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ABSTRACT 
 

Recent advances in smartphone technology, including motion sensing and wireless 
communications, have resulted in these devices being used for vehicle-based driver 
behaviour sensing applications, replacing existing bespoke vehicle-based solutions. 
Acceleration is normally used as the primary indicator for recklessness. Despite the 
many benefits of using a smartphone to determine vehicle acceleration, the mobility 
of the phone relative to the vehicle, and the vehicle relative to the earth, causes the 
earth's gravitational force to obscure the true vehicle acceleration as perceived by 
the phone. The design and test results in this paper demonstrate how quaternions 
and an unscented Kalman filter can be used to remove the gravitational vector from 
the sensed acceleration, which enables reckless driving detection.   
 
 
1 INTRODUCTION 
 
One of the prevalent trends in the contemporary mobile industry is the use of the 
powerful integrated sensors in mobile devices to gather and process information on 
our everyday lives; a trend which branches from the biggest buzzword in modern 
electronics: The Internet of Things. These sensors have been put to good use by the 
safety industry to monitor the elderly for falls and accidents, but have yet to be 
properly implemented to monitor one of the most perilous parts of our everyday lives, 
namely commuting (WHO, (2010)). Gainwe et al. (2010), presents statistics showing 
that human error accounts for 86.4% of fatal crashes per year. The advent of 
smartphone-based sensing could provide a simple, inexpensive way to identify and 
reduce reckless driving.  
 
The accelerometer features prominently in most proposed vehicle monitoring and 
reckless driving detection systems (Zeeman et al. (2014), Schietekat et al.(2013), 
Engelbrecht et al. (2014)) In vehicle monitoring, it is imperative to distinguish 
between accelerating, decelerating and lateral acceleration, since this data can be 
used to identify and classify driving manoeuvres and events effectively. Accurate 
coordinate acceleration data is therefore the main concern of this paper. 
 
Accelerometers, however, measure what is known as proper acceleration (the 
acceleration relative to a free falling point), not coordinate acceleration (the 
acceleration relative to a stationary point). The proper acceleration of an object that 
is stationary with respect to the earth will therefore be 1 G (1 x 9.81m.s-2) upwards in 
the earth axes. 
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Within a vehicle monitoring system, there are three sets of axes of concern: the earth 
axes, the vehicle axes and the sensor axes. The conventions for these axes are 
illustrated in Figure 1. In a dynamically moving vehicle with a smartphone-based 
sensor providing measurements, these axes are not necessarily constrained by 
known or fixed orientations relative to one another. The accelerometer measurement 
in the sensor axes will therefore be corrupted by the effect of gravity with an 
unknown orientation. 
 
The effect of gravity can be removed from the proper acceleration reading (in the 
sensor axes) if the orientation of the sensor axes relative to the earth axes can be 
found. The coordinate acceleration in the sensor axes can be rotated from the 
sensor axes to the vehicle axes if the orientation of the sensor relative to the vehicle 
can be determined; thereby yielding the coordinate acceleration in the vehicle axes. 
 
The aim of this paper is to present a way of quantitatively measuring, recording and 
displaying the acceleration of a vehicle along its own axes, with the effect of gravity 
removed, to enable reckless driving detection. This is to be done using only the 
sensors commonly found in a smartphone (accelerometer, gyroscope, and 
magnetometer). 
 

 
Figure 1 - Illustrations showing the conventions for the orientations of the 

sensor-, vehicle- and earth-axes respectively. 
 
 
2 RELATED WORK 
 
Many studies have been done on sensor attitude estimation using accelerometers, 
magnetometers and gyroscopes. The removal of gravitational acceleration from 
accelerometer data is also a common problem that has been well documented and 
researched.  
 
Mizell (2003), attempted to ascertain whether it is possible to use an accelerometer 
placed at an arbitrary orientation on a body to infer reliable information on the 
movements of the body. The accelerometer reading was essentially high pass 
filtered to obtain the "dynamic" acceleration disregarding gravity and then rotated 
with vector operations so the moving average of the accelerometer reading (which is 
assumed to correspond to gravity) aligns with the vertical axis. The assumption that 
gravity corresponds to the long term average of the accelerometer reading is, 
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however, inaccurate when working with a vehicle, body or sensor of which the 
orientation varies relative to gravity. 
 
Xiaoping Yun et al. (2003), presented an improved quaternion-based Kalman filter 
for real-time tracking of a body's orientation. This is done using Magnetometer, 
Accelerometer and Gyroscopic sensors (MARG) and a standard Kalman filter. To 
allow the use of the standard Kalman filter, a linear relationship between states as 
well as additive noise is assumed. For quaternion orientations and angular rates, 
however, the assumption that noise is additive is incorrect and the quaternion 
rotation that takes place between states is non-linear. Furthermore, no attempt is 
made to take into account known system dynamics when transitioning between 
states. 
 
Kraft (2003), similarly presents a method for real-time tracking using MARG sensors, 
but an unscented Kalman filter (UKF) is used, allowing a non-linear state-transition 
function and non-additive noise. Measurements from all three sensors are passed 
directly to the UKF, therefore a non-linear relationship exists between the 
observation and the state. This creates a very computationally demanding program. 
No attempt is made to use the orientation data to remove gravity from the 
acceleration measurement. 
 
Jung Keun Leeet al. (2012), recognized the need for a combined implementation of 
attitude and coordinate acceleration estimation. This is done using a gyroscope and 
a magnetometer as well as an adapted Kalman filter algorithm. All calculations were 
done using rotation matrices which are computationally less efficient than 
quaternions. Furthermore, the system was not adapted for specific vehicle dynamics 
and no attempt was made to translate the axes of the final data to a body other than 
that of the sensor, which is necessary for sensing using a mobile device. 
 
It is clear that, despite much research in the field of orientation estimation no system 
has been proposed where, accelerometer, magnetometer, gyroscope and vehicle 
dynamics information is used to efficiently estimate the coordinate acceleration of a 
vehicle using a mobile device placed within the vehicle.   
 
 
3 DESIGN 
 
For this paper, the use of a smartphone and smartphone-based sensors was 
emulated by using a sensor hub (gyroscope, accelerometer and magnetometer) 
connected via USB to a mobile computer running the software based estimator.  
 
The basic operation of the software based estimator can be summarised as follows: 

1. The system is initialised while the vehicle is stationary. 
2. As the vehicle accelerates for the first time after start-up, the orientation of the 

vehicle relative to the sensor is calculated. 
3. The orientation of the sensor relative to earth is calculated 
4. The known gravitational acceleration is rotated from the earth axes to the 

sensor axes. 
5. The gravitational acceleration in the sensor axes is then subtracted from the 

current acceleration measurement in the sensor axes. 
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6. The resulting gravity free acceleration is then rotated from the sensor axes to 
the vehicle axes. 

Steps 3 to 6 are repeated to update the acceleration estimation. 
 
These steps are discussed in more detail in the following sections and Figure 3 
illustrates the flow of data within the system. 
 
3.1  Calibration 
The sensors are assumed to be stationary for the first 200 cycles of the program (4-8 
seconds, processor dependent). A progress bar indicates the progress of calibration. 
During this time and continuing until the sensors are detected to be moving 
(accelerating), a moving average and variance of 200 samples is calculated by using 
two First In First Out (FIFO) queues and two 9-dimensional variables containing the 
sum of the data in the queues. 
 
For the accelerometer reading, this moving average is used as an estimate of the 
earth's gravity in the sensor axis. For the gyroscope reading, the mean is used as 
the constant gyroscope bias and is subtracted from the gyroscope data received. For 
the magnetometer, this mean value is of no particular significance. The calibration 
for the magnetometer is done by subtracting the lowest value encountered from the 
reading and then dividing by the difference between the highest and the lowest value 
encountered. It is recommended that the highest and lowest values encountered be 
obtained by rotating the device through all its axes in the environment that it is 
expected to be used in. For this system, these high and low values are read from a 
calibration file at system start up, updated whenever the program is running and 
saved when the program exits successfully. 
 
3.2 Calculating the orientation of the vehicle relative to the sensor  
The calibration of sensors stop and the recording of the first acceleration starts when 
the device starts moving (accelerating). The transition from stationary to accelerating 
is, for this paper, defined by a sustained difference between acceleration magnitude 
and the mean of the acceleration up to that time. The difference must be greater 
than the standard deviation of the previous acceleration measurements multiplied by 
a predefined tolerance. The first acceleration is recorded by summing all sampled 
acceleration data for the first period that the device is moving and dividing the sum 
by the number of samples taken.  
 
Orientation of the vehicle relative to the sensor is calculated using the direction of the 
first acceleration in the sensor axes, the direction of gravity in the sensor axes and 
the assumption that gravity lies in the vehicle's X-Y plane. 
 
The objective is to find the quaternion describing the rotation from the sensor axes to 
the vehicle axes. An objective function which can be minimized to find the most 
accurate quaternion rotation 𝑞𝑆𝑉 is shown in equation 1. 

  
𝒇�𝒒𝑺𝑽,𝒅𝑽,𝒎𝑺� = 𝒒𝑺𝑽 ⊗ 𝒅𝑽 ⊗ 𝒒′𝑺

𝑽 −𝒎𝑺  (1) 
 
Where 𝑑𝑉 represents the direction of the front of the vehicle in the vehicle axes and 
𝑚𝑆 is the normalized measurement of the first acceleration in the sensor axes. 
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𝑑𝑉 =  0 +  1𝑖 +  0𝑗 + 0𝑘 (2) 
 
𝑚𝑆 =  0 +  𝑚𝑥𝑖  +  𝑚𝑦𝑗 + 𝑚𝑧𝑘 (3) 
 
The objective function is minimized by using the gradient descent method. The 
gradient descent algorithm is a simple algorithm both to implement and compute. 
This iterative algorithm is described by equations 4 - 6 with the Jacobian ( 𝐽 ) of the 
objective function 𝒇: 
  
𝑥+  =  𝑥𝑐  − 𝜇 × Δ𝑓

�|Δ 𝑓|�
 (4) 

 
  
Δ𝑓 =  𝐽𝑇𝑓 (5) 
 
𝜇𝑡   = 𝛼||�̇�𝑆𝐸||Δ 𝑡 (6) 

 
Here, 𝜇𝑡 is the step size, which is directly proportional to the gyroscope rate, this 
prevents overshooting at low rotational speeds and enables faster tracking at high 
rotational speed.  
The Jacobian matrix of the objective function in equation 1 was calculated 
mathematically.  
 
The gradient descent algorithm is iterated over until the adjustment is less than 1 ×
 10−4. 
 
3.3 Calculate the orientation of sensor relative to earth: 
To avoid local minima with the gradient descent algorithm, an informed guess is 
made as to the initial orientation of the sensor relative to earth. This is done by 
checking the stationary mean of the gravity vector to see if the acceleration is 
upwards (positive y-direction) or downwards (negative y-direction). If the acceleration 
(gravity) is negative in the y-axis, a quaternion with a 180∘ roll is defined as the initial 
guess, otherwise a zero-quaternion is used (no rotation). 
 

 
Figure 2 - An illustration of the rotation 𝒒𝑬𝑺  and how it is estimated using an 

accelerometer reading. 
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3.3.1 Initialize Unscented Kalman filter: 
An Unscented Kalman Filter (UKF) is used to combine accelerometer-, gyroscope-, 
magnetometer- and vehicle dynamics data in a way that maximises the probability of 
a correct estimation of the sensor's orientation relative to the earth axes. 
 
The parameters needed to initialize an UKF are: 
 

• Transition function. f 
• Observation function. g 
• Transition covariance. Q 
• Observation covariance. R 
• Initial state mean. µ0 
• Initial state covariance. Σ0  

 
The optimal state vector is chosen as the four part quaternion orientation with the 
three part rotational velocity appended as shown in equation 7. 
  
𝑥𝑘  =  [𝑞1, 𝑞2, 𝑞3, 𝑞4,𝜔1,𝜔2,𝜔3]𝑇 (7) 
 
A combination of the two objective functions similar to that in equation 1 (one for the 
accelerometer reading and the vertical y-axis and one for the magnetometer reading 
and magnetic north) is minimized by using the gradient descent method described in 
equations 4 - 6. 
 
For a live implementation such as the one in this paper, only one iteration of the 
gradient descent algorithm is needed per time step. 
 
The resulting quaternion also contains a yaw-rotation from the magnetometer 
reading, this reading was found to have a delay relative to the other readings and 
was very inaccurate. The yaw of the vehicle around the earth's y-axis is of little 
significance when performing reckless driving detection and was therefore removed. 
This yaw-removal was done by converting the quaternion orientation (𝑞𝐸𝑆) to Euler 
angles. These angles were then used to create a new quaternion using the same 
convention, but with the yaw-angle equal to zero. Figure 2 illustrates the rotation 
between the earth and sensor axes. 
 
The 4-part quaternion orientation calculated here is combined with the 3-part 
gyroscope reading to provide an observation vector (shown in equation 8) for the 
UKF. 
 
𝑥𝑘  =  [𝑞𝑚1, 𝑞𝑚2, 𝑞𝑚3, 𝑞𝑚4,𝜔𝑚1,𝜔𝑚2,𝜔𝑚3]𝑇 (8) 
 
3.3.2 Update Kalman filter: 
For the first run, the Kalman filter is updated with the same mean and covariance 
used to initialise the filter as well as the observation vector defined in equation 8. For 
each successive iteration of the program the Kalman filter is updated with the mean 
and covariance output from the previous Kalman filter as well as the new observation 
vector. 
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Figure 3 - A Data flow diagram illustrating the underlying flow of data within 

the system. 
 
3.4 Rotate gravity from the earth- to the sensor axes: 
At this point, all the necessary data to remove gravity from the accelerometer 
reading and to provide the absolute acceleration in the vehicle axes (𝑎𝑉����) is available. 
This includes the raw accelerometer data in the sensor axes (𝑎𝑆), the gravity vector 
in the earth axes, the orientation of the vehicle relative to the sensor axes (𝑞𝑆𝑉), and 
the orientation of the sensor relative to the earth axes (𝑞𝐸𝑆). The magnitude of gravity 
in the earth axes can now be rotated into the sensor axes as shown in equation 9.  
 
𝑔𝑆 =  𝑞𝐸𝑆 ⊗  𝑔𝐸 ⊗  𝑞′𝐸𝑆  (9) 
 
3.5 Remove gravity from acceleration measurement: 
This gravitational acceleration in the sensor axes can now be subtracted from the 
sensor measurement as shown in equation 10.  
 
𝑎𝑆���  =  𝑎𝑆  −  𝑔𝑆 (10) 
 
3.6 Rotate resultant acceleration to vehicle axes: 
The resulting acceleration in the sensor axes can now be rotated to the vehicle axes 
as shown in equation 11. 
 
𝑎𝑉����  =  𝑞𝑆𝑉 ⊗  𝑎𝑆��� ⊗  𝑞′𝑆𝑉 (11) 
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3.7 Record and visualise acceleration: 
The resultant calculated acceleration data is visualised to better facilitate the 
comprehension of what has been achieved in this paper. The data is also recorded 
to enable the analytical measurement of the accuracy of the results.  
 
At each iteration of the program, the resulting three axis acceleration in the vehicle 
axes as well as the time elapsed since the previous reading is written to a comma 
separated value (.csv) file for later use.  
 
The data is displayed using Visual Python. A 3D set of axes that represent the 
earth's axes are displayed in green and a red object of which the orientation is easily 
identifiable, represents the vehicle's axes. The orientation of the red object is defined 
by a combination of the quaternions 𝑞𝐸𝑆 and 𝑞𝑆𝑉 as shown in equation 12. 
 
𝑞𝐸𝑉  =  𝑞𝐸𝑆 ⊗  𝑞𝑆𝑉 (12) 
 
The position of the red object relative to the origin represents the instantaneous 
acceleration of the vehicle in the vehicle axes. Examples of the 3D model's 
orientations and positions are shown in Figure 4. 
 The magnitude of the acceleration is also shown by the bars in Figure 5. 
 

 
Figure 4 - The above screen shots show the position and orientation of the 3D 

model for situations where the vehicle is not accelerating, on an incline at 
constant speed, and accelerating on a level road respectively. 

 

 
Figure 5 - A screen shot of the magnitude bars of the acceleration (lateral, 

vertical, and forward). The colours of the bars also vary from green, for small 
acceleration magnitudes, to red, for large acceleration magnitudes 
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4 RESULTS 
 
The testing of the system proved to be a non-trivial task, as a known acceleration 
with a constant known sensor orientation is difficult to reproduce. The novel tests 
that were implemented to thoroughly test the system and quantify errors are shown 
in Table 1. 
 
Table 1- A table showing the various tests done and the motivations for doing 

them. 
Test: Motivation: 
Stationary test Used as a baseline and to quantify sensor noise. 
Constant speed & 
level road test 

To quantify the noise contributed by vehicle vibrations, road 
roughness and - irregularities at different speeds. 

Deceleration test,  
no incline 

To compare theoretical average x-axis deceleration over an 
interval with the average measurement over the interval. 

Deceleration test 
on an incline 

To test whether gravitational acceleration influences the 
measurements and if the vehicle-sensor orientation can be 
correctly calculated on an incline. 

Constant speed & 
varying incline test 

To test if the system can adjust for sudden changes in incline. 

Constant speed & 
turn radius test 

To test for accurate lateral acceleration data. 

 
 As the system is designed to be used in a vehicle, tests were done with the sensor 
in a secure position in the vehicle. For all tests, the normal calibration procedure is 
followed where the vehicle remains stationary on a road with a level horizontal 
gradient for the duration of calibration and is then accelerated forward in order for the 
system to determine the orientation of the sensor relative to the vehicle. All speeds 
are measured and saved programmatically with a GPS, as vehicle speedometers 
tend to be less accurate. All graph scales are chosen to correspond to the highest 
acceleration measured during vehicle testing. 
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Table 2 - A table showing the results of a deceleration test done on a constant 

incline. 

 
 
 

 
 

 
4.1 Discussion of results: 
Comprehensive vehicle testing of the final system was done and the measured 
results were compared to theoretically calculated results as shown in Table 2. All 
results appeared to be accurate when compared to theoretical values and indicated 
good system operation, except for the sustained lateral acceleration test. The 
minimal acceleration error in the vehicle x- and z-axis during constant speeds shows 
that acceleration events of 30 mG or more are detectable by the system. This opens 
doors for, not only reckless driving detection, but applications where smaller 
accelerations are of concern, such as road quality detection, lane control and swerve 
detection, and efficient cruise-control algorithms. The vehicle's x-axis acceleration 
does not notably change due to changes in incline, indicating that the effect of 
gravity is effectively eliminated and that the resulting acceleration represents a 
accurate coordinate acceleration and not a proper acceleration. The acceleration 
tests also indicated that the vehicle's x-, y- and z-axis acceleration data vary 
independently, proving that that the resulting acceleration data is rotated accurately 
to the vehicle axes. Figure 6 shows graphically the independent variation of the x-
axis acceleration during a deceleration on a constant incline. One problem area was 
identified. The assumption that the effect of a vehicles yaw with respect to north on 
reckless driving detection is negligible adversely affected the operation of the 
Kalman Filter.  
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It is therefore clear that, except for prolonged lateral accelerations, the system is 
accurate and would be beneficial for a reckless driving detection system. 
5 CONCLUSION 
 
The goal of this paper was to remove the effects of gravitation vector from the 
acceleration measured by a smartphone in a vehicle. This was done to enable 
detection of reckless driving behaviour, which is primarily based on vehicle 
acceleration. The objective was met by using the gyroscope, magnetometer, and 
acceleration sensors with an unscented Kalman filter and quaternions to estimate 
the gravitation acceleration. The estimated gravitation vector is then removed from 
the acceleration vector measured by the smartphone, to determine vehicle 
acceleration. The results show that the system enables accurate measurement of 
reckless events in various conditions.  A Video Demonstration of detector in action in 
a vehicle can be found at: https://youtu.be/c3QpE-namqw. 
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