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Abstract

Although pro-inflammatory mechanisms have been implicated in the

pathogenesis of manganese (Mn2+)-related neurological and respiratory

disorders, relatively little is known about the potential of this metal to interact pro-

oxidatively with human phagocytes.  The primary objective of the current study

was to investigate the effects of Mn2+ as MnCl2 (0.5-100μM) on the generation of

the reactive oxygen species (ROS), superoxide, hydrogen peroxide (H2O2), and

hypohalous acids by isolated human blood neutrophils and monocyte-derived

macrophages following activation of these cells with the chemotactic tripeptide,

FMLP (1μM), or the phorbol ester, PMA (25ng/ml).  Generation of ROS was

measured using the combination of oxygen consumption, lucigenin/luminol-

enhanced chemiluminescence, spectrofluorimetric detection of oxidation of 2,7-

dichlorodihydrofluorescein, radiometric assessment of myeloperoxidase (MPO)-

mediated protein iodination, release of MPO by ELISA, and spectrophotometric

measurement of nitrite formation.  Treatment of activated neutrophils with either

FMLP or PMA resulted in significantly decreased reactivity of superoxide in the

setting of increased formation of H2O2 and MPO-mediated iodination, with no

detectable effects on either oxygen consumption or MPO release.  Similar effects

of the metal with respect to superoxide reactivity and H2O2 formation were

observed with activated macrophages, while generation of NO was unaffected.

Taken together with the findings of experiments using cell-free ROS-generating

systems, these observations are compatible with a mechanism whereby Mn2+, by

acting as a superoxide dismutase mimetic, increases the formation of H2O2 by
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activated phagocytes. If operative in vivo, this mechanism may contribute to the

toxicity of Mn2+.

Key words: manganese, reactive oxygen species, hydrogen peroxide,

neutrophils, macrophage

Introduction

Manganese (Mn2+) is required in trace amounts for normal physiological

functions, but can be harmful in the occupational (and also environmental) setting

in which individuals are chronically exposed to high levels of the metal. Mn2+

toxicity is associated with the development of manganism, a Parkinson-like

neurological disorder, as well as respiratory conditions such as pneumonia,

bronchitis and impaired pulmonary function (Akbar et al., 2002; Roth & Garrick,

2003; Takeda, 2003; Cersosimo et al., 2006).

Occupational exposure can occur from the chronic inhalation of Mn2+-containing

fumes and dust associated with mining and ore-grinding, the ferromanganese,

iron and steel industries, welding, and in dry-cell battery factories, as well as in

the agricultural sector in workers using Mn2+-based fungicides (Roels et al., 1992;

Meco et al., 1994; Bowler et al., 2007; Santamaria, 2008).  Environmental

exposure may occur in those living in close proximity to mining industries where

manganese containing dust can be released into the atmosphere. Concern has
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also been raised about possible environmental exposure to manganese via the

combustion of methylcyclopentadienyl manganese tricarbonyl (MMT), used as a

fuel additive in some countries (Frumkin & Solomon, 1997).

Human polymorphonuclear leukocytes, predominantly neutrophils, as well as

macrophages, are crucially involved in the innate host response to infection by

phagocytosing, and killing microbial pathogens via an arsenal of toxic molecules

such as proteolytic enzymes, reactive oxygen species (ROS), and bacteriocidal

proteins (Smith, 1994; Kobayashi, et al., 2005). Although potent, these

antimicrobial defenses are indiscriminate and may cause significant

inflammation-mediated damage to bystander host tissues. Phagocyte- derived

ROS are a group of chemically reactive molecules derived from molecular

oxygen generated by the catalytic action of the multicomponent enzyme system,

NADPH oxidase. The main members include superoxide (O2
−), hydrogen

peroxide (H2O2), hydroxyl radical (OH·) and hypohalous acid. The toxicity of H2O2

is enhanced by its reaction with free iron to form highly reactive OH· (Fenton

reaction), or by the activity of myeloperoxidase (MPO). In combination with H2O2,

MPO can oxidize the halides to hypohalous acids such as hypochlorous acid, a

highly reactive oxidizing agent. Up to 80% of the H2O2 generated by activated

neutrophils is used to form 20–400 μM HOCl an hour, depending on the potency

of the stimulus and cell number (Yap et al., 2007).
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Exposure to Mn2+ in the environment with subsequent inhalation of particulate

matter exposes individuals to both soluble and insoluble forms of Mn2+. The

bioaccessibility of Mn2+ in lung fluids has been investigated in animal models and

found to be about 32 – 52% in fluids which closely mimic the lining fluids of the

lungs (Julien et al., 2011). Therefore, it is likely that both soluble and insoluble

metal components contribute to inhalation-mediated inflammatory responses

(Julien et al., 2011).  Moreover, Mn2+ accumulation in the central nervous system

following inhalation exposure is dependent on particulate solubility (Roels et al.,

1997; Dorman et al., 2001), which suggests that the reactivity of the cation is

retained during the translocation process. Metals such as Mn2+ induce

monocytes/macrophages to release proinflammatory cytokines such as TNF-a,

IL-1b and IL-8 (Antonini et al., 2003), which are important in mediating

transendothelial migration and chemotaxis of neutrophils. We have also observed

that MnCl2 enhances the production of IL-6 and IL-8 by resting and activated

monocytes in vitro (unpublished observations).  In keeping with these

observations, metal extracts from welding fumes have been shown in a rat model

to trigger a cytokine response and an influx of neutrophils (Antonini et al., 2003)

into the animals’ lungs with consequent lung injury. Pulmonary cytotoxicity was

confirmed by measuring lactate dehydrogenase and albumin concentrations in

bronchoalveolar lavage fluid (Antonini et al., 2003).

