnu (8)

= AF (u) (9)

where l ∈ Z and n ∈ Z, so the array factor thus only needs to be
computed for u ∈ [0, 1), giving

AFk =

N−1∑
n=0

ane
j2πkn/M (10)

where k ∈ Z, k ∈ [0,M − 1] and M is the number of angles at
which the array factor is computed. Equation (10) is the equation
of the inverse discrete Fourier transform (IDFT) of the antenna-
array excitations, demonstrating the well-known result that the array

TABLE II: The effect of the number of angular points on the accuracy
of the SLL computation for a 200-element array.

Points SLL error (dB)
Minimum Median Maximum Mean Std. dev.

2 000 0.000 0.033 0.254 0.044 0.042
2 500 0.000 0.024 0.151 0.032 0.030
3 000 0.000 0.017 0.109 0.023 0.022
3 500 0.000 0.015 0.084 0.019 0.016
4 000 0.000 0.012 0.062 0.015 0.013
4 500 0.000 0.009 0.051 0.012 0.011
65 536 0.000 0.000 2.07·10-4 3.67·10-6 1.71·10-5

factor of an antenna array can be computed using a discrete Fourier
transform (DFT) [14].

The importance of the DFT has led to the development of FFT
algorithms which apply algorithmic and code optimisations to allow
efficient computation of the DFT [15], [16]. The main implication of
(10) is that these efficient FFT algorithms can be exploited to achieve
rapid computation of the array factor.

The angles corresponding to each value of k in (10) can be
computed from

k

M
= u mod 1 (11)

=

[
d

λ
sin (θb)

]
mod 1 =

[
d

λ
cos (θe)

]
mod 1 (12)

where the modulo function, mod, is the remainder after division
defined by

x mod y = x− y
⌊
x

y

⌋
. (13)

For the special case of half-wavelength spacing of the antenna
elements,

sin (θb) = cos (θe) =

{
2 k
M

if k ∈
[
0, M

2

]
2
(
k
M
− 1
)

if k ∈
[
M
2
, 1
) (14)

can be used to relate k to the angles θb and θe.
The main consequence of (12) is that the equal spacing of the

values of k leads to a unequal spacing in terms of the angles θb
and θe. The nature of the sinusoidal functions means that the points
will be most closely spaced in the broadside direction (θb = 0◦ and
θe = 90◦).

B. Number of Points Required for Accurate SLL

The number of points at which the array factor is computed is
clearly crucial to determining the accuracy with which the SLL is de-
termined. Unfortunately, this critical value is not normally provided,
making it difficult to assess both the accuracy of computed SLL
values and to compare the execution times of different algorithms.

Table II investigates the error of the computed SLL as a function
of the number of points used to compute the array factor with a
FFT. Two thousand 200-element arrays using Taylor excitations [17]
with n̄ uniformly distributed over the range 2 to 30 and the SLL
specification uniformly distributed over the range −10 dB to −30 dB
were used. Taylor excitations were used because they offer parameters
to control the pattern and generally have a single sidelobe which
dominates the SLL.

From Table II, it can be seen that the SLL error decreases as the
number of points increases, as anticipated. The median and mean
errors for 4 000 points are less than 0.02 dB, and the maximum error
is only 0.062 dB. Furthermore, the improvement from 4 000 to 4 500
points is not dramatic. Finally, 4 096 points is a power of two which
leads to efficient computation of the array factor when using a FFT
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(see Section III-B), so 4 096 points will be used for the computation
of the array factors of 200-element arrays.

IV. CODE OPTIMISATION

This section considers a number of optimisations which can be
applied when MATLAB and Octave are used to compute the array
factor.

The code provided in Fig. 2 will be used to generate the majority
of the results provided in this section. While the details of each
subsection of the code will be considered in detail below, the general-
purpose control code is first briefly described.

Lines 1 to 8 of Fig. 2 set a number of constants which control the
execution of the algorithm. The time required for each array-factor
computation is determined using a tic -toc pair and is stored in the
variable times which is initialised on Line 10 and updated in Lines 36,
40, 47, 53 and 58. The loop between Lines 11 and 60 steps through
the variable n angles which determines numbers of angular points at
which the array factor is computed. Line 13, in which the number
of angular points used in the computation is selected, is intentionally
not terminated by a semi-colon to allow the value to be displayed
as a form of progress monitor. Lines 19 to 24 initialise the random-
number generator to a fixed initial state to ensure that all tests are
conducted using the same array excitations. The array excitations
for n simul arrays each of which has n elements elements are set by
Line 31. Lastly, the loop between Lines 28 and 59 ensures that each
test is run n runs times so that reliable timing results can be achieved
through averaging. The output variables are all cleared in Line 29 to
ensure that all computations start from the same state.

Unless otherwise specified, the results presented below are the
average execution times of 100 independent runs of the relevant al-
gorithm, with each run performing 2 000 simultaneous computations
of the array factors of 200-element arrays at the specified numbers of
angles. The excitation of each antenna element was randomly selected
from a uniformly distribution over the range [0, 1].

