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Abstract—Bayesian support vector regression (BSVR) modeling of planar 
antennas with reduced training sets for computational efficiency is presented. 
Coarse-discretization electromagnetic (EM) simulations are 
e x p l o i t e d i n o r d e r t o  find a reduced number of fine-discretization 
training points for establishing a high-fidelity BSVR model of the antenna. As 
demonstrated using three planar antennas with different response t y p e s ,  
the proposed technique allows substantial reduction (up to 48%) of the 
computational effort necessary to set up the fine-discretization training data sets 
for the high-fidelity models with negligible loss in predictive power. The 
accuracy of the reduced-data BSVR models is confirmed by their successful use 
within a space mapping optimization/design algorithm.

Index Terms—Gaussian processes, microwave antennas, optimization, 
predictive models, support vector machines.

I. Introduction

Full-wave electromagnetic simulations based on, e.g., the method
of moments or finite elements play a pervasive part in microwave
engineering, as they permit highly accurate evaluation of microwave
structures such as planar antennas. However, such simulations are
costly in computational terms and their use for tasks requiring
numerous analyses (e.g., statistical analysis, parametric design op-
timization) might become infeasible under certain conditions (for
instance, a genetic algorithm optimization might require thousands
of full-wave analyses of candidate geometries of the structure to
be optimized). Hence surrogate models are used instead: trained on
a training set consisting of a limited number of input-output pairs
(e.g., adjustable antenna geometry parameters and frequency as input,
and a performance characteristic such as the magnitude of the input
reflection coefficient obtained from full-wave simulations as
output), these models by virtue of their ability to generalize over the
input space make it possible to quickly obtain the desired performance
characteristics for inputs not previously presented to the model.
The kernel-based machine learning method most widely used for

microwave modeling tasks has been support vector regression (SVR)
utilizing an isotropic Gaussian kernel, e.g., [1]. It has recently been
demonstrated [2] that Bayesian support vector regression (BSVR)
[3] using a Gaussian kernel with automatic relevance determina-
tion (ARD) significantly outperforms the above standard SVR with
isotropic kernel in modeling against frequency of CPW-fed slot
antennas with multiple tunable geometry variables. BSVR is based
on Gaussian process regression (GPR) [4]; the Bayesian framework
enables efficient training of the multiple hyperparameters of the
above ARD kernel by minimizing the negative log probability of
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the data given the hyperparameters. Such training of multiple hy-
perparameters is intractable under standard SVR, which employs a
grid-search/cross-validation approach towards this task. In addition to
its advantageous Bayesian-based features, BSVR also exhibits certain
desirable properties of standard SVR, such as quadratic programming
and (important for our purposes) sparseness of solutions, i.e., solutions
that are fully characterized by the set of support vectors (SVs), which
is a subset of the training set.
As for many other approximation-based methods, the drawback of

BSVR modeling is the high initial cost of gathering the fine-discretiza-
tion full-wave simulation data necessary to train the model so that it has
high predictive accuracy. In the present study, we address this problem
by exploiting the sparseness property of BSVR to reduce—in an op-
timal manner—the amount of expensive high-fidelity data required for
training. Previous methods aimed at optimal data selection for mi-
crowave modeling problems include various adaptive sampling tech-
niques that aim, within optimization contexts, to reduce the number of
samples necessary to ensure the desired modeling accuracy by iterative
identification of the model and adding new training samples based on
the actual model error at selected locations (e.g., [5]) or expected error
values (statistical infill criteria, e.g., [6]). [5], [6] are local/trust region
models; in contrast, our focus is on global, or “library” type, surrogate
models that give accurate predictions over the entire input space, and
that can be used for a variety of applications (e.g., statistical analysis,
optimization). Our approach entails first training an auxiliary BSVR
model using fast, inexpensive coarse-discretization data selected by
means of traditional experimental design procedures, and then taking
the support vectors of this model simulated at a high mesh density as
training data for the actual (high-fidelity) BSVR model (a similar ap-
proach was adopted in [7], but only standard SVR with an isotropic
kernel was used to model comparatively uncomplicated underlying
functions—see [2] for a discussion of the problems of standard SVR
with respect to modeling highly non-linear antenna responses due
to multivariate inputs). The role of the auxiliary model can be viewed
as locating regions of the design space where more samples are needed
compared to other regions—for example, because the response is more
variable with respect to the design and/or frequency variables. Our
modeling approach is demonstrated using three examples of antennas
with highly non-linear responses as a function of tunable ge-
ometry parameters and frequency: a narrowband coplanar waveguide
(CPW)-fed slot dipole antenna, an ultra-wideband (UWB) CPW-fed
T-shaped slot antenna, and a broadband probe-fed microstrip patch
with two U-shaped parasitic elements. We furthermore evaluate the ac-
curacy of our reduced-data BSVR surrogates by using them within a
space-mapping (SM) optimization framework [8]–[12].
The article is organized as follows. Section II provides a brief

theoretical overview of BSVR along the lines of [3], and describes the
multi-fidelity modeling approach. Section III describes how the BSVR
models were set up for each of the above antennas, and compares
predictive accuracies of models trained on the reduced fine-discretiza-
tion data to those of models trained on the original full data sets
(i.e., selected by means of standard experimental design procedures).
In Section IV, the reduced-data models are further evaluated by
using them as basis for antenna optimization using a space mapping
algorithm [13]. Conclusions are presented in Section V.

II. Bayesian Support Vector Regression Modeling

A. Bayesian Support Vector Regression Overview

Consider a training data set of observations,
. The BSVR formulation, which
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Fig. 1. Geometry of a CPW-fed slot dipole antenna (Antenna 1). The ground 
plane (GND) is of infinite lateral extent.

is explained at length in [3], follows the standard Bayesian regression
framework for GPR in which training targets corresponding to
input vectors are expressed as , where the are
independent, identically distributed noise variables; and the underlying
function is a random field. If , then
Bayes’s theorem gives the posterior probability of given the training
data as

(1)

with the prior probability of the likelihood, and
the evidence. The likelihood is given by

(2)

where with the loss function, and a
constant. In standard GPR [4] the loss function is quadratic; the cru-
cial point in the BSVR formulation is that a new loss function, the soft
insensitive loss function, is used that combines advantageous proper-
ties of both the -insensitive loss function (sparseness of solutions) of
standard SVR [14], and Huber’s loss function (differentiability). It is
defined as [3]:

(3)

where , and .
Solving for the maximum a posteriori (MAP) estimate of the func-

tion values entails solving the primal problem [3, Eqs. (19)–(21)], with
the corresponding dual problem given by

(4)

subject to . In the above, is a
matrix with and the kernel function. In partic-
ular, the Gaussian kernel with ARD (used throughout) is given by

(5)

where and are the th elements of the th and th training input
vectors. The hyperparameter vector , which includes , and

can be determined by minimizing the negative log probability of the
data given the hyperparameters [3],

(6)

with an submatrix of corresponding to the off-bound
support vectors, the identity matrix, , and
defined as [3, Eq. (15)]. The length scale associated with the th

input dimension can be considered the distance that has to be traveled
along that dimension before the output changes significantly [4]. The
regression estimate at a test input can be expressed as

(7)

Training points corresponding to are the support vectors
(SVs); of these, points corresponding to are termed
off-bound SVs. Usually, the lower the parameter in the loss function,
the smaller the number of SVs [3]; determines the density function
of the additive noise associated with training targets.

B. BSVR Modeling With Reduced Data Sets

Suppose that a BSVR surrogate of the high-fidelity antenna
model has to be constructed; is the response from CPU-inten-
sive fine-discretization (EM) simulations. As noted earlier, the cost of
gathering sufficient data to train typically is high. This problem is
addressed as follows. First, an auxiliary BSVR model of the
antenna is set up with training data obtained from coarse-discretiza-
tion full-wave simulations (these simulations are referred to as the
low-fidelity EM model ). Specifically, the training set consists of
input vectors and associated targets , where

contains geometry parameters and a frequency value within the range
of interest, and is the corresponding simulated value. The SVs
obtained from (a subset of the training set) is then simulated at
the (high) mesh density/fine discretization, providing the reduced
training set for the high-fidelity BSVR surrogate model .

III. Verification Examples

A. Slot Dipole Antenna (Antenna 1)

The geometry of a CPW-fed slot dipole antenna on a single-layer
dielectric substrate is shown in Fig. 1. The design variables were

mm, and the input space was defined by mm and
mm. Other dimensions/parameters were mm,

mm, mm, and . We were interested in
over the frequency band 2.0-to-2.7GHz (visual inspection revealed that

-against-frequency responses over this band varied substantially
throughout the above geometry input space). Using CST Microwave
Studio [15] on a dual-core 2.33 GHz Intel CPU with 2 GB RAM, we
considered a high-fidelity model ( mesh cells, simulation
time 12 min), and a low-fidelity model ( mesh cells, simu-
lation time 30 s).
For training input data, 99 geometries were randomly selected from

the input space using Latin hypercube sampling (LHS), with three fre-
quencies per geometry uniformly randomly sampled from the above
frequency range such that, in general, each geometry had a different
set of frequencies. The total number of training points was

; training input vectors had the form2



Table 1: Predictive Errors of surrogate Antenna Models

, with and the design variables cor-
responding to the th input vector, and a frequency value within the
range of interest. Test data were comprised of 100 new geometries, also
obtained via LHS, with 71 equally-spaced frequencies per geometry.
The training data were simulated at the mesh density, and used to
train the BSVR model for 3 different values of at the low end
of its possible range ( ; as noted earlier, it is usu-
ally the case that the smaller the value of , the smaller the number of
SVs). Each was used to make predictions on the test data (also
simulated at the mesh density). %RMSE (percentage root mean
square error normalized to the target range) values were in the vicinity
of 1.1%; this high predictive accuracy confirmed that the training set
was sufficiently large.
For each model, the SVs were identified and simulated at the
mesh density. BSVR models fitted to these fine-discretization data

gave the desired surrogate models . For purposes of comparison,
surrogate models trained on the full fine-discretization training
data set were also set up. Table I gives, for each of the
values, the %RMSE values obtained with on the coarse-dis-

cretization test data, and , and on the fine-discretization test
data. Also shown in the table is , the number of SVs associated
with (and therefore the number of training points for ); and

, the proportion of the full training data that were support vec-
tors of . The %RMSE values obtained for and were
either the same, or only marginally higher in the case of , indicating
that reducing the number of training points from to by using the
SVs of as training points for incurred insignificant accuracy
loss. In all cases, the reduction in training data was considerable: for
example, for the number of SVs was 176, which is 59%
of the original training data set. For ease of comparison, Table I also
explicitly lists the computational cost of generating the training data
for the models, expressed in terms of the number of fine-discretiza-
tion simulations (for each model it simply equals the number of
training points). In terms of total CPU time (which was proportional to
the costs in the Table), these numbers translate to approximately 12 h
for , and 20 h for .

B. UWB T-Shaped Slot Antenna (Antenna 2)

Fig. 2 shows the antenna layout [16]. The design variables were
mm, with design space mm,

mm, mm, and mm
( mm, mm, mm; the single-layer substrate

Fig. 2. Geometry of an UWB CPW-fed T-shaped slot antenna (Antenna 2; top 
view). The ground plane (GND) is of infinite lateral extent.

had height mm and dielectric constant ). The fre-
quency band of interest was 2-to-8 GHz (as before, visual inspection
confirmed that -against-frequency responses varied substantially
throughout the geometry input space). Using CST Microwave Studio
[15], we considered a high-fidelity model ( mesh cells,
simulation time 21 min), and a low-fidelity model ( mesh
cells, simulation time 20 s).
Training data were comprised of 294 geometries obtained by LHS,

with 12 frequencies per geometry, randomly selected as before
. Test data were comprised of 49 new LHS geometries, with 121

equally-spaced frequencies per geometry (as before, the value of was
determined by the performance of on the test data simulated at
the coarse mesh density).
The surrogate models , and were set up in a

manner similar to those for Antenna 1. Table I gives, for three values
of , the %RMSEs obtained with on the coarse test data and
with , and on the fine test data; as well as support vector
counts.
In general %RMSE values of were only somewhat higher

than those of , suggesting as before that reducing the number
of training points from to by using the SVs of as
fine-discretization training points for has little effect on prediction
accuracy. The CPU time required to generate fine-discretization
training data for in the case (i.e., the model used in the
optimization below) was approximately 56 h; the CPU time for
was 103 h.

C. Microstrip Antenna With Parasitic Elements (Antenna 3)

The antenna geometry is shown in Fig. 3 [17]. The design variables
were mm, with design space mm,

mm, mm, mm, and
mm. The main patch dimensions were mm and

mm. The lateral dimensions of the dielectric material and the metal
ground were mm and mm. The dielectric substrate
height , was 0.4 mm, and its relative permittivity , was 4.3. The feed
pin offset from the main patch center, , was 5.05 mm. The pin was
0.5 mm in diameter. The frequency band of interest was 4-to-7 GHz.
Training data were 400 geometries obtained by LHS, with 16

randomly selected frequencies per geometry . Test data
were comprised of 50 new LHS geometries with 121 equally-spaced
frequencies per geometry. We considered a high-fidelity model
( mesh cells, simulation time 12 min), and a low-fidelity
model ( mesh cells, simulation time 15 s). It is instructive
to consider three randomly picked responses from the training data,
shown in Fig. 4. In spite of what appears to be a fairly narrowly
circumscribed input space (cf. the boundaries on the , and
dimensions), the responses show considerable variety from one

training point to the next. Furthermore, while within-training point3



Fig. 3. Geometry of a broadband probe-fed microstrip patch antenna with two 
U-shaped parasitic elements (Antenna 3; top view). The dielectric substrate and 
ground plane share the lateral dimensions and . The empty circle below the 
centre of the patch indicates the position of the feed pin.

- - - and — for the AntennaFig. 4. Full-wave-simulated responses 
3 training geometries
mm (top), mm (center), and

mm (bottom).

coarse and fine responses agreed to some extent for some regions of
the frequency band, there were considerable differences for others.
Surrogate models were set up as before. The %RMSE values ob-

tained with on the coarse test data; and , and on the
fine test data for are shown in Table I, as well
as . The greatest data reduction occurred for , namely
by 43% while the %RMSE only increased from 5.53% (full model) to
5.77% (reduced model). The CPU time necessary to simulate fine-dis-
cretization training data for for (i.e., the model used for
the optimization) was approximately 49 h; for it was 80 h.
In order to explore further the influence of mesh density on our

method, a second coarse model ( mesh cells, simulation
time 8 s), i.e., coarser than , was generated, and corresponding sur-
rogate models constructed. Predictive results for the new were sim-
ilar to previous results, e.g., for the predictive %RMSE was
5.82%, although the number of SVs increased somewhat to 3992 (cf.
Table I). In order to assess the general similarity between the coarsely
and finely simulated data, Pearson product-moment correlation coef-
ficients were computed for the respective values, i.e., for
of and ; and also for and (using all training geometries
with 121 equally spaced frequency points per geometry). The correla-
tion coefficients were 0.74 and 0.51 respectively, suggesting that there
is some robustness to our procedure.

IV. Application Examples: Antenna Optimization
TheBSVRmodels (both full and reduced ones) were used to perform

design optimization of the antenna structures considered in Section III.
As noted earlier, our models are intended to be multi-purpose global
models that give accurate predictions for the whole of the input space;

multiple optimization runs corresponding to any number of sets of de-
sign specifications constitute one kind of repeated-use application. In
each case, the initial design is the center of the region of interest .
The design process starts from directly optimizing the BSVR model.
Because of some limitations in the accuracy of the models given the
design context (linear responses were modeled—the preferred choice
given the Gaussian kernel—but logarithmic responses (in dB) are opti-
mized), the design is further refined using the space mapping iterative
process [13]

(8)

where is a surrogate model, enhanced by frequency and output
space mapping [13]. The surrogate model setup is performed using an
evaluation of at . implements design specifications. For the
sake of simplicity, we simply use the symbol to denote either of

or , which can be considered the “coarse”models in the space
mapping context. Let denotes the explicit dependency of the
model on the frequency ( is the set of frequencies of interest at which
the model is evaluated). The surrogate model is defined as

(9)

with

(10)

and

(11)

being the affine frequency scaling (shift and scaling). The frequency
scaling parameters are obtained as

(12)

i.e., to minimize the misalignment between the high- and the scaled
low-fidelity model response at . Although the models are evalu-
ated at a discrete set of frequencies, the information at other frequencies
can be obtained through interpolation. The misalignment is further re-
duced by the output SM (10) that ensured zero-order consistency (i.e.,

) between the surrogate and [18]. The algo-
rithm (8) working with the SM surrogate model (9)–(12) typically re-
quires only 3 to 4 iterations to yield an optimized design, with the cost
of each iteration effectively equal to a single evaluation of the high-fi-
delity model.
Fig. 5 shows the responses of the reduced BSVR and fine models

at the initial designs as well as the responses of the fine models at the
final designs obtained for both antenna structures. The reduced BSVR
models corresponded to values in Table I of 0.15 (Antenna 1), 0.05
(Antenna 2), and 0.15 (Antenna 3). Table II summarizes the results. It
can be observed that the design quality and cost (expressed in terms of
number of evaluations) are very similar for the BSVR models ob-
tained using full and reduced data sets (the CPU times associated with
3 evaluations (Antennas 1 and 2) and 4 evaluations (Antenna
3) were 36 min, 63 min, and 48 min, respectively).
For purposes of comparison, we also optimized the three antennas

using a conventional (not surrogate-based) method, namely a state-of-
the-art pattern-search algorithm [19], [20] that directly relied on fine-
discretization full-wave simulations (i.e., ) for its objective func-
tion evaluations. While maximum values at the final designs ob-
tained for Antennas 1, 2, and 3 ( dB, dB, and dB
respectively) were similar to those obtained using our BSVR models
and the above space-mapping procedure, the computational expense4



Fig. 5. Optimization results: responses of the BSVR model with reduced data
set and the fine model at the initial design - - - , and the fine model at the
optimized design — for (a) Antenna 1, (b) Antenna 2, and (c) Antenna (3).
Design specifications marked with horizontal solid line.

TABLE II
ANTENNAS OPTIMIZATION RESULTS

for the conventional optimization was at least an order of magnitude
larger (i.e., 40, 148, and 201 evaluations for Antennas 1, 2, and 3
respectively, compared to the 3, 3, and 4 evaluations reported in
Table II). This emphasizes how much faster optimization can be re-
alized when accurate models such as BSVR models are available. Our
primary contribution is that we reduce by up to 48% the high initial cost
of setting up these global multi-use models (by comparison with which
the cost of the optimization using space mapping is insignificant).

V. CONCLUSION

Accurate Bayesian support vector regression modeling of the highly
non-linear input characteristics of planar antennas using reduced high-
fidelity training data sets is presented. The reduction of the number
of fine-discretization training points is realized by performing BSVR
modeling on the coarse-discretization EM simulation data (selected
by means of standard experimental design) and then obtaining high-
fidelity simulations only for the points that contribute to the initial
BSVR model in a non-trivial way. Computational savings thus ob-

tained had little effect on modeling accuracy. We also demonstrate
that the reduced-training-set BSVR models perform as well as the full-
training-set models in parametric optimization of antenna structures. A
notable advantage of BSVR is that only a single parameter has to be set
by the user, namely (hyperparameters are initialized randomly during
training). This stands in contrast to for instance neural network-based
methodologies for regression that might require the tuning of a variety
of architectural/performance parameters (e.g., number of hidden units,
learning rate, momentum).
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