Oxidative injury has also been implicated in the pathogenesis of Mn2+-mediated

toxicity (Milatovic et al., 2009).  However, the putative molecular/biochemical
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mechanisms, including possible interactions of the metal with the ROS-

generating neutrophil, remain to be established. The primary aim of the current

study was to investigate the effects of MnCl2 on the generation of ROS by

activated human neutrophils, as well as by human monocyte-derived

macrophages in a more limited series of experiments.

Materials and Methods

Chemicals and reagents

Manganese chloride (MnCl2) was purchased from Sigma-Aldrich (St Louis, MO,

USA), dissolved in distilled water to a stock concentration of 10mM, and used in

the various assays described below at a final concentration range of 1-100µM.

Unless indicated, all other chemicals and reagents were purchased from Sigma–

Aldrich.

Neutrophils

Permission to draw blood from healthy, non-smoking adult human volunteers was

granted by the Research Ethics Committee of the Faculty of Health Sciences of

the University of Pretoria. Subsequent to obtaining informed consent, neutrophils

were prepared from heparinized (5 units of preservative-free heparin/ml) venous

blood and separated from mononuclear leukocytes by centrifugation on
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Histopaque-1077 (Sigma-Aldrich) cushions at 400 g for 25 min at room

temperature. The resultant cell pellet was suspended in phosphate-buffered

saline (PBS, 0.15 M, pH 7.4) and sedimented with 3% gelatin to remove most of

the erythrocytes. After centrifugation, erythrocytes were removed by selective

lysis with 0.84% ammonium chloride at 4°C for 10 min. The neutrophils, which

were routinely of high purity (>90%) and viability (>95%), were resuspended to

1x107/ml in PBS and held on ice until used.

Monocyte/macrophage isolation and culture

Following centrifugation of heparinized whole blood on Histopaque-1077

cushions as described above, the mononuclear leukocyte (MNL) fraction at the

plasma/ Histopaque-1077 interface was aspirated, diluted ¼ with PBS and the

cells pelleted by centrifugation after which contaminating erythrocytes were

removed by hypotonic lysis.  Subsequent to another centrifugation step and

discarding of the supernatant fluid, the cells were resuspended in sterile Hanks’

balanced salt solution (HBSS, indicator-free, containing 1.25mM CaCl2, pH 7.4,

Highveld Biological, Johannesburg).  The cell preparation was then analysed flow

cytometrically using a Beckman Coulter FC500 Flow Cytometer using the

following fluorochrome-labelled monoclonal antibodies (Beckman Coulter, Miami,

FL, USA): CD3 (FITC), CD14 (PE), CD15 (FITC) and CD19 (PE) for analysis and

enumeration of total T cells, monocytes, granulocytes and B-cells, respectively.

Differential adherence to plastic was used to separate monocytes from other
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types of MNL and to promote their differentiation.  MNL (30ml of a 3 x 107

MNL/ml suspension in HBSS) were seeded onto sterile 75 cm3 tissue culture

flasks and incubated for 2 hours at 37°C/ 5% CO2 to promote adherence of

monocytes. Following incubation, each flask was gently rinsed with 50 ml of pre-

warmed PBS to remove non-adherent cells.  Ten milliliters of tissue culture

medium RPMI 1640 (Bio Whittaker, Walkersville, MD, USA) supplemented with,

antibiotics (penicillin: streptomycin: amphotericin B, 0.1:0.25:0.1 μg/ml) and 5%

autologous serum were then added to each flask, which were then incubated for

7 days at 37°C/ 5% CO2 as described previously (Cassol et al., 2009).

Following the 7-day incubation period, the tissue culture medium was discarded

and each flask rinsed once with 10 ml pre-warmed PBS, followed by addition of

10ml PBS containing the Ca2+-chelating agent ethylene glycol-bis (2-

aminoethylene)-N,N,N,N-tetracetic acid (EGTA, 2mM, final) and the flasks placed

on ice with gentle agitation every 10 minutes for at least 30 minutes, to promote

detachment of the cells, which were then dislodged by scraping the surface of the

flask with a sterile 1.8 x 25 cm Cell Scraper (Adcock Ingram, Scientific Group).

The cells were then pelleted by centrifugation, the supernatant discarded and the

cell pellet resuspended in 3ml of Ca2+-free HBSS containing 2mM EGTA.  The

cell suspension (350μl) was then analyzed flow cytometrically using the following

combination of fluorochrome-labelled monoclonal antibodies: CD14-PE/ CD16-

FITC (monocytes/macrophages).The purity of the monocyte/macrophage

suspensions (CD14/CD16 dual expressing cells was 83±2%.  The remaining
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populations consisted of undifferentiated monocytes (7±1% expressing CD14

only) and the double negative cells (9±1 %, probably lymphocytes).  The viability

of the total cell population measured flow cytometrically by propidium iodide

exclusion was 78±3% (range 62-94%)

These monocyte-derived macrