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Abstract—Based on the Maxwell equation, the occurrences of 

fractured zones are studied through the galvanic method. The 

electrical and magnetic fields are first derived in the spatial 

domain. To simplify the calculations, the computational formulas 

of the electrical fields in the spatial domain are transformed into 

the wavenumber domain by Fourier transform. The basic solution 

of the electromagnetic field can thus be easily solved in the 

wavenumber domain. According to the boundary conditions, a 

recursive relationship between the different layers is established. 

The electromagnetic fields are obtained through the recursive 

relationships with the bottom-last layer. Finally, the apparent 

resistivity is calculated using the surface electric field. A typical 

goaf model is used for the numerical simulation. Based on the 

modeling results the effectiveness of this method is determined. 

The modeling results indicate that the galvanic method is very 

effective for detecting the electrical anisotropic characters. 

 

Keywords— Electrical anisotropic characteristics, Mining 

goaf, Electromagnetic fields, Computation of apparent 
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I. INTRODUCTION 

s is common knowledge, water inrush is the first issue to 

be resolved during coal mining production. There are 

several reasons which cause water inrush, of which the goaf is 

the dominant one. The geological structure of the goaf is 

composed of three zones: bending zone, fracture zone and 
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caving zone. The main reason for the water inrush by the goaf is 

that water at the ground surface of the bending zone 

accumulates at the surface of the bending zone. If the water 

rushes into the goaf via fractures of the fracture zone, it will 

result in a mining disaster. It is thus very important to detect the 

geological occurrence of the fractures in the fractured zone for 

prevention and governance of mining water flooding caused by 

the goaf. 

Common geophysical methods used for exploring the goaf 

are: seismic method, resistivity method and geological radar 

method. However, for the seismic and geological radar method, 

the basis of geology is thought to be layered structure and the 

resistivity method usually does not consider anisotropy. These 

methods thus cannot detect the fractured information such as 

dips and strikes, which are very important for governance of the 

goaf. The geological structure of the fractured zone is 

anisotropic; thus incorrect geological conclusions are often 

deduced from the data measured using the traditional electrical 

resistivity method. In this paper, based on the Maxwell 

equation and considering the electrical anisotropic characters of 

the goaf, a formula of the apparent resistivity is presented. .   

Systematic studies have been done in relation to the 

formation of electrical characteristics. According to the results 

of numerical simulation and actual applications [4], the 

conductivity of formation will increase if the fractures exist in 

the formation of high resistivity. Asten [5] and Matias [6] 

analyzed the effect of fractures and structures on the electrical 

anisotropy. In addition, Chlamtac [7] and Anderson [8] studied 

the relationship between apparent resistivity and real resistivity 

in the layered formation. Furthermore, Li [9] analyzed the 

relation between electromagnetic response and formation 

anisotropy. Yin [11] and Shen [12] have suggested the formula 

to calculate apparent resistivity of anisotropic formation. In 

addition, Han [13] and Jing [14] have studied the stability of 

anisotropic and non-homogeneous slopes using limit analysis. 

According to the studies however, anisotropic characters of the 

fractured zone in the form of apparent resistivity can be used to 

indicate the geologic occurrence. Therefore, the rules of 

formation fracture in the fractured zone will be significant for 

water hazard prevention of the mine shaft.    

The purpose of the paper is to study the fracture occurrence 

of the fractured zone, such as the strike direction and dip angle 

of the fracture, as shown in Figure 1. Based on the above 

studies, the rules of electrical anisotropic response are observed 

in order to analyze the characteristics of the fracture 

distributions.   
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Fig.1 Geological model of the goaf (as taken from Su [15]). 

II. METHODOLOGY 

2.1 Equation of electromagnetic field in the anisotropic 

media  

Propagation of the electromagnetic field and the distribution 

of the current density in the earth meet the Maxwell equation 

[16]:   

0E  , 0J                                                      (1) 

H J  , 0B  , H B                                   (2)                                             

ˆ
eJ E J  , 1ˆ̂   ,  ˆ

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

         (3)                      

Where,   is magnetic permeability and   are conductivity 

tensors, respectively. E and H are the electric field and 

magnetic field respectively. J is the total current density and Je 

is the source current density.   

The magnetic field H and current density J can be further 

described by the following formulas using a toroidal and a 

poloidal scalar [17]. 

ˆ ˆ( ) ( )H HH zT zP                                    (4) 

ˆ ˆ( ) ( )J JJ zT zP                                          (5) 

Here, ẑ is the unit vector in z direction, 
JT  and 

HP  are the 

electrical toroidal scalar potential and the magnetic poloidal 

scalar potential respectively. Conversely, 
HT  and 

JP  are the 

magnetic toroidal scalar potential and the electrical poloidal 

scalar potential respectively. Obviously, 0JT  , 0JP   in the 

air ( 0z  ).     

For the formula ˆ ˆ( ) ( )H HH zT zP   in Equation 

4: ˆ( )

0 0

H H
H

H

i j k

T T
zT i j

x y z y x

T

 
 

       
     
 
 

             (6)  

In the same way the following can be obtained:  

ˆ( )

0 0

H H
H

H

i j k

P P
zP i j

x y z y x

P

 
 

       
     
 
 

                    (7) 

Next the curl of the formula is determined:  

ˆ( )

0 0

H H
H

H

i j k

P P
zP i j

x y z y x

P

 
 

       
     
 
 

                         (8) 

2 2 2 2

2 2

ˆ( )

0

( )

H

H H

H H H H

i j k

zP
x y z

P P

y x

P P P P
i j k

x y x z x y

 
 
 
   

   
   
  

 
  

   
   

     

                              (9)  

Combining Equation 8 and Equation 9, the magnetic field H 

can be obtained: 

2 2 2

2 2

ˆ ˆ( ) ( )

( ) ( ) ( )

H H

H H H H H H

H zT zP

P T P T P P
i j k

x z y y z x x y

  

     
     

       

        (10) 

The magnetic field H in the horizontal wavenumber domain 

can be obtained by the Fourier transform formula:   

( )
( , ) ( , ) x yi k x k y

F u v F x y e dxdy

 
 

 

                                          (11) 

Here, kx , ky are wave number in x-direction and y-direction.  

Hence Equation10 can be transformed into:    
2 2

2 2
( )

2 2

2

( , ) ( ( ) ( )

( )) y

' , ' ,

H H H H

i ux vyH H

T

H H H H H

P T P T
H u v i j

x z y y z x

P P
k e dxd

x y

iuP ivT jvP juT k P

 

 

 

   
   

     

 
 

 

  

 

（ ）

                  (12) 

As with the calculation of H, current density J in the space 

domain can also be obtained:   
2 2 2

2 2
( ) ( ) ( )J J J J J JP T P T P P

J i j k
x z y y z x x y

     
     

       
            (13) 

The current density J in the wavenumber domain can be 

obtained via the Fourier transform formula:    

 2, ,
T

J J J J JJ ivT iuP iuT ivP k P                                          (14) 

According to the Equation 2, the following formula can be 

obtained:  

( ) 0H J   , ˆ( ) 0z H J                                    (15) 

The curl of magnetic field H can be expressed as:                
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2 2 2

2 2

2 2 2

2 2

2 2

[ ( ) ( ),

(( )( ) ( )),

( )( ) ( )]

H H H H

H H H H

H H H H

p P T P
H

y z x y zx y

T P p P

z y x z x x y

T P T P

x x y z y y x z

    
     

     

    
  

      

    
   

       

              (16)  

Hence, the curl of the magnetic field in the x-direction can be 

obtained.  

 

2 2

2 2

2 2

1
ˆ ( ) [ ] [ ]

z

[ ]

H H H H

H H

P T T p
z H

x x x y y y z

T T

x y

   
     

       

 
  

 

       (17) 

According to Equation 13, the current density in the 

z-direction can be expressed using Equation 18:    
2 2

2 2
ˆ( ) [ ]J JP P
z J

x y

 
  

 
                                               (18) 

Based on Equation 15, 17 and 18, we can obtain the 

following conclusions:  

ˆ ˆ(z H z J ） （ ）, 
H JT P                                            (19)    

The curl of the second item of Equation 15 can be described 

using Equation 20.             

[ ( )] [ ( )]z H z J                                           (20) 

The left part of Equation 20, is deduced as shown below:    
2 2 2

2 2 2 2

2 2 2

2 2 2 2

ˆ [ ( )] [ ( )]

[ ( )]
y

H H H

H H H

P P P
z H

x z x y

P P P

y z x

  
     

   

  
  
   

          (21) 

The right part of Equation 20 is deduced, as shown in 

Equation 22.    

2 2

2 2

2 2

ˆ [ ]

( ) ( )

( )

J J J J

J J

z J

T P T P

y y x z x x y z

T T

y x

 

    
     

       

 
  

 

                   (22) 

Based on Equation 21 and 22, the following can be obtained:  
2 2 2

2 2 2 2

2 2 2

2 2 2 2

2 2

2 2

[ ( )]

[ ( )]
y

( )

H H H

H H H

J J

P P P

x z x y

P P P

y z x

T T

y x

  
  

   

  
 

   

 
  

 

                                  (23)  

The shorthand of Equation 23 can be described as:  
2

J JT P                                                                (24) 

The expression in the wavenumber domain of Equation 24 

can be deduced via the Fourier transform.     
2 "

J H HT k P P                                                          (25)  

According to ohm’s law, there exists a relationship among 

the current density, electrical field and conductivity. 

  ˆJ E                                                                   (26)  

Equation 26 can be rewritten as: 

 ˆE J                                                                     (27)  

Here, 

z

z

z

ˆ

xx xy x

yx yx y

zx zy z

  

   

  

 
 

  
 
 

   

Based on Equation 27, Equation 1 can be expressed as:  

ˆ( ) 0J                                                               (28) 

Furthermore, the curl of Equation 28 can be obtained, as 

follows: 

 ˆ( ) 0J                                                        (29) 

For the ˆ( )J , it can be expanded in the wavenumber 

domain: 
'

'

2

' ' 2

' ' 2

'

ˆ( )

( ) ( )

( ) ( ) ( )

( )

J Jxx xy xz

yx yy yz J J

zx zy zz J

xx J J xy J J xz J

yx J J yy J J yz J

zx J J zy

ivT iuP

J iuT ivP

k P

ivT iuP iuT ivP k P

ivT iuP iuT ivP k P

ivT iuP

  

   

  

  

  

 

   
  

    
  
    

    

     

  ' 2( ) ( )J J zz JiuT ivP k P

 
 
 
 

    

    (30) 

According to Equation 28, the component in z direction can 

be deduced.  

ˆˆ ( ( ))

( ) ( ) ( )

( ) ( ) 0

x y z

y x

i j k

z J
x y z

J J J

J J
x y



  

 

 
 
     

   
 
  

 
  
 

                    (31) 

Here, 
' ' 2( ) ( ) ( )x xx J J xy J J xz JJ ivT iuP iuT ivP k P         ,  

' ' 2( ) ( ) ( ) ( )y yx J J yy J J yz JJ ivT iuP iuT ivP k P         , 

' ' 2( ) ( ) ( ) ( )z zx J J zy J J zz JJ ivT iuP iuT ivP k P         .  

Now Equation 31 can be expanded as follows:    
2 2

2 2 ' 2

( 2 ) ( ( )

( ) ) ( ) 0

xx yy xy J xx yy

xy J yz xz J

v u uv T uv

v u P ik u v P

    

  

   

    
                          (32)                                                                        

In order to easily express Equation 32, we set three 

coefficients, as follows:  
2 22xx xy yya v uv u     , 

2 2( ) ( )xx yy xyb uv v u      , 

( )xz yzc i v u   .  

Hence Equation 32 can rewritten as:  
' 2 0J J JaT bP ck P                                                     (33) 

Based on Equation 33, we can obtain the following:  
2 '

J J

J

ck P bP
T

a


                                                          (34) 

2 ' "

' J J

J

ck P bP
T

a


                                                         (35) 
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According to Equation 29, the component in z direction can 

be deduced.  

ˆˆ ( ) 0z J                                                          (36) 

Equation 36 can be expanded as follows:  

" 2 2 ' 2

2 ' 2 2

ˆˆ ( )

( ) [ ( )]

2 ( ) ( )

0

J yy xx J yy yy xx

xz J xz yz J zz J

z J

P v u T k uv

i k u P ik v u T ik u v P



    

   



    

    



     (37) 

Combing Equations 34, 35, 36 and 37 the following is 

obtained: 
2 ' "

" 2 2 2

2 '

2 ' 2

2

( ) [ ( )]

2 ( )

( ) 0

J J

J yy xx yy yy xx

J J

xz J xz yz

zz J

ck P bP
P v u k uv

a

ck P bP
i k u P ik v u

a

ik u v P

    

  




   


  

  

     (38) 

Here,
2 22xx xy yya v uv u     , 

2 2( ) ( )xx yy xyb uv v u      ,  ( )xz yzc i v u   ,  

 Equation 38 can be simplified using Equation 39:  
" ' 22 ( ) 0J J JdP eP c af P                                          (39) 

Here, 2 2 2( )( )xx yy xyd v u       

2[ ( ) ( )]xz xy yz xx yz xy xz yye u iv iu           ,  

( ) zzf i u v   . 

Based on Equations 34 and 39, the basic solution of the 

electromagnetic field can be calculated.   

2.2 Boundary condition of internal layer    
For the magnetic induction intensity B at the boundary 

between the two layers, we can analyse its condition using the 

model shown in Figure 2. A small volume is employed to study 

the boundary condition of B. According to the Gauss’s theorem 

the following equation is obtained:  

       0
S

B dS                                                     (40)  

When the height of the volume is small enough, Equation 40 

can be rearranged as:   

      
1 1 2 2 0B dS B dS                                              (41)   

 Based on Equation 41 , the relationship of 
1B  and 

2B  can 

be obtained.  

1 2B B                                                                (42) 

Here, the magnetic permittivity 1 2 0    .   

Furthermore, Equation 42 can be rewritten as: 

 1 2H H                                                                 (43) 

Based on the above  
' 0HP                                                                  (44) 

 

Fig. 2 The boundary condition of magnetic field.       

For the electrical field E at the boundary between the two 

layers, the condition can be analyzed using the model as shown 

in Figure 3. A small rectangle can be employed to study the 

boundary. For the constant electrical field, the integrated 

electric field along any closed path is zero, as shown below:  

 
l

l 0E d                                                                (45)  

When the height 0h  , Equation 45 can be expanded as 

follows:  

1 2
l

l t l t l 0E d E E                                         (46)   

Hence, we can obtain the continuous tangential component 

of E.  

Based on Equations 44, 45 and 46, the boundary condition 

implies as in (Yin, 1999): 

[ ] 0HP  , '[ ] 0HP  , [ ] 0JP   and  '[( ) / ] 0J JdP eP a     (47) 

Here, [] indicates jump condition.  

 

 
 

Fig. 3 The boundary condition of the electrical field. 

 

2.3 Boundary condition at the ground surface       

At the ground surface, there are two point current sources; rA 

and rB indicate the positions of positive pole and negative pole. 

: ( , ,0)A A AI r x y  , : ( , ,0)B B BI r x y                                (48) 

For the two point sources, the relationship between the 

current density and current intensity can be described as:   

{ ( ) ( )} ( )A BJ I r r r r z                                           (49) 

Here, r is the distance between the point source and 

considered point at the ground surface.  

The integration from over ground surface to the ground 

surface z=0, ( 0 ) 0zJ z    . Thus the integration of Equation 

49 can be expressed as follows:      

( 0 ) { ( ) ( )}z A BJ z I r r r r                                        (50)   

The two domains Fourier transformation of Equation 50 is  
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( ,0 ) ( )A Bikr ikr

zJ k I e e
                                                   (51)  

From Equation 14, the relationship between 
ZJ  and 

JP  is as 

follows: 
2

Z JJ k P                                                                       (52) 

Here, x yk u v  ,  2 2 2k     

Hence, 
JP  can be expressed as:  

2
( ,0 ) ( )A Bikr ikr

J

I
P k e e

k

                                             (53) 

Equation 53 is obtained by combining Equations 14 and 47. 

2
( ,0 ) { }A Bikr ikr

J J J

I
D P P J e e

k


 


                         (54) 

Here, DJ is the jump across at the boundary of z = 0.  

Furthermore, according to Equation 12, the horizontal 

projection of the magnetic field can be given as below:       

h x yH H x H y                                                            (55)  

This can further be expanded to:   

 

   

' '

'

ˆ ˆ

ˆ ˆ

ˆˆ ˆ ˆ ˆ

h x y

H H H H

H H

H H x H y

i(vT uP ) x i uT vP y

i vx uy T i ux vy P

 

         

   

                  (56) 

Because,  ˆ ˆ 0

0 0 1

x y z

k z u v vx uy      and  ˆ ˆ(z H z J ） （ ）

, 
H JT P  (as shown in Equation 19).  

Hence Equation 19 can be rewritten   

   

 

'

'

ˆˆ ˆ ˆ ˆ

ˆ ˆˆ

h H H

J H

H i vx uy T i ux vy P

i k z P ik P

   

   
                              (57) 

Here, ˆ ˆk u vx y  ,  2 2 2k     

The expression of hH  can be rewritten using Equation 58:   

'( )h J HH i k z P ikP                                                    (58)  

Equation 58 can be adapted by multiplying ik:  

  
   

'

2 '

h J H

J H

ik H ik i k z P ikP

i ux vy ux vy P k P

    

    
                        (59) 

Because     0Jux vy ux vy P    , the following is 

obtained: 

'
2

h
H

ik H
P

k

 
                                                         (60) 

Hence, the jump across can be written as:  

'
2

h

H

ik H
P

k








                                                     (61)  

According to Biot-Savart’s law, the horizontal components 

of the magnetic field are Yin [11].  

0

3

0

( )
( )

4

A

B

r

h
r

dsI d z z
H r

r r





                                      (62)  

Here, 
( )A B

A B

r r
d

r r





, ( , , )r x y z , 

0 0 0 0( , , )r x y z , 
0ds  is 

the length of the line element.  

Equation 62 can be transformed into the wavenumber 

domain.  

0

0
ˆ ˆ( , ) ( ) ( )

2

A

B

r ik r k z

h
r

I
H k z d z sign z e ds

  
                              (63) 

Thus, the integration from z  to z :  

0

0
ˆ ˆ( , ) I( )

ˆ ˆI( )
ˆ

A

B

A B

r
ik r

h
r

ik r ik r

H k z d z e ds

e e
d z

ik d


 



   

 


 

 


                                      (64) 

The jump cross can be described using the following:   

'

2

ˆ ˆ
I { }

ˆ( )

A Bik r ik r

H H

k (d z)
D P e e

k k d


   



 
    


                                (65) 

III.  COMPUTATION OF ( , )JP k z  AND ( , )HP k z  

3.1 Computation of ( , )JP k z   

Based on the conditions of the inner layer, ( , )JP k z  is 

computed by solving Equation 33 using the layered model of 

uniform electric anisotropy.  

l( ) exp( )JP z A z                                                 (66) 

Here, A is arbitrary constant.   

Inserting Equation 66 into Equation 33:  
2 2

l l l l2 ( ) 0d e c f                                                  (67) 

l  can be computed, as follows: 

l l l                                                             (68) 

Here, l

l

ld

e
  , 

2 2

l l l l l

l l l

l l

4 4 ( ) 1
det

2

e d c d f

d d
  

 
    

and  l

xx xy xz

yx yy yz

zx zy zz

  

   

  

 .   

The completed solution of JP  in the layer l is：   

  l l( l) ( l)

l l( )
z z z z

JP z A e A e
                                             (69)  

Here, 
lA  is the amplitude of the up going wave and -

lA  is 

the amplitude of the down going wave. 
l
  and 

l
  are wave 

number of up going wave and down going wave.       

Therefore, at the boundary of lth  layer and l 1 th( )  layer, 

the following is obtained:  

l l l l

l 1 l l( )
h h

JP z z A e A e
     

                                         (70) 

l 1 l 1 l 1( )JP z z A A  

                                                   (71) 

According to the boundary condition of [ ] 0JP  :

l 1 l 1( ) ( )J JP z z P z z 

     or 

 l l l l

l l l 1 l 1

h h
A e A e A A

      

                                        (72) 
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According to the boundary condition of '[( ) / ] 0J JdP eP a  :  

' ' ' '

l J l l J l l l-1 J l 1 l-1 J l-1 l 1[d P ( ) P ( )] / [d P ( ) P ( )] /z e z z e z    

     (73)  

Inserting Equation 71 and 72 into Equation 73:  

 l ll l

l l l l 1 l 1 l 1( ) ( )
h h

A e A e A A
  
     

                                   (74) 

Here, l
l

l

: det





   

Let l l

l l

l l

A A

A A
B 

 

 





 and l 1 l 1

l 1 l 1

l 1 l 1

A A

A A
B 

 

 

   

 





 

Equation 74 can thus be rewritten as:  

l ll l

l l l

l 1 l 1 l 1

l 1 l 1 l 1

( )

( )

(A A

h hA e A e

A A

B )

 



   

 

  

 

  



 

 

                                    (75) 

Equation 72 can be rewritten as:  

l l l l

l l l l l 1 l 1( ) ( )
h h

A e A e A A
  
     

                                    (76) 

Combing Equations 75 and 76     

l l l l

l l l l

- h - h

l l l l l 1 l 1

- h - h

l l l l 1 l 1 l 1

( ) ( )

( ) ( )

A e A e A A

A e A e B A A

 

 

 



 

 

   

 

   

  

   


  

                             (77) 

From Equation 77, 
lA  and 

lA  can be computed.  

l l

l l 1 l 1 l 1

l

l

( )( )

2

h
B A A e

A





 

    
                                      (78) 

 
l l

l l 1 l 1 l 1

l

l

( )( )

2

h
B A A e

A





 

    
                                     (79) 

lA  and 
lA are inserted as follows: 

l l l l

l l l l

l l l l

l l l l

h h

l 1 l h h

l l h h

l l 1 h h

e e
B

e eB
e e

B
e e

 

 

 

 







 

 

 

 














                                          (80) 

Solution 
l l l      is substituted into 

l l l l

l l l l

h h

h h

e e

e e

 

 

 

 




.  

 
l l l l

l l l l
l ltanh( )

r h r h

r h r h

e e
h

e e










                                            (81)  

Therefore l 1 l l l

l l

l l 1 l l

tanh( )

tanh( )

B h
B

B h

 

 









                                 (82) 

For the last layer there is no down going wave thus l 0.0A 

.  Hence, we can obtain lB  for the last layer as shown below: 

l lB                                                             (83) 

For the surface, the 1A  and 1A  can be calculated by 

1 1JD A A    and 1 1

1 1

1 1

A A
B

A A


 

 





 .   

1 1

1

12
J

B
A D





 
                                                    (84) 

1 1

1

12
J

B
A D





 
                                                    (85)  

And ' (0 )JP   can be calculated.  

' 1 1
1

1

(0 ) ( )J J

B
P D





                                              (86) 

3.2 Computation of ( , )HP k z   

For the purpose of obtaining the magnetic field, ( , )HP k z  is 

calculated. According to Equations 27 and 46,  ( , )HP k z  can be 

expressed using integration.   

0 0

0
0

1.0
( ) ( )

2

k z z k z

H J HP z z T z e dz D e
k

   
                          (87) 

For the ground surface: 0.0z   

0

1.0
(0) ( )

2

kz

H J HP T z e dz D
k


                                       (88) 

0

1.0
(0) ( )

2

kz

H J HP T z e dz D
k


                                       (89) 

IV.  COMPUTATION OF APPARENT RESISTIVITY  
Based on above work, the relationship between the current 

density, magnetic field and the electric field can be expressed 

by the equation.   

2 '

1 1 1 1

2 '

1 1 1 1

2 '

[ (0 ) (0 ) (0 )]

i{ (0 ) ( ) } /

i{ (0 ) ( ) } /

(0 )

T

x y z

J J

J J

J

J J J

vc k P u b P

c k P u b P

k P

  

   

  







  
 

    
 
  

                        (90) 

'

J

'

2

(0 ) i{vP (0 ) (0 )}

(0 ) i (0 )

(0 ) i (0 ) (0 )

i (0 )(0 )

(0 )(0)

(0 )

(0 )

(0 )

x H

x H

y J H

Hy

Hz

x xx xy xz

y yx yy yz

zx zz

H uP

H ukP

H { uP vP }

vkPH

k PH

E

E

E

  

  

 

  

 

  











   
   
   
   

     
   
   
   

  

 
 

 
 
  

(0 )

(0 )

(0 )

x

y

y zz z

J

J

J


















  
  
  
  
    

                            (91) 

The field in the space domain can be calculated by Fourier 

transform as:   

1
( , ) ( )exp[ ( )] u v

2
F x y F μ,ν i μx νy d d



 

 
                     (92) 

Finally, the apparent resistivity can be calculated as:             

(93) 

  
(0 )

( )a

Er
r G

I




                                       (93) 

Here, G  is the coefficient of measurement system.    

V. NUMERICAL SIMULATION   

For modeling, the Schlumberger array is employed to 

simulate the geological model of the goaf [18]. The geological 

model is shown in Figure 4(a) and the schematic diagram of the 

measurement is shown in Figure 4(b). Through the whole 

measurement process, 24 values of apparent resistivity around 
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the origin of the coordinate are calculated. These values are 

used to form the ellipse. Finally, the shape of ellipse assists in 

the analysis of the information of the fractures in the fractured 

zone. Different models with different stratigraphic dips and 

strikes are used to study the relation between apparent 

resistivity and the geological occurrence of fractured zone.  In 

addition, all the simulations have been done by FORTRAN 

code made by author.   

 
Fig. 4(a) is the geological model of the goaf and Schlumberger array being 

used to do the modeling shown as an electrodes array AMNB. Fig. 4(b) shows 

the electrode array at the ground surface where 24 values of the apparent 

resistivity around the origin of the coordinate are calculated.  

5.1 Numerical simulation 1    

The purpose of the numerical simulation is to investigate the 

stratigraphic dips of the fractures in the fractured zone in the 

goaf. As shown in Figure 5, the fractured zone is sandwiched by 

the upper and lower homogenous layers. There are three goaf 

models where stratigraphic dips of fractures in the fractured 

zone are 25
o
, 55

o
 and 80

o
 respectively and the stratigraphic 

strikes are parallel with Y-axis. For the fractured zone, the 

longitudinal resistivity 
T  and the transverse resistivity 

N  

are 25 ohm-m and 100 ohm-m respectively. The resistivity of 

the upper and lower homogenous layers is 100 ohm-m. The 

length of AB is set to be 60 m. According to the principle of the 

electrical method, it can detect the geological information of 

the fractured zone in the goaf. The modeling results of the 

geological models as shown in Figure 5 are described in Figure 

6. In Figure 6, the distribution of the apparent resistivity, as 

shown (a), (b) and (c) correspond to the geological models (a), 

(b) and (c), described in Figure 5. As described in Figure 6, the 

shapes of the distribution of the apparent resistivity are 

different from each other.  This difference is used to analyze the 

geological information of the fractured zone of the goaf.       

 

 
Fig.5 Three geological models of the goaf with different stratigraphic dips 

which are 250, 550 and 800 respectively. The stratigraphic strikes are parallel 

with the Y axis. The resistivity of the upper and lower homogenous layers is 

100 ohm-m and for the fractured zone, T  and N  are 25 ohm-m and 100 

ohm-m respectively.       

 
Fig. 6 The numerical modeling results of the goaf. The distribution of the 

apparent resistivity, as shown (a), (b) and (c) correspond to the geological 

models in Figure 5 (a), (b) and (c).   

5.2 Numerical simulation 2    

The purpose of the numerical simulation is to investigate the 

electrical response due to existence of the stratigraphic strikes. 

As shown in Figure 7, the stratigraphic strike angels are 00, 300 

and 600 respectively. The stratigraphic dips of the geological 

models are all 45
o
. The resistivity of the upper and lower 

homogenous layers is 100 ohm-m and for the fractured zone  

T  and 
N  are 25 ohm-m and 100 ohm-m respectively. The 

modeling methods are the same as the numerical simulation. 

The modeling results of geological models in Figure 7 are 

shown in Figure 8. In Figure 8, the distribution of the apparent 

resistivity, as shown in (a), (b) and (c) correspond to the 

geological models in Figure 7 (a), (b) and (c). As described in 

Figure 8, the shapes of the distribution of apparent resistivity 

are different from each other due to the difference of the 

stratigraphic strikes. Hence, the difference of the shapes of the 

distribution of the apparent resistivity can assist in the analysis 

of the geological information of the fractured zone of the goaf.  

 
Fig. 7 Three geological models of the goaf with different stratigraphic dips 

which are 00, 300 and 600 respectively. The stratigraphic strikes are parallel 

with the Y axis. Moreover, the resistivity of the upper and lower homogenous 

layers is 100 ohm-m and the fractured zone T  and t N  are 25 ohm-m and 

100 ohm-m respectively.      

 

 
Fig. 8 Numerical modeling results of the goaf.  The distribution of the 

apparent resistivity, as shown in (a), (b) and (c), correspond to the geological 

models in Figure 7 (a), (b) and (c).     

VI.  CONCLUSIONS  

 In this paper, the following conclusions are obtained from 

the theoretical research and numerical simulation:  

1) Electrical anisotropy of formation caused by the 

stratigraphic dip and strike direction exhibit obvious 
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characteristics in the polar coordinates. The information of the 

water conducted fractured zone can be analyzed in detail 

through these characteristics. 

2) The modeling results show that the distribution of 

apparent resistivity for the formation of water conducted 

fractures exhibit an ellipse shape in the polar coordinate system 

through the specially designed measurement system. The shape 

of the ellipse is decided by the stratigraphic dip and direction of 

the long axis of ellipse. 

3) Based on above results, the earth information of water 

conducted fracture can be estimated by the DC resistivity 

method with the specially designed measurement system. The 

application of the method will enhance the ability of exploring 

the goaf in coal fields so as to improve safety during coal 

mining.  
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