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Highlights 

 The total force is 53% greater when the fingers are spaced optimally.  

 The optimal spacing is twice the boundary layer thickness of one finger.  

 The speed advantage comes from the greater force, which lifts more mass above water.  

 The theoretical predictions are confirmed by computational fluid dynamics simulations. 

 

Abstract  

Here we show theoretically that swimming animals and athletes gain an advantage in force and 

speed by spreading their fingers and toes optimally. The spacing between fingers must betwice 

the thickness of the boundary layer around one finger. This theoretical prediction is confirmed by 

computational fluid dynamics simulations of flow across two and four cylinders of diameter D. 

The optimal spacing is in the range 0.2D – 0.4D, and decreases slightly as the Reynolds number 

(Re) increases from 20 to 100. The total force exerted by optimally spacing two cylinders 

exceeds by 53 percent the total force of two cylinders with no spacing when Re = 20. These 

design features hold for both time-dependent and steady-state flows.  
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1. Introduction 

 The sport of competitive swimming has evolved measurably during its 100 years of modern 

history. Record speeds have increased steadily, and so have the principal body measurements of 

the record breakers: the mass, the height and the slenderness of the body shape (Charles and 

Bejan, 2009). In brief, bigger and taller means faster, and this trend coincides not only with the 

mass-speed scaling of all animals with locomotion (swimmers, runner and flies; cf. Bejan and 

Marden, 2006) but also with the measurable evolution of the sport of speed running. The 

scientific contribution that sport evolution makes is that it provides a laboratory in which we can 

observe the phenomenon of evolution in our life time.   

 

Fig. 1. Examples of palms and feet of aquatic animals and swimming humans. 

 

 In this paper we identify the physics origin of the emergence of paddle-shaped feet and palms 
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in animals that swim (Fig. 1).  This feature of animal design is considered understood, based on 

the argument that pushing the water with a larger paddle makes swimming more efficient. Upon 

closer inspection, however, this explanation is questionable, because a larger paddle means a 

larger force exerted on the surrounding water body, not a higher efficiency. This body of work is 

just one application of the constructal law to the evolution of design in nature (e.g., Miguel, 

2006; Reis, 2006a; Reis et al., 2004), which was reviewed in Hoppeler and Weibel (2005), Reis 

(2006b) and Bejan and Lorente (2010). 

 The fundamental question for theoretical biology is why a paddling body should be 

advantaged by a paddle that exerts a greater force. We propose to answer this question by using 

the sport of competitive swimming. We focus on the shape of the human hand during speed 

swimming. Athletes today are being trained to swim with their fingers spread slightly.  All 

competitive swimmers swim this way because this configuration generates greater speed (note: 

speed, not force, because the direction of this evolutionary design is toward speed). Further 

evidence, also empirical, is offered by computational fluid dynamics simulations showing that a 

hand with fingers spread slightly exerts a greater force, roughly 5-10 percent greater than when 

the fingers are held tight, and greater than when the fingers are spread far apart (Minetti et al., 

2009; Marinho et al., 2010).  

 Recent theoretical advances (Charles and Bejan, 2009; Bejan et al., 2010) showed that better 

performances in speed swimming are predictable, because: 

(1) Swimming is the motion of surfing on the water wave generated by the swimmer, 

(2) Bigger waves travel horizontally faster, and 

(3) Bigger (i. e. longer) swimmers can raise their torsos higher above the water line, in order   

            to generate bigger waves and greater speeds.     

The new connection that follows from (1) – (3) is that in order to raise the body higher above the 
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water line (i.e., in order to lift a larger weight), the swimmer must be able to push the water 

downward with a greater force.  Speed in sports comes from this principle (Charles and Bejan, 

2009), and this holds for all swimming animals as well (Bejan and Marden, 2006).  Lifting a 

larger weight requires a larger downward force, and this is why larger paddles (spread fingers 

and toes, with web or without) is a common design in evolutionary biology. 

 The theoretical analysis presented in this paper shows that an optimal (and slight) finger 

spacing exists, such that the total force is maximal. This prediction is validated based on 

computational simulation of fluid flow around and through parallel cylinders in cross flow. 

Although the more recent computational fluid dynamic simulation of swimming are based on 

realistic facsimiles of the human hand, arm and body (e. g., Bixler and Riewald, 2002; Rouboa et 

al., 2006, Kudo et. al., 2008), in this study we use a simple model consisting of parallel cylinders 

in order to identify the correct scales and scaling rules of the spread-fingers configuration. To 

establish this understanding theoretically (i.e. as a prediction) is important because the “optimal” 

finger spacing was mentioned in the literature ( e. g., Minetti et al., 2009) but it was neither 

optimized nor predicted.      

    

2. The existence of the optimal spacing 

 The fact that an optimal spacing between fingers should exist can be anticipated based on 

constructal theory (Bejan and Lorente, 2008, ch. 3). We model each finger as a cylinder placed in 

cross flow. The drag force exerted by a uniform flow  V  on a perpendicular cylinder of 

diameter Y is 

  2ρV
2

1
CYLF   (1) 

Note the frontal area YL seen by the approaching stream, the cylinder length L, and the fluid 
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density ρ .  The coefficient C decreases with the Reynolds number νYVReY   (with ν the 

kinematic viscosity) , however, it is essentially constant when YRe   is of order of 10
2
 or greater. 

 Important is the effect of the shape of the cylinder cross-section, which is shown in Fig. 2.  

Among the three shapes that have the same frontal area YL, the single cylinder with diameter Y 

has the smallest drag coefficient.  This is the most “hydrodynamic” shape from among the 

configurations C1, C2 and C3.  On the other hand, the least hydrodynamic is the slab of width Y.  

In summary, the three shapes rank themselves in this order 

  321 CCC   (2) 

 

 

Fig. 2. The effect of cross-sectional shape on the drag coefficient for three long objects placed in cross flow. 

  

Next, consider n parallel cylinders in cross flow, as a model of paddling the water with n fingers 
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of diameter D. The case n = 4 is shown in Fig. 3, which shows three configurations, in order of 

increasing frontal area: 

(A) Cylinders stuck together, YA = nD, with the total drag force 

 2
AA ρV

2

1
nDLCF   (3) 

(B) Cylinders separated by a sufficiently small spacing (S), so that  1)S(nnDYB  , and 

   2
BB ρV

2

1
L1)S(nnDCF   (4) 

How small a spacing S is “sufficiently small” will be determined later in this section.  

(C) Cylinders spread far apart, each with Y = D and the drag force 2
C ρV

2

1
DLC  , 

 2
CC ρV

2

1
DLnCF   (5) 

 

 

Fig. 3. Three configurations of four cylinders in cross flow: A=no spacings; B=sufficiently small spacings; C=large 

spacings. 
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Finally, we make two comparisons.  Dividing Eqs. (3) and (5) we obtain 

  1
C

C

F

F

C

A

C

A   (6) 

The unequal sign is due to the effect shown in Fig. 2, where case A is represented by the shape 

C2, case C is represented by the shape C1, and C2/C1 > 1.   

 Next, we find that by dividing Eqs. (3) and (4) we obtain 

  1
nD

1)S(nnD

C

C

F

F

A

B

A

B 


  (7) 

Here the inequality is due to the fact that both factors, (CB/CA and the second fraction) are 

greater than 1.  Note that whereas configuration A is like shape C2 in Fig. 2, configuration B is 

between shape C2 and shape C3, in other words 1CC AB  . 

 The inequalities (6) and (7) show that the largest force corresponds to configuration B, 

  CAB FFF   (8) 

This conclusion holds for the entire Re range. Configuration B exists provided that S is small 

enough such that the stagnation pressure 2ρV2
  is maintained upstream of every S-wide gap.  

This happens when S does not exceed the thickness of the laminar boundary layer that surrounds 

each cylinder (Bejan and Lorente, 2008, ch. 3) 

  
21

DDReS


  (9) 

The largest spacing that maintains the upstream stagnation pressure, and assures the largest force 

has the same length scale as the thickness of the laminar boundary layer that coats one cylinder.  

Substituted in Eq. (7), this S estimate shows that the force advantage associated with spreading 

the cylinders (away from configuration A) should be of order 

  
21

D

A

B Re
n

1
11

F

F 








     (10) 
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Because ReD is of order 10
2
 or greater (Fig. 2), the force FB should be greater than FA by roughly 

10 percent.  This is a significant advantage in competing for survival among swimming animals, 

and for speed in sports. The predicted 10-percent force increase due to spacing the cylinders 

agrees in an order of magnitude sense with the increase determined based on computational fluid 

dynamics in Fig. 3 of Marinho et al., 2010, and Fig. 2 of Minetto et al., 2009. 

 

3. Numerical model and method 

 The preceding theory holds for the entire Re range occupied by the most common 

swimmers (Fig. 1). For example, a frog-size swimmer has a finger diameter of order D ~ 1 mm 

and stroke speed sm 0.1 ~V , which in water correspond to Re ~ 100. For the hand of a swimming 

athlete, the scales are D ~ 0.01 m and sm 1 ~V , which correspond to Re ~ 10
4
. We reinforced the 

theory with our own computational simulations of fluid flow and forces in the Re range 20 – 

1000. We started with the simplest configuration, which consists of just two cylinders, Fig. 4. 

The objective of the numerical simulations is to estimate the drag forces (F1, F2) and discover 

how they depend on the spacing S.  
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Fig. 4. Two parallel cylinders in cross flow. 

 

 The numerical model is built on the assumptions of unsteady incompressible flow in the 

laminar to transitional regime. The density and viscosity are assumed constant, which is a good 

model for the properties of water in the environmental range of temperature.  The continuity and 

the time dependent conservation equations for momentum are 

                            0
y

v

x

u










                                                                                   (11) 

                                     uν
x

P

ρ

1

y

u
v

x

u
u

t

u 2


















                                                (12) 

                              vν
y

P

ρ

1

y

v
v

x

v
u

t

v 2


















                                             (13) 
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where 
22222 yx  .  The horizontal and vertical velocity components are u and v, and 

the pressure is P.  The above equations were nondimensionalized based on the following 

dimensionless variables 

                               
D

tV
t
~
           ,

D

S) y, (x,
)S

~
 ,y~ ,x~(                                                    (14) 

                            
 

,
V

 vu,
v~ ,u~          ,

ρV

P
P
~

2


                                                          (15) 

The resulting governing equations,  

                         0
y~
v~

x~
u~










                                      (16) 

                           u~

Re

1

x~
P
~

y~
u~

v~

x~
u~

u~

t
~
u~ 2



















                                                

(17) 

                                       v~

Re

1

y~
P
~

y~
v~

v~

x~
v~

u~

t
~
v~ 2



















                                                (18) 

show that the flow field depends on the Reynolds number  

  
ν

DV
Re                                                                (19) 

The computational domain and the boundary conditions for fluid flow are shown in Fig. 4:  

1u~  , 0v~   at the inlet of the computational domain ( 0x~  ); 0P
~
 and   0 x~v~ ,u~   at the 

exit; no slip and no penetration on the cylinder surfaces; and 0v~   and 0 y~u~   on the top and 

bottom boundaries. 

 When Re is in the transitional range (Re ≥ 30), the flow field undulates weakly and the 

two forces (F1, F2) are not exactly the same. Therefore we calculated the sum of two forces, and 

formed the dimensionless total force exerted by the two cylinders:                             
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2

21

ρDV

FF
f




                                                                     (20) 

The dimensionless governing equations [Eqs. (16) – (18)] were solved by a commercial finite 

element code, Comsol. The domain was meshed with non-uniform mesh elements to grasp the 

effects of boundary layers, namely smaller mesh elements near the boundaries. In addition, 

adaptive mesh refinement was also used to decrease the effect of mesh element sizes throughout 

the solution time. Mesh tests were performed by increasing the number of the mesh elements in 

the steps of 50% until the effect on the results of f became less than 1%. Because the spacing 

between the cylinders changed the size of the domain, the grid size varied for each case..  

 It was necessary to add virtual extensions to the computational domain, upstream, 

downstream and on the upper and lower boundaries, in order to account accurately for the 

pressure boundary conditions. These extensions (  H
~

 ,L
~

 ,L
~

udu ) are defined in Fig. 4.  For 

example, the upper and lower extensions wereequal to  H
~

u , which was selected to be large 

enough such that the results change less than 1 percent in f when the  H
~

u extension was 

increased with a length equal to D2. We found that the extensions 

 10H
~

 and 5L
~

 ,4L
~

udu  were sufficiently large for the Re range covered by the numerical 

simulations when the domain consisted of two identical cylinders. Similarly, the time step of 

 10t
~ 3  was found to be short enough so that the effect of  t

~
  on f is negligible.   

 

4. Numerical Results 

 Figure 5 shows the effect of the spacing DSS
~
 on the total force on the two cylinders.  

The value of f at S 0 , is approximately 2.7 (check value). This seems to be correct as from Eq. 

3, this value is determined from CAn where CA is in the order of 1.35 and n =2. An optimal 
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spacing emerges close to 6.0S
~
  (note: to me – it looks closer to 0.5 0r 0.5 to 0.6This value 

depends on the Reynolds number, as shown in Fig. 6. When Re ≥ 50, the f values oscillate 

weakly (within 3 percent) as Re increases. These numerical simulations allow us to estimate not 

only the maximum force but also the force in the limit of cylinders stuck together, f0 = f ( 0S
~
 ), 

and the force in the limit of large spacing, f∞ = f ( 1S
~
 ). All three forces depend on Re. 

 

Fig. 5. The effect of the spacing on the total force exerted by the two cylinders. 
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Fig. 6. The Re effect on the optimal spacing and the maximum total force, two cylinders. 

 

 Important is also the gain (g) in force associated with using the optimal spacing relative 

to zero spacing,  

0

0max
0

f

ff
g


                                                          (21) 

which for Re = 20 has the value g0 = 0.53. The gain in force relative to sufficiently wide 

spacings, 

  








f

ff
g max                                                   (22) 

is 38.0g   for Re = 20. When Re number increases, g0 decreases and g  increases such that g0 
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= 0.44 and 52.0g   when Re = 100. These gains ( 0g , g ) are significant and only weakly 

dependent on Re. 

 

 

Fig. 7. Four parallel cylinders in cross flow. 

 

 A more realistic model of paddling foot or palm is the four parallel cylinders shown in 

Fig. 7.  We used the same method as for two cylinders, and produced results that correspond to 

Fig. 5, to document the effect of S on f at fixed Re. The total force is defined as 
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2

4321

ρDV

FFFF
f




                                                          (23) 

Figure 8 shows the effect of Re number on the maximum total force and the optimal spacing that 

corresponds to the maximum total force on four cylinders. These results reinforce the conclusion 

reached earlier by simulating the force on only two cylinders (Fig. 6). The total force felt by four 

cylinders is roughly three times the force felt by two cylinders. The optimal spacing (S/D approx. 

equal 0.4) for four cylinders is almost the same as the optimal spacing (S/D approx. equal to 0.5) 

for two cylinders. This validates the prediction offered in Eq. (9), where the optimal spacing 

depends solely on the diameter (D) of two adjacent cylinders. Furthermore, Eq. (9) anticipates 

that S/D should decrease as Re increases, and this trend is also validated by the numerical results. 

 

Fig. 8. The Re effect on the optimal spacing and the maximum total force, four cylinders. 
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 Figure 9 shows the total force exerted by four cylinders relative to S/D when the flow is 

steady. As in transient flow regime (Fig. 8), an optimal spacing emerges in the steady flow 

regime, which corresponds to the t  limit of the unsteady flows of the preceding examples. 

Fig. 10 is a summary of the maximum forces and optimal spacings in the steady flow regime. Together, 

Fig. 8, Fig. 9 and Fig. 10 show that the optimal spacing phenomenon emerges in both regimes, transient 

or steady. Fig. 11 shows the time effect on the maximum total force and the spacing that corresponds to 

the maximum total force. The maximum total force and the optimal spacing oscillate weakly, and the 

oscillation becomes weaker as the time increases. 

 

Fig. 9. The effect of the spacing on the total force when the flow regime is steady. 
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Fig. 10. The optimal spacing and total force when the flow regime is steady. 
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Fig. 11. The effect of time on the total force and the optimal spacing, Re=100. 

 

5.  Conclusions 

 In this paper we showed theoretically that there exists an optimal spacing between 

fingers such that the force exerted by the hand on water is maximal during swimming (section 2). 

The maximization of force is an integral feature of the evolutionary design of swimming animals 

and athletes for survival and speed (section 1).  

 The existence of the optimal spacing was confirmed by computational simulations of 

water flowing frontally on two and four cylinders in cross flow. In the Re range 20 – 100, we 

found that the optimal spacing is in the range 0.2D – 0.4D, and decreases slowly as Re increases. 

This spacing is of the same order as the finger-to-finger spacing practiced by competitive 

swimmers.  
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 Even though the flow across cylinders is time dependent, the optimal spacing persists in 

the limit 1t
~
  and in the steady state (s.s., Fig. 10). Optimally spaced fingers and toes are the 

natural design for efficient swimming paddles without web. The webbed foot (Fig. 1) is a 

subsequent design feature that enhances the force-augmentation effect, in the way that the drag 

coefficient jumps from C2 to C3 in Fig. 2.   
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