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ABSTRACT 
 

South Africa as a developing country has to make the most out of the infrastructure 
that are available. Given the high level of crash involving pedestrians, it is critical that 
all means available are utilised to characterise pedestrian movements on the 
highway and pedestrian bridges. This paper will focus on using the existing camera 
infrastructure, but will extend its use to automatically detect and count pedestrians 
that use the pedestrian bridges. The pedestrian movement data can be used to aid 
with the evaluation of pedestrian safety campaigns, or to recognise trends in 
pedestrian movement. The paper presents the impact of various parameter changes 
to the state of the art technique used, as well as orientation suggestions for future 
installations. This is done to make optimal use of existing infrastructure, and provides 
an alternative to existing high-end systems. The methodology includes training a 
computer vision-based algorithm to recognise and count pedestrians for specific 
scenes, for example pedestrian bridges. The paper evaluates different suppression 
techniques to reduce false positives. The results show that 72% of pedestrians can 
be detected (a hit rate of 72%), with the camera facing a pedestrian bridge squarely 
from the side, so that silhouettes are clearly visible. High end products not using 
existing infrastructure typically have a hit rate of 70%-90%. The solution in this paper 
competes with high-end products, and can be expanded for infrastructure security 
applications, e.g. monitoring copper cables or monitoring of high risk areas. 
 
 
1. INTRODUCTION 
 
A report released by (SANRAL, Western Cape Provincial Goverment, TCT, 
November 2014) shows that there are a total of 356 pedestrians involved in crashes 
along the highways from 2010 to 2014. The most accidents occur on a Friday with 
the peak times at 7:00am and 7:00pm, give or take an hour. The survey also shows 
that the number of people that use the pedestrian bridges exceeds by far the number 
of pedestrians that cross the freeway at grade in the same area. With 8 666 
pedestrians crossing the freeway and 15 363 pedestrians crossing by means of 
pedestrian bridges on a typical weekday. 
 
In South Africa, there is a need to better understand the nature and number of 
pedestrians that use the highways or pedestrian bridges daily. In Cape Town along 
the freeway system alone there are about 300 surveillance cameras streaming 
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directly to the Transport Management Centre (TMC). These cameras form part of the 
ITS infrastructure for the Cape Town Freeway Management Systems Project jointly 
funded by SANRAL, the Western Cape Provincial Government and the City of Cape 
Town.  This means that there is an opportunity for pedestrian data-mining. Currently 
pedestrian statistics are collected from the system’s existing camera infrastructure, 
but requires employees to manually count every pedestrian from a historical video 
feed if the data is needed. The problem with the above-mentioned technique is that it 
is extremely time consuming and monotonous work, where resources could be 
allocated more effectively. Alternatively there are modern camera systems that could 
automate the counting process, but requires specialised hardware and software, 
such as high-end thermal cameras, specialized image processors, as well as the 
supporting infrastructure. The goal of this paper is to propose an alternative method 
that uses existing equipment and infrastructure, while making minimal infrastructure 
modifications. 
 
This paper introduces a method with which to automate the counting process using 
state-of-the-art computer vision and supervised learning techniques. These 
techniques are then applied to SANRAL’s existing surveillance infrastructure, 
specifically on cameras monitoring the pedestrian bridges, with the option of 
expanding to monitoring pedestrians along the highway. The system can also be 
expanded for safety and security applications such as cable monitoring, as it would 
be able to detect thieves. It is currently not possible to monitor the pedestrians on the 
highway due to too low camera resolution, as well as operational factors, such as 
operators controlling the cameras when road incidents occur. This paper looks at the 
effect that different camera configurations has on the observed detector 
performance. The paper also suggests parameter settings and reflects on broad 
requirements for the detector to obtain satisfactory performance in this case. This 
could possibly feed into enhanced specifications for future camera upgrades. 
Pedestrian detection using existing infrastructure is an especially challenging 
problem due to the low-resolution of the existing video feed. Figure 1a, and figure 1b 
shows a snapshot from dataset-1 and dataset-2 respectively. 
 

  
Figure 1a: Dataset-1 screenshot from 

existing infrastructure on R300 
Figure 1b: Dataset-2 screenshot from 

existing infrastructure on R300 
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2. RELATED WORK 
 
The field of computer vision and non-rigid (pedestrian) detection is rapidly 
expanding, with new techniques and higher benchmarks being set in quick 
succession. Various pedestrian detection techniques have been proposed over the 
years, with the birth of modern pedestrian/face detection stemming from the use of 
Haar-wavelets (Viola & Jones, 2001). This technique uses key (interesting) features. 
These features are obtained by applying predefined filters to images. The key 
components are then normalized over the dataset and used to train a classifier or 
detector model. 
 
In a paper (Dalal, et al., 2004) suggested HOG (Histogram of orientated gradients) 
for the application of pedestrian detection. Many today see this as the basis of most 
pedestrian detection algorithms, and is widely considered as the birth of practical 
multi-scale pedestrian detection. HOG computes the orientation and magnitude 
information of image edges to construct a histogram of orientated gradients, or 
edges. The image is densely scanned at multiple scales by up- and down-sampling 
the image to create a so-called image pyramid of image gradients. The training 
method proposed is a supervised SVM (simple vector machine) method. When 
annotating, a bounding box is drawn around the object to indicate an object. The 
data contained within the bounding box is then extracted from the image as a 
positive sample, and multi-scale image gradient, or edge, histograms are collected 
and added together to create a large vector. This vector is then normalized to give a 
basic framework of how the objects profile looks like.  
 
Annotations are metadata that indicates that the region inside the bounding box is 
the object, and after enough different positive- (containing object, e.g. human) and 
negative (not containing objects e.g. mountain landscape) images an average 
gradient, or edge, orientation profile can be created. This is called training. A 
probabilistic model is used to calculate how likely the input image matches the object 
profile.  
 
A detector or classifier’s performance is measured with the term hit rate. This states 
the percentile of pedestrians that will be detected (hit) out of the total amount of 
pedestrians there are. Some graphs use miss rate, which is one minus hit rate. 
When the detector accurately detects an object it is called a Tp, or true positive. A 
true positive is when the detection is the same as the annotation. An Fp, or false 
positive, would be a false detection, say detecting an object that is not there. The 
detections are compared to the annotated, or ground truth data. The same goes for 
Tn, true negatives, and Fn, false negatives. 
 
The paper by (Benenson, et al., 2014) shows popular detectors from the last decade 
that are compared experimentally.  Figure 2 adapted from (Benenson, et al., 2014) 
below shows nine of the most used pedestrian detectors. The (I) and (C) next to the 
detector name shows that the detector is trained with the Inria and Caltech standard 
pedestrian datasets. The article compares the log-average miss rates of various 
detectors. VJ, (Viola & Jones, 2001), scores lowest with a miss rate of 94%, while 
HOG, (Dalal, et al., 2004), has a miss rate of 78%. The method used in this paper, 
SquareChnFtrs (Dollár, et al., 2009) scored 58% when trained on the Inria dataset, 
but scored a miss rate of 11% when trained with the Caltech dataset. Products on 
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the marked today typically have a miss rate of 10%-30% depending on the 
environment and camera. It is clear that the dataset, and detecting algorithm used 
play vital roles in the accuracy of the detector. The above mentioned paper also 
gives recommendations for parameter settings determined empirically. Some of 
these parameters are used in this paper, with slight adjustments made to obtain 
optimal performance.  
 

ROC curve 

 
Figure 2: ROC curve of 9 modern pedestrian detectors as adapted from 

(Benenson, et al., 2014). Tending to lower-left corner is better 
 
Integral channel features in its simplest form uses the same basics as the HOG 
detector but instead of only using gradient, or edge, orientation and magnitude 
information, it combines colour space (RGB/LUV/CMYK) channel features with HOG 
data to add more fields of information, and thus increases the robustness of the 
algorithm. The channels of the detector are shown in figure 3 as adapted from 
(Dollár, et al., 2010). One of the key features of subsequent detectors is that the 
image pyramid is only constructed for a few scales and the rest of the information 
can be extrapolated from that. This saves a lot of computational time as densely 
scanning the detector at different image scales contributes a large portion of the total 
runtime. A comparison of the runtime and accuracy can be seen in (Dollár, et al., 
2010). The big upside to this method is that detection can be done in/close-to real-
time if set up correctly.  
 

 
Figure 3: Representation of detector channels. Firstly the sample is shown, 
then the gradient orientation of the HOG bins. Next the total image gradient 

and the three LUV colour channels are shown as adapted from  
(Dollár, et al., 2010) 

 
For training, an advanced AdaBoost (adaptive boosting) algorithm is used. This is 
derived and adapted to modern applications, from the early works of (Viola & Jones, 
2001). AdaBoost is a method of training soft-cascades. It acts as a decision tree to 
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classify the detections as object or non-objects. At each cascade it detects all the 
objects it can with its set of parameters, and allows the rest through to the next 
stage. Each stage performs more dense detection scans, at the cost of 
computational time. This can be seen as muddy water, (complete dataset) falling 
through a multi-stage filter, cascade, with increasing density. The first coarse stage 
collects all the large and easy to filter material, (positive samples) quickly, while the 
last fine stage takes a long time to remove the dirt, from the water, ultimately leaving 
fresh water, (negative samples). It then becomes an optimization problem to assign 
weights to positive and negative samples and obtain a detector algorithm. 
 
Another adaptation made by (Dollár, et al., 2014) to the original Integral Channel 
Features algorithm is that there are pre-training options available for applying 
smoothing filters such as Guassian, as well as applying jitter to positive samples 
amongst others. Jitter means that operational transforms are applied to the positive 
samples such that new positive samples can be generated from the original. This is 
done by e.g. mirroring the image, rotating it slightly, or applying slight distortion 
whereby unique positive samples are generated (Nam, et al., 2014). 
 
To summarise, the first practical detector was introduced in (Viola & Jones, 2001). 
Then (Dalal, et al., 2004) introduced HOG which used pedestrian silhouette profiles 
as features. In the paper (Dollár, et al., 2009) HOG is used together with colour 
channels and the training method of VJ to form a detector called Integral channel 
features. Further adaptations where made to the detector of VJ to improve runtime 
and accuracy significantly, (Nam, et al., 2014), (Dollár, et al., 2009). Continuous 
adaptations and additions to the original algorithm of VJ and HOG makes the 
detector used in this paper one of the best performing detectors available today. 
 
 
3. METHODOLOGY 
 
In this paper an automated approach to pedestrian detection and counting is 
proposed using computer vision techniques. The footage used for training and 
testing is obtained from SANRAL’s existing surveillance cameras monitoring the 
pedestrian bridges along the N2 and R300 in the Cape Town region. Figure 4 shows 
an overview of the methodology used, with three distinct stages, pre-processing the 
data, training the classifier, and performance testing. 
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Figure 4: Flow diagram of respective stages 
 
3.1 Pre-Processing Stage 
 
Care had to be taken that the exported videos do not contain downtime or signs of 
packet loss, which introduces unwanted noise or losses in the dataset. These losses 
are introduced by the conversion of the real-time to the historical feed for archiving. 
Archiving greatly reduces the frame-rate and resolution to that of a specified amount 
contractually required by the project specifications. This was, at the time of dataset 
collection, around 320x240 at 12.5fps (now 480x272 at 5fps), with pedestrian sizes 
averaging at 36x28 pixels (now 30x15). Care had to be taken to ensure that the 
camera stays in focus throughout the required period. Care also had to be taken that 
the weather is of such condition that a human can easily be able to distinguish 
between background and pedestrian. This is referred to as fair/reasonable conditions 
in computer vision, and represents a best-case scenario. 
 
The MATLAB toolbox for pedestrian detection by P. Dollár is used, and includes the 
integral channel feature algorithm (Dollár, et al., 2009), together with the adaptations 
made as discussed in the previous section (Nam, et al., 2014), (Dollár, et al., 2010), 
(Dollár, et al., 2014). This also includes an optimized variation of the AdaBoost 
algorithm for training, as well as a basic annotation tool. The toolbox was used as it 
provides all the tools needed for pedestrian detection, together with speed 
optimizations made over years of continuous improvement. 
 
 
The video files need to be converted to .seq format for annotation. Changing the 
format converts the video file into a large sequence of images that can easily be 
skipped through without the need to decode each frame. The reasonable .seq files 
then need to be annotated by hand. Labelling is still very time consuming as only 
about 70 frames can be annotated at a time, with 12 hours of video accumulating to 
600 000 frames. It must be noted however, that only a fraction of the frames contains 
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objects of interest i.e. pedestrians. 
 
The annotation should be done with great care as this has a big impact on the 
performance of the detector. If frames are miss-labelled there is no ground truth 
data, which introduces false negatives in the training stage, as well as being 
classified as a false positive in the verification stage. The misclassification would 
occur because the detector would still detect the object but would be classified as 
incorrect compared to the ground-truth. After annotation the .seq file and 
corresponding ground-truth file are extracted to .txt and .jpg files respectively. 
 
The annotated dataset is then divided into training- and testing-datasets, with a good 
starting ratio being 4:1 respectively. The training set should cover all scenarios being 
tested in the testing-set, e.g. pedestrian walking up stairs, to avoid misclassification. 
The optimal size of training- versus testing-dataset size can be determined 
empirically by comparing validation performance. 
 
3.2 Training Stage 
 
Training is to “train” a classifier comprised of a soft-cascade to recognize pedestrians 
by “showing” the algorithm a number of positive samples, images with pedestrians in 
this case. This is similar to training a child or pet. Before training can commence the 
parameters should be set up appropriately, with most parameters giving a trade-off 
between accuracy and speed. Only significant parameters will be discussed here as 
there are far too many for the scope of this paper. A detailed discussion and 
empirical results of generic default values are shown in (Dalal, 2006) for the HOG 
parameters and in (Dollár, et al., 2009), where different parameters and their impact 
on different kinds of detectors, and training methods are compared. Most of the 
parameters used are set to its default value as recommended by P. Dollár in the 
respective papers used as the basis of the MATLAB toolbox.  
 
Firstly the minimum model size of expected pedestrians should be set, this helps to 
determine the starting scale used in creating the image-pyramid. For this paper the 
pedestrians are observed to be an average of 32x26/24x18 pixels while annotating 
respective datasets. Next the amount of padding is chosen. Padding adds a set 
number of blank pixels around the positive samples as to avoid boundary conditions 
while densely scanning the image. The model size with padding uses the same ratio 
as the recommended 1:1.25, which equates to total sample sizes of 40x32/30x22 
respectively. The window stride length is how many pixels the sliding window 
densely scanning the image, moves to form each detection window. This has a big 
impact on performance, as this determines how much each consecutive detection 
window overlaps. In (Dalal, 2006) is shown that using overlapping windows reduces 
the detector miss rate by up to 5%.  The stride length used was 4 pixels as this was 
seen to give the best performance in preliminary tests. 
 
To improve performance the feature channels are convolved by a set of ‘filters’ in 
order to remove local correlations, and thus removing data that could skew the 
detector. This slows performance, as convolution of 9 large image channels with 
even a simple filter is computationally complex (Nam, et al., 2014). From the original 
paper this is seen to have significant improvements on accuracy. The default value 
of a [4 5] filter is used as discussed in detail in (Dalal, 2006). 
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Training commences in 4 stages, with training alternating between sampling and 
training an AdaBoost classifier. Each stage has an increasing number of trees, or 
weak classifiers. There are initially only 32 trees in the first stage, and 2048 in the 
last stage. Ultimately all the stages are cascaded, to form a soft-cascade classifier. It 
is shown in (Dollár, et al., 2009) that any increase in trees or stages will result in 
diminishing returns. 
 
3.3 Testing Stage 
 
In the testing stage the detector is given a set of images where the ground truth data 
is known, and the performance of different parameter changes can be evaluated 
based on the detector results. 
 
Lastly the type of non-maximum suppression (NMS) should be chosen. This is the 
act of reducing multiple bounding boxes drawn at different scale, to one bounding 
box with the highest score/probability. This is critical as this brings together all the 
steps to ultimately give detections in the form of a definitive answer, a single 
bounding box for a single detection. The toolbox offers 4 methods, being mean-shift, 
absolute maximum, an optimized absolute maximum algorithm, and cover 
suppression. This comes down to an optimization and cost assignment problem 
which is outside of the scope of this paper.  
 
The tracking and counting procedure is still to be implemented. The output of the 
non-maximum suppression method is used as absolute detections, and the position 
of the detected pedestrian being represented by a single bounding box. If a 
pedestrian move past a used defined rectangle, say in the middle of the bridge or 
video feed, a counter is incremented. This means that the relative number of 
crossings are counted instead of the absolute number of unique pedestrians that use 
the pedestrian bridges. Provision will be made to record the time and direction at 
which the counter is incremented, as to provide a relationship between the number 
of crossings in a direction and the time of day/ day of the week.  
 
 
4. RESULTS 
 
Results are collected in the verification stage and by inspection. In the verification 
stage the detector is applied to the test dataset, and the detection results are 
compared to the annotated ground truths. The verification results is represented in 
Receiver Operating Characteristics (ROC) - and in Precision/Recall, (PR) - graphs.  
 
A ROC graph plots the miss rate, against the number of false positives per image, 
FPPI. FPPI can be set for a specific detector by adjusting the threshold in the NMS-
parameters. This is useful in applications where little to no false detections may 
occur, or setting the FPPI high where false detections are acceptable. It is clear that 
the detector behaves differently depending on the threshold score, or strictness, 
required to be classified as a positive. A good ROC curve tends to the left bottom 
corner of the graph. 
Miss rate:     

𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

       (1) 
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A precision-recall graph gives a different view of the data. The precision is compared 
against the recall rate. Here nothing can be explicitly set and evaluated, but a 
relationship between the total detections and a ratio of true/false positives can be 
seen. A good PR curve tends to the right-upper corner of the graph. 
Recall:        

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

     (2) 
 
Precision:     

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      (3) 
 
Firstly both detectors are trained and tested on their respective validation sets, with 
dataset-2 performing significantly better than dataset-1. The improvement is because 
the silhouettes in dataset-2 is more clearly visible against the background. It is clear 
that the camera orientation with relation to the bridge plays an important roll. 
Pedestrians in dataset-1 also tend to be more occluded by other pedestrians and the 
terrain. The best hit rate performance for both detectors evaluated in this paper was 
61% and 72% for dataset-1 and dataset-2 respectively. Detector-1 was also tested 
on dataset-2 and visa-versa which results show that the detectors need to be trained 
for individual scenes, the proof has been omitted as the respective PR graphs are a 
straight line at 0, i.e. 100% miss rate. This is due to the nature of the low-resolution 
video feed, or the difference of camera orientation, as dataset-1 views pedestrians 
from the front, and dataset-2 views them from the side. Both detectors obtain miss 
rates in the high 90% region when validating on the opposing test-set. Specifically 
trained detectors outperform pre-trained detectors dramatically, with the best state-
of-the-art pre-trained detector obtaining a miss rate of 85%. 
 
The size of the dataset is then tested in conjunction with slight parameter changes in 
model-size and padding. Figure 5 shows a dramatic improvement in PR 
characteristics with the increase in dataset size, the blue line, and only a slight 
decrease in performance when using less optimal parameters, the red line. This 
shows that there is a correlation between the performance of a detector and the 
training set size up to a certain point. This is because an increase in dataset size 
means that there is a bigger feature pool with more positive and negative samples. 
Further increases in size results in diminishing returns as the classifier becomes 
saturated.  

Figure 5 Log scale-ROC curve of detector performance with different 
parameters and training dataset-1 size. 

Bottom Left  
is better 
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The choice in non-maximum suppression method is important as this takes all 
detections at multiple scales in consideration to determine a single bounding-box 
output for a detection. Thus the Nms has a significant impact computational time and 
detector accuracy. The 4 methods available from the MATLAB toolbox by P. Dollár 
are compared using dataset-2, as dataset-2 gives the best case scenario. Figure 6a  

 
shows the log-average ROC curve for the various cases. Figure 6b shows the PR 
curve. The method, Max, can be seen as the best Nms-method with a miss rate of 
28.3%, but because Ms, mean-shift, is less computationally expensive and is thus 
chosen for this paper.  
 
The hit rate performance of the detector degrades as the number of pedestrians 
being detected increases. This is due to occlusion that occurs between pedestrians 
when they walk past each other. Occlusion is when terrain or other objects partially 
block the view of the object that needs to be detected. Figure 7 shows the detection 
results when one, or two detections are made simultaneously.  

 
This would be when one or two pedestrians use the pedestrian bridge. The detector 
performance would degrade further with more pedestrians, but due to low-resolution 
problems distinguishing between pedestrians in larger groups this could not be 
tested. The detector performs similarly in both cases when the FPPI is low, but 

Figure 6b PR curve of non-maximum 
suppression methods applied to 

 

Figure 7 Log scale-ROC curve of detector performance when only one,  
or two pedestrians are being detected at a time respectively. 

Figure 6a Log scale-ROC curve of non-
maximum suppression methods applied to 

 

Bottom Left  
is better 

Top Right 
is better 

Top Right 
is better 
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quickly diverges above 1 FPPI, with one detection being significantly more accurate 
than the latter. Subsequent alterations has improved detection while occluded 
dramatically, by including more occluded pedestrians in the dataset. 
 
 
5 RESEARCH FINDINGS 
 
This paper discussed the background and methodology used to implement a 
pedestrian detector. Recommendations for parameters and other features, as well as 
some shortcomings of the system are also discussed. After reviewing the results it 
can clearly be seen that the detector is influenced by a number of important factors, 
from the dataset size to the number of detections at any given moment. The optimal 
parameters can be empirically determined as each scene is unique with the 
pedestrian model sizes and number of required positive samples varying from case 
to case.  
 
The detection performance improved drastically as the training-dataset size was 
doubled as can be seen in figure 5. The optimal size has to be empirically 
determined as it comes at a cost of training time. A training dataset with 95 000 
images takes up to 30 hours to train a soft-cascade classifier with the AdaBoost 
algorithm. It is also clear that each detector needs to be trained for each specific 
scene and camera orientation, which does mean that some time will have to be 
spent annotating video footage. 
 
The verification results show that the camera with a visible pedestrian silhouettes, 
dataset-2, performs significantly better than dataset-1. Although this is not a 
complete comparison it shows that camera orientation plays a vital role. This is to be 
expected as a big part of the detection algorithm comprises of the HOG feature set. 
Thus the silhouettes of pedestrians contain important information. With a peak hit 
rate performance of 72% dataset-2 is competitive with high-end products, even 
though the detector is working with a video feed of half the resolution of that of high-
end products. 
 
Problems still arise when big groups of bundled pedestrians crosses the bridges. It is 
still difficult for a human to distinguish where one pedestrian ends and the other 
starts in such crowds. There are thus instances where the dataset can be seen as 
unreasonable. This is however only a problem during the peak pedestrian traffic. 
Other unreasonable conditions include rainy weather or out of focus cameras. 
Although this application is far from a practical integrated solution for most of the 
existing infrastructure, it does serve as a proof of concept that, under the ideal 
conditions, it can be done. With this in mind future camera installations could be 
done in such a way as to enable the use of automatic pedestrian detection, which is 
a step in the right direction for pedestrian safety and monitoring. 
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