A. Vectorisation of Operations

1) Description: Vectorisation is the term used to describe the
process of rewriting an equation to allow large numbers of computa-
tions to be performed simultaneously by exploiting vector and matrix
operators and built-in functions. The way software such as MATLAB
and Octave functions means that vector and matrix operations and
built-in functions are significantly faster than using loops to perform
computations. Vectorisation of both the direct and FFT approaches
to computing the array factor are considered below.

The vectorised form of the direct computation of the array factor
in software such as MATLAB and Octave is most easily understood
by noting that (5) can be rewritten as

AF = Ua (15)

where

AF =
[
AF (θ0) AF (θ1) · · · AF (θm) · · · AF (θM−1)

]T
(16)

a =
[
a0 a1 a2 · · · an · · · aN−1

]T (17)

U =



ej 2π 0u0 ej 2π 1u0 · · · ej2π(N−1)u0

ej 2π 0u1 ej 2π 1u1 · · · ej2π(N−1)u1

...
...

. . .
...

ej 2π 0um ej 2π 1um · · · ej2π(N−1)um

...
...

. . .
...

ej 2π 0uM−1 ej 2π 1uM−1 · · · ej2π(N−1)uM−1


(18)

1 % Array l e n g t h .
2 n e l e m e n t s = 200 ;
3 % Number o f t i m e s each t e s t i s r e p e a t e d .
4 n ru ns = 100 ;
5 % The number o f s i m u l t a n e o u s c o m p u t a t i o n s .
6 n s imu l = 2 e3 ;
7 % The number o f a n g l e s c o n s i d e r e d
8 n a n g l e s = [ 1999 2000 2048 2500 2503 3000

3001 3499 3500 4000 4001 4093 4096 ] ;
9

10 t i m e s = z e r o s ( n runs , numel ( n a n g l e s ) , 5 ) ;
11 f o r i n a n g l e s = 1 : numel ( n a n g l e s )
12 % I n i t i a l i s e t h e a n g l e s .
13 c a n g l e = n a n g l e s ( i n a n g l e s )
14 temp = l i n s p a c e ( 0 , 2 , c a n g l e + 1) ’ ;
15 i n d e x = temp >= 1 ;
16 temp ( i n d e x ) = temp ( i n d e x ) − 2 ;
17 f f t a n g l e s = a s i n ( temp ( 1 : ( end − 1) ) ) ;
18 d i r a n g l e s = s o r t ( f f t a n g l e s ) ;
19 % I n t i a l i s e random number g e n e r a t o r .
20 i f e x i s t ( ’OCTAVE VERSION ’ , ’ b u i l t i n ’ )
21 rand ( ’ s eed ’ , 1 ) ; % Octave
22 e l s e
23 rng ( 1 ) ; % MATLAB
24 end
25 % I n i t i a l i s e d i r e c t−c o m p u t a t i o n m a t r i x .
26 n = 0 : ( n e l e m e n t s − 1) ;
27 U = exp (1 i ∗2∗ pi ∗0 .5∗ s i n ( d i r a n g l e s ) ∗n ) ;
28 f o r i n r u n s = 1 : n ru ns
29 c l e a r d i r a f f f t a f l p a f l p i a f mem af
30 % Cr ea te t h e a r r a y s .
31 a r r a y s = rand ( n e l emen t s , n s imu l ) ;
32 % Time c o m p u t a t i o n o f t h e a r r a y f a c t o r s .
33 % D i r e c t c o m p u t a t i o n .
34 t i c
35 d i r a f = U∗ a r r a y s ;
36 t i m e s ( i n r u n s , i n a n g l e s , 1 ) = t o c ;
37 % FFT c o m p u t a t i o n .
38 t i c
39 f f t a f = i f f t ( a r r a y s , c a n g l e ) ;
40 t i m e s ( i n r u n s , i n a n g l e s , 2 ) = t o c ;
41 % FFT c o m p u t a t i o n − loop , pre−a l l o c a t e .
42 t i c
43 l p i a f = z e r o s ( c ang le , n s imu l ) ;
44 f o r i f f t = 1 : n s imu l
45 l p i a f ( : , i f f t ) =

i f f t ( a r r a y s ( : , i f f t ) , c a n g l e ) ;
46 end
47 t i m e s ( i n r u n s , i n a n g l e s , 3 ) = t o c ;
48 % FFT c o m p u t a t i o n − l oop .
49 t i c
50 f o r i f f t = 1 : n s imu l
51 l p a f ( : , i f f t ) =

i f f t ( a r r a y s ( : , i f f t ) , c a n g l e ) ;
52 end
53 t i m e s ( i n r u n s , i n a n g l e s , 4 ) = t o c ;
54 % FFT c o m p u t a t i o n − wrong d i m e n s i o n .
55 t a r r a y s = a r r a y s ’ ;
56 t i c
57 mem af = i f f t ( t a r r a y s , c ang le , 2 ) ;
58 t i m e s ( i n r u n s , i n a n g l e s , 5 ) = t o c ;
59 end % f o r i n r u n s = 1: n runs
60 end % f o r i n a n g l e s = 1: numel ( n a n g l e s )

Fig. 2: Code suitable for MATLAB and Octave which determines the
execution time of a number of different options to compute the array
factor.
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with
um =

d

λ
sin (θbm) =

d

λ
cos (θem) . (19)

The main benefit of using (15) to compute the array factor is that the
matrix multiplication implicitly performs the summation in (5).

Further improvement can be achieved by assembling the column
vectors of a number of excitations into a matrix, giving

A =
[
a0 a1 a2 · · · ap · · · aP−1

]
(20)

where there are P array excitations. The array factors can then be
computed simultaneously using

AFall = UA (21)

with

AFall =
[

AF0 AF1 · · · AFp · · · AFP−1

]
(22)

where the required array factors are the columns of the result.
Vectorisation is even simpler when using the FFT approach to

computing the array factor because MATLAB and Octave implement
the required function ( ifft () ) with parallel execution in mind. Each
column of the argument passed to ifft () is treated as an independent
computation of the FFT, with the results being returned in the
corresponding columns of the result. Mathematically, this corresponds
to

AFall = F
−1 (A) (23)

where F−1 denotes the inverse Fourier transform. This result is
almost identical to (21), except that the matrix multiplication in (21)
has been replaced by an FFT algorithm in (23).

2) Code: Lines 14 to 18 of Fig. 2 show the computation of the
broadside angles (θb) used for the array-factor computation. Note that
while the code in Fig. 2 uses the same angles for both the direct and
FFT computations, this was only done to allow direct comparison
between the results and is not a requirement. The formulation of the
direct computation places no restrictions on the angles at which the
array factor is computed, so any angles may be used. This one clear
benefit of the direct approach over the FFT approach.

The implementation of (18) to compute the matrix U is seen in
Lines 25 to 27 of Fig. 2. The variables dir angles and n are column
and row vectors respectively, so that the multiplication dir angles ∗n
in Line 27 results in the necessary matrix structure. Note that the
computation of U is not included in the direct-computation timing
results as it is a fast operation which only needs to be performed
once.

The direct computation of the array factor in (21) is implemented
by Line 35 of Fig. 2, while the FFT computation of the array factor
from (21) is seen in Line 39. In both cases, the lack of loops is
evident, and the simple form of the relevant code mimics that of
the simplicity of (21) and (23) rather than the complexity of the
underlying operations.

For comparison purposes, a version of FFT computation which is
not vectorised is included in Lines 43 to 46 of Fig. 2. In this case,
a loop is used to compute the array factors which were computed
simultaneously in the two previous cases.

3) Results: The times taken to compute the array factor using the
direct, FFT and looped FFT approaches to computing the array factor
for an array with half-wavelength spacing are shown in Table III.

Table III clearly shows that the use of a FFT to compute the array
factor is faster in almost every case when MATLAB is used. The
only exception is on computer C3 when the number of points used
to compute the array factor is a large prime, but Section IV-C shows
that this number of points is an extremely poor choice. The results

TABLE III: A comparison between the performance of the direct and
FFT approaches to computing the array factor.

MATLAB Octave
Points Case C1 C2 C3 C1 C2 C3

(ms) (ms) (ms) (ms) (ms) (ms)
Direct 915 256 48 997 375 206

4 093 FFT 629 165 68 998 592 404
Loop 1 188 1 060 740 1 289 2 173 1 038
Direct 959 255 48 996 374 206

4 096 FFT 209 86 25 451 477 273
Loop 361 335 274 643 894 522
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Fig. 3: The time to compute the array factor at 4 096 angular points
as a function of the number of CPU cores for (a) direct and (b) FFT
computation.

for Octave differ somewhat with the FFT only being faster than the
direct computation on computer C1.

As expected, using a loop rather than a vectorised computation
of the array factor leads to significant performance reductions in
Table III. The benefit of vectorising operations is thus clearly demon-
strated.

These results are explored further in Fig. 3 where the effect of
the number of cores available for the array-factor computation is
explored. Fig. 3(a) presents results for the direct computation of the
array factor, while Fig. 3(b) shows the comparable results for the
FFT computation.

Significantly, the improvement achieved by using q CPUs in Fig. 3
is less than q times better than the case where only one CPU is
used. This result is actually well-known and applies in general, but
is sometimes not as widely realised as may be expected.

The most important observation from Fig. 3 is that MATLAB
clearly outperforms Octave for the cases considered.
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TABLE IV: A comparison between the performance of the direct and
FFT approaches when no more than four cores are used.

MATLAB Octave
Points Case C1 (2) C2 (4) C3 (4) C1 (2) C2 (4) C3 (4)

(ms) (ms) (ms) (ms) (ms) (ms)
Direct 915 456 106 997 682 535

4 093 FFT 629 305 182 998 707 446
Loop 1 188 1 058 746 1 289 1 538 716
Direct 959 463 106 996 691 533

4 096 FFT 209 140 55 451 395 230
Loop 361 335 267 643 657 424

Another important difference is that the MATLAB performance
always increases when additional cores are available, while this is
not always true for Octave. Specifically, the increase from six to
seven cores in Fig. 3(a) leads to a substantial decrease in performance
for Octave on computer C3, and the best performance with Octave
is obtained with four cores in Fig. 3(b). Possible reasons for these
observations are considered in Section V-B.

Table IV shows the same results as Table III when only a maximum
of four cores are available. Now the FFT results are better than the
direct-computation results in all cases except for some cases where
a prime number of angles is used (a poor choice as outlined in
Section IV-C). Given its improved performance in most cases, the
FFT approach to computing the array factor is recommended.

B. Memory Allocation

1) Description: There are two primary considerations when allo-
cating memory in software such as MATLAB and Octave. The first
is that memory should be allocated before it is used, and the second
is to ensure that contiguous memory is used wherever possible.

While MATLAB and Octave allow the sizes of vectors and matrices
to be changed throughout a program, this approach is inefficient.
When the sizes of vectors and matrices are changed, new memory
is allocated, the old values are copied to the new memory, the old
memory is de-allocated, and finally, the new values are stored. This
process is clearly far less efficient than simply storing the new values
in pre-allocated memory.

Computer memory is conceptually arranged in a linear fashion,
and is optimised for accesses to nearby locations. Fig. 4 shows
how physical memory is mapped to matrices. Most programming
languages, including C, C++ and NumPy for Python, map contiguous
memory to the rows of matrices (row-major order) as shown in
Fig. 4(a), while software such as MATLAB, Octave and Fortran map
the columns of matrices to contiguous memory (column-major order)
as shown in Fig. 4(b).

The implication of the way memory is allocated to matrices is
that accessing the next element of a column entails accessing the
adjacent space in physical memory in MATLAB, Octave and Fortran.
However, accessing the next element of a row means skipping across
large portions of physical memory to access to next value. Values
which will often be accessed together should thus be allocated to
adjacent positions in columns in MATLAB, Octave and Fortran.
Obviously, the opposite is true in programming languages, such as
C, C++ and NumPy for Python, due to their different approach to
memory allocation.

2) Code: Lines 50 to 52 in Fig. 2 are identical to Lines 43 to
46 except that the variable lp af is not initialised outside the loop
in Lines 50 to 52. This was done to illustrate the effect of failing
to allocate the memory necessary in a loop, resulting in the variable
having to be resized during each iteration.

(a)

(b)

Fig. 4: The physical memory layout (top) mapped to the conceptual
memory layout (bottom) for (a) row-major order and (b) column-
major order.

TABLE V: The effect of memory allocation on execution time.

MATLAB Octave
Points Case C1 C2 C3 C1 C2 C3

(ms) (ms) (ms) (ms) (ms) (ms)

4 093

Loop 1 188 1 060 740 1 289 2 173 1 038
LoopI 1 285 1 159 802 188.3 s 193.9 s 90.5 s
FFT 629 165 68 998 592 404

Mem. 835 299 128 1 222 752 473

4 096

Loop 361 335 274 643 894 522
LoopI 467 434 335 187.8 s 193.4 s 93.2 s
FFT 209 86 25 451 477 273

Mem. 406 217 83 675 829 377

The effect of accessing memory along the incorrect dimension of
a loop is illustrated in Lines 55 and 57 of Fig. 2. Line 55 obtains
the transpose of the array excitation so that each excitation runs
along a row instead of a column. The ifft () function in Line 57 is
then configured to compute the array factors along rows by its third
argument.

3) Results: The effect of memory allocation on algorithm execu-
tion time is shown in Table V.

The results in Table V clearly demonstrate the improvement which
can be obtained by initialising arrays outside loops (“Loop”) rather
than resizing arrays in loops (“LoopI”). The performance penalty
is significantly lower in MATLAB than in Octave, suggesting that
MATLAB includes code optimisations to address this surprisingly
common suboptimal coding style.

Table V also demonstrates that allocating memory along the wrong
array dimension (“Mem.”) leads to noticeably slower execution than
when the correct dimension is used (“FFT”). In this case, the
performance penalty is lower for Octave than for MATLAB.

C. Number of Angular Points

1) Description: While many FFT algorithms require the number
of points to be a power of two (N = 2m with m ∈ Z and M ≥ 1)
[15], algorithms such as those in the Fastest Fourier Transform in the
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TABLE VI: The effect of the FFT length on the performance of the
FFT algorithms.

MATLAB Octave
FFT Prime C1 C2 C3 C1 C2 C3

length factors (ms) (ms) (ms) (ms) (ms) (ms)
1 999 1999 310 110 40 435 273 161
2 000 24 · 53 138 71 23 286 292 164
2 048 211 109 72 42 203 232 126
2 500 22 · 54 155 68 18 368 386 181
2 503 2503 357 111 40 570 349 241
3 000 23 · 3 · 53 185 62 22 441 453 216
3 001 3001 465 118 49 705 419 301
3 499 3499 580 148 63 901 510 365
3 500 22 · 53 · 7 220 73 25 516 514 250
4 000 25 · 53 251 84 29 590 583 286
4 001 4001 624 159 66 937 550 376
4 096 212 209 86 25 451 477 273

West (FFTW) library do not have this restriction [16]. The FFTW
library is arguably the most important FFT library as a result of its
use in software packages such as MATLAB [18] and Octave [19].

The manual for the FFTW library states that it performs best when
the length of the FFT computations is of the form [20]

N = 2a · 3b · 5c · 7d · 11e · 13f (24)

where a, b, c, d, e and f are integers with minimum values of zero
and e+f = 0 or 1. This means that the FFTW algorithm is expected
to give the best results when the FFT length is the product of small
prime factors, and to perform poorly when the FFT length is a large
prime number.

2) Code: Line 39 of Fig. 2 was used to compute the array factor
using the FFT for the specified numbers of points.

3) Results: The effect of using different numbers of angular points
(different FFT lengths) in MATLAB and Octave is shown in Table VI.
The FFT lengths chosen ranged from 2 000 to 4 000 in steps of 500,
along with the closest primes to these values and the powers of two
closest to this range.

The most significant observation from Table VI is that the execu-
tion time does not increase linearly as the FFT length increases. This
is anticipated in light of (24).

When the FFT lengths are a power of two (2 048 and 4 096),
the execution time in Table VI is significantly lower than at nearby
values. Again, this is anticipated as FFT algorithms are extremely
efficient in such cases [15]. This leads to the conclusion that setting
the FFT length to a power of two remains the recommended approach
even when advanced FFT algorithms such as FFTW are used.

The longest execution times in Table VI are obtained when the FFT
length is a prime number, as expected. Using FFT lengths which are
prime factors should thus be avoided.

However, the most interesting result from Table VI is that the
execution times for FFT lengths of 3 000 were faster than for FFT
lengths of 4 096. Furthermore, the penalty for using 4 000 points
instead of 4 096 points is surprisingly small with all but one of the
penalties being 20% or less. The FFT length does thus not have to be
a power of two to be efficient as long as the FFT length is a product
of small primes. This leads to the surprising conclusion that rounding
up to the nearest power of two can actually lead to slower execution
in many cases.

The selection of the number of angular points at which the array
factor is computed is thus more strongly determined by the required
accuracy of the array-factor computation than by FFT algorithm
performance.

TABLE VII: Comparison of two methods of computing the pattern
magnitude.

MATLAB Octave
Computed C1 C2 C3 C1 C2 C3

(ms) (ms) (ms) (ms) (ms) (ms)
|AF | 168 44 12 340 306 151
|AF |2 272 239 118 348 366 183

D. Pattern Magnitude Computation

1) Description: The magnitude of the array factor is usually more
important than the phase because the magnitude determines key
antenna parameters such as the gain, beamwidth and SLL.

The natural approach to compute the magnitude of the array factor
is to make use of the complex-magnitude function abs(). However,
this results in the computation of

|AF | =
√

Re{AF}2 + Im{AF}2 (25)

which requires two multiplications to compute the squares, an addi-
tion and square root. Unfortunately, computation of a square root is
a complex process on most computing systems and can thus lead to
reduced performance.

The need to compute a square root can be removed by computing
the squared magnitude of the array factor from

|AF |2 = Re{AF}2 + Im{AF}2 . (26)

While it may be argued that this is not the desired result, the squared
magnitude and the magnitude can be used interchangeably. The key
observation in this regard is that

|AF1| < |AF2| (27)

is identical to

|AF1|2 < |AF2|2 . (28)

This means that algorithms which, for example, optimise the SLL
of an array factor can compare either the magnitude or the squared
magnitude without affecting the result. Furthermore, the decibel value
of the array factor can be computed from

AFdB = 20 log10 (|AF |) (29)

= 10 log10

(
|AF |2

)
(30)

so cases where, for example, the 3-dB beamwidth must be deter-
mined are merely computed by comparing to a different constant
(|AF | = 1/

√
2 and |AF |2 = 1/2) without otherwise changing the

computation. The magnitude of an array factor is in units of field
strength, so the conversion of the magnitude to decibels should use
a factor of 20 as shown in (29).

2) Code: The computation of the magnitude using abs( fft af )
and the squared magnitude using real ( fft af ) .ˆ2 + imag( fft af ) .ˆ2
were compared. The value of fft af was computed using the code
in Fig. 2.

3) Results: The comparison between the computation of the mag-
nitude and the magnitude squared is shown in Table VII. Surprisingly,
the computation of the magnitude using abs() is faster than the
computation of the magnitude squared, despite the fact that the
magnitude requires the additional computation of a square root.

The reason that the magnitude computation is faster is that abs()
is a built-in function in MATLAB and Octave. This means that the
operations required to compute the magnitude have been compiled by
the authors of the MATLAB and Octave leading to fast execution. By
comparison, the computation of the squared magnitude requires that
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five built-in functions (real () , imag(), .ˆ2 twice and +) be performed
and their results combined by the interpreter – a far slower process.
This example thus demonstrates that the use of built-in functions is
preferable in MATLAB and Octave unless the required function is
not available and no similar functions exist.

While the above discussion is of limited value to MATLAB and
Octave, it is far more significant when other programming languages
such as C and C++ are considered. In languages such as these, all
code is compiled, so the code implemented by a developer will
be executed in the same way as library code. The implementation
of a custom squared-magnitude function is thus expected to lead
to significantly faster execution due to the lack of the square-root
computation.

E. Determining the Start of the Sidelobe Region

1) Description: The goal of many optimisation algorithms is to
minimise the SLL of the array factor of an antenna array (e.g. [1]–
[6]). The challenge with optimising the SLL is that the start of the
sidelobe region must be determined. Two approaches to achieving
this are considered below.

The first option is simply to define the edge of the main beam
as being at some angle and then to compute the SLL as the highest
value outside this region. This approach is extremely efficient from a
computational perspective as the start of the sidelobe region does
not need to be determined. However, this approach can lead to
undesirable results.

The array factors of three 50-element thinned arrays synthesised
using the genetic algorithm described in [10] are shown in Fig. 5 to
illustrate the three important cases which arise.

When the correct main-lobe region is used, the optimum SLL
is obtained as shown in Fig. 5(a). When the main-lobe region is
too small, the array factor is primarily determined by the width of
the main beam as shown in Fig. 5(b), and while this does lead
to a narrower main beam, it also results in a substantially worse
SLL. Lastly, using a main-beam region which is too large can allow
sidelobes to be considered as part of the main beam as shown in
Fig. 5(c). This means that the relevant sidelobe is not included in
the SLL computation leading to an incorrect SLL value which is far
better than the true SLL (−23.00 dB versus −15.57 dB in Fig. 5(c)).

The main implication of Fig. 5 is that the selection of the main-
lobe width is crucial to obtaining the correct SLL results. Extreme
care should thus be exercised when specifying the main-beam width,
and in most cases, automatic determination of the start of the sidelobe
region is required.

Arguably the most reliable way to determine the extent of the
main beam is to use the position of the first array-factor null. But
while potentially accurate, this approach means that the roots of a
polynomial need to be computed to determine the main-beam width.
Such computations are extremely time-consuming, with MATLAB
determining roots by computing the eigenvectors of the n × n
companion matrix of an nth-order polynomial [21], for example.
Computing the eigenvalues of a 199 × 199 matrix to determine the
start of the sidelobe region of a 200-element array will be extremely
time-consuming.

A far more computationally efficient approach is simply to deter-
mine when the array-factor magnitude begins to increase. The only
drawback of this approach is that main-beam distortion can occur as
shown in Figure 6. The position of the first root from broadside is
indicated and can be seen to cause a distortion of the main beam.
This would not have occurred if the position of the root was used to
determine the width of the main beam. However, situations like this
are rare, and to the best of the author’s knowledge, only occur in the
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Fig. 5: The array factors for cases where the main-beam region is
(a) correct, (b) too small and (c) too large. The numbers above each
graph show the excitation with a 0 and 1 representing inactive and
active elements, respectively.
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Fig. 6: Beam distortion which can occur when using the increase in
the array factor to determine the main-beam region.

case of thinned arrays where only a small proportion of the antenna
elements are active and the end elements are forced to be active.

While it is possible to determine whether the array-factor magni-
tude increases for all points at which the array factor was computed,
this is inefficient. As long as the excitations are purely real, the array-
factor magnitude is symmetrical around its centre point [22], so only
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half of the points need to be considered. But more importantly, the
main beam constitutes only a small portion of the array factor, so
only a small number of points outside the main beam need to be
considered. Even a rough estimate of the width of the main beam
can thus significantly reduce the number of points which need to be
considered to find the start of the sidelobe region.

The roots of an equally-excited array are equally spaced around the
unit circle with the exception of the positive real axis. The index of
the first array-factor null (the edge of the main beam) in this case is
thus obtained by dividing the FFT length by the number of elements
in the array. The first time the pattern increases now only needs to be
computed around the position of this null to find the sidelobe region
in the majority of cases. There will inevitably be cases where the
main beam is wider than this estimated value, but these special cases
are easily dealt with.

The main issue in implementing the determination of the width of
the main beam is that the find () function in MATLAB and Octave
does not allow independent operations to be performed on each
column of a matrix. Unfortunately, means that the operation cannot
be vectorised, making it necessary to use a loop to compute the start
of the sidelobe region for a number of arrays.

2) Code: The code to determine whether the array factor magni-
tude is increasing is in Lines 13 to 16 of Figure 7, and the start of
the sidelobe region is determined by Lines 18 to 27.

Line 14 of Figure 7 estimates the edge of the main beam as
outlined above. Three times this estimated beamwidth is then used in
Line 16 as the range over which to determine whether the array-factor
magnitude increases. If the array-factor magnitude does not increase
over the relevant range, Line 19 will not produce a result, and the
condition in Line 21 will be true. The array-factor magnitude over
slightly more than half the pattern is then checked (hence the addition
of 2 in Line 12) to determine where the array-factor magnitude first
increases. Slightly more than half the number of points are used
because cases with a single null will only increase in the second half
of the pattern as the null at the edge of the main beam is at u = 1.
If Line 22 also fails to produce a result, it means that only a single
element is active and the pattern has no nulls. In this case, Lines 23
to 26 designate the first point as the start of the sidelobe region to
ensure that the correct of SLL of 0 dB is returned. This last case is
unlikely, so Lines 23 to 26 could safely be removed in the majority of
cases (though this could lead to errors during the synthesis of thinned
arrays, for example).

The alternative to using the main-beam region estimate is to replace
min(ceil(3∗beam end), half end) by half end in Line 16 of Figure 7,
and to remove Lines 13 and 14, 20 to 22 and 27. This approach
would simplify the code at the cost have having to perform the
computation in Line 16 on more points. While this change would
be expected to significantly slow the algorithm down, the nature of
vectorised computations and conditional branches in MATLAB and
Octave means that this is not necessarily the case.

3) Results: The results obtained when computing start of the
sidelobe region using the estimated first-null position and using half
the points are shown in Table VIII as “Beam” and “Half” respectively.
Three different cases with random excitations, random excitations
with 10% of the arrays having wide beamwidths (the case considered
by Lines 21 and 22 of Fig. 7), and random excitations with 10% of
the arrays having no pattern nulls (the case considered by Lines 24 to
26) denoted by “Rand.,” “Wide” and “Flat” in Table VIII respectively.
The two non-random cases are included to demonstrate the effect of
the conditional branches in Lines 21 to 27. Finally, arrays of 50, 100
and 200 elements are considered because shorter arrays have broader
main beams, so the penalty associated with using half the available
angular points is reduced for smaller arrays.

TABLE VIII: A comparison of the different approaches to determin-
ing the start of the sidelobe region.

MATLAB Octave
Arrays Case C1 C2 C3 C1 C2 C3

(ms) (ms) (ms) (ms) (ms) (ms)

Rand.

50 Beam 174 113 71 408 358 239
Half 187 129 79 419 370 248

100 Beam 304 182 95 655 612 377
Half 338 213 114 684 652 396

200 Beam 525 251 123 1 185 1 135 664
Half 595 340 171 1 253 1 211 703

Wide

50 Beam 173 113 73 419 368 251
Half 185 128 81 415 367 246

100 Beam 305 182 95 661 625 390
Half 333 213 112 676 637 392

200 Beam 522 255 125 1 186 1 142 674
Half 588 335 171 1 236 1 198 697

Flat

50 Beam 172 115 77 416 364 253
Half 185 129 77 412 363 244

100 Beam 303 183 100 656 625 391
Half 331 213 115 670 637 393

200 Beam 518 256 125 1 174 1 125 671
Half 584 336 171 1 224 1 182 697

Table VIII shows that limiting the range of angles which are
checked to determine the start of the sidelobe region is faster is the
majority of the cases considered. The only exceptions are for some
of the arrays with 50 elements when special cases comprise 10%
of the arrays. However, these cases are likely to be extremely rare
and are expected to comprise significantly less than 10% of the arrays
considered. Furthermore, the penalty associated with these exceptions
is small.

The performance improvement associated with estimating the
width of the main beam is surprisingly small considering the dramatic
reduction in the number of points which are checked for increases
in the array factor magnitude (62 versus 2 050 points for 200
elements). This is a result of the fact that software like MATLAB
and Octave executes built-in functions like diff () extremely quickly,
while conditional branches and loops are far slower as outlined in
Section IV-D.

V. FINAL ALGORITHM

The final function taking all the issues evaluated in Section IV into
consideration is shown in Fig. 7. A description of the function will
be followed by a brief analysis of its performance.

A. Code

The inputs to the function thinned sll () are the array excitations
and the number of points at which the array factors should be
computed. The input array excitations are in the columns of the
variable A, while the number of points at which the array factor
should be computed is in the variable n points. As outlined in
Section III-B, 4 096 points gives only a small SLL error for 200-
element arrays, and this value can be scaled by the number of array
elements (e.g. 1 024 and 2 048 points for 50- and 100-element arrays
respectively).

No error checking has been included in the code in Fig. 7 both to
keep the listing brief and to avoid slowing the code down. However,
this does mean that care should be exercised in ensuring that the
inputs are valid.

Line 6 of Fig. 7 computes the magnitude of the array factor,
and Line 8 normalises the result to its maximum value. The use
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1 f u n c t i o n [ SLL , AF abs ] =
a r r a y s l l a f (A, n p o i n t s )

2 % Compute t h e SLL and a r r a y f a c t o r o f l i n e a r
3 % a r r a y s a t t h e s p e c i f i e d number o f p o i n t s .
4
5 % Compute t h e a r r a y f a c t o r magn i tude .
6 AF abs = abs ( i f f t (A, n p o i n t s ) ) ;
7 % Normal i s e t h e a r r a y f a c t o r magn i tude .
8 AF abs =

bsxfun ( @rdivide , AF abs , max ( AF abs ) ) ;
9 % A l l o c a t e a v a r i a b l e f o r SLL r e s u l t s .

10 SLL = z e r o s ( 1 , s i z e (A, 2 ) ) ;
11 % The end o f t h e u n iq ue h a l f o f t h e p a t t e r n .
12 h a l f e n d = c e i l ( n p o i n t s / 2 ) + 2 ;
13 % E s t i m a t e t h e e x t e n t o f t h e main beam .
14 beam end = n p o i n t s / s i z e (A, 1 ) ;
15 % Precompute t h e p a t t e r n d i f f e r e n c e s .
16 AF inc = d i f f ( AF abs ( 1 :

min ( c e i l (3∗ beam end ) , h a l f e n d ) , : ) ) > 0 ;
17 f o r i A = 1 : s i z e (A, 2 )
18 % Find f i r s t p a t t e r n magni tude i n c r e a s e .
19 S L L s t a r t = f i n d ( AF inc ( : , i A ) , 1 ) ;
20 % I f main beam i s t o o broad .
21 i f ( numel ( S L L s t a r t ) == 0)
22 S L L s t a r t = f i n d ( d i f f (

AF abs ( 1 : h a l f e n d , i A ) ) > 0 , 1 ) ;
23 % I f p a t t e r n has no n u l l s − u n l i k e l y .
24 i f ( numel ( S L L s t a r t ) == 0)
25 S L L s t a r t = 1 ;
26 end
27 end
28 % Compute t h e SLL .
29 SLL ( i A ) =

max ( AF abs ( S L L s t a r t : h a l f e n d , i A ) ) ;
30 end % f o r i A = 1: s i z e ( A , 2 )

Fig. 7: Final algorithm for array pattern magnitude and SLL compu-
tation in MATLAB and Octave.

of bsxfun() vectorises the process of dividing all the values in each
column by the maximum value of that column. While recent versions
of Octave can vectorise such operations without the use of bsxfun(),
its inclusion helps to highlight that vectorisation has been used and to
maintain compatibility with MATLAB. The normalised array factors
for each of the arrays in the input variable A are returned as the
columns of the second variable returned by the function (AF abs).

Line 10 of Fig. 7 allocates the memory where the computed SLL
values are returned. Lines 13 to 27 have already been evaluated in
Section IV-E. Finally, Line 29 determines the SLL by finding the
maximum value of the array factor in the sidelobe region. This value
is the correct SLL as a result of the fact that the normalised array
factor is used for the computation. The SLL of each of the arrays in
the input variable A is returned in the columns of the first variable
returned by the function (SLL).

B. Results

The execution time of the final algorithm as a function of the
number of CPUs used is tabulated in Table IX and plotted in Fig. 8.

As in Section IV, MATLAB outperforms Octave in all cases. While
MATLAB’s performance advantage over Octave is apparent for any
number of cores, it is also noticeable that MATLAB is better able to
leverage the benefit of additional cores. This is seen by the fact that
the MATLAB execution times decrease more rapidly than for Octave
as the number of cores increases.

TABLE IX: The execution time for the final algorithm.

MATLAB Octave
CPUs C1 C2 C3 C1 C2 C3

(ms) (ms) (ms) (ms) (ms) (ms)
2 525 489 248 1 185 1 099 620
4 351 160 1 036 606
6 272 141 1 141 650
8 251 147 1 135 660
12 123 664
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Fig. 8: The time required to execute the final algorithm.

The Octave results display a significant performance decrease when
more than four cores are used. A similar observation was noted in
Section IV-A where only the FFT computation was considered, so
this result is most likely due to some aspect of the FFT algorithm
used. The fact that pre-compiled binary files are used by the Linux
distribution on the test machines suggests that the FFT library and/or
Octave were optimised for four cores when they were compiled.

At this point, it is worth noting that MATLAB is a commercial
software package, while both Octave and the Octave-Forge extensions
are FOSS. This means that Octave can be freely used, shared and
modified, and there is no limitation on the number of instances
which can be run at once. Furthermore, the performance of Octave
is strongly dependent on the libraries it uses, so it may be possible
to improve performance by using faster libraries or better optimising
the underlying libraries for the machine on which Octave is run.
However, the ease with which improved performance can be achieved
by MATLAB may well be sufficiently large to justify the licence cost
on this basis alone.

A final point which is worth highlighting is that MATLAB and
Octave use the function log(x) to denote the natural logarithm
ln (x) = loge (x). Decibel values computed with (29) and (30)
should thus use the function log10(x) corresponding to log10 (x)
which is sometimes written log (x).

VI. CONCLUSION

The efficient computation of the array-factor magnitude and SLL
of linear arrays in MATLAB and Octave has been studied. The final
result is an efficient function which can be used to implement linear
array-synthesis algorithms.

The development started with a discussion of how an FFT can be
used to compute the array factor of a linear array, and an evaluation
of the number of points required to obtain accurate results. The
extremely efficient implementation of modern FFT algorithms was
shown to outperform other approaches to computing the array factor.
The determination of the start of the sidelobe region of the array
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factor is necessary to compute the SLL, and the use of an estimate
of the width of the main beam along with error checking was shown
to give good results.

A number of aspects of coding in MATLAB and Octave were
considered and included in the final function including vectorisation,
memory allocation, and the use of built-in functions.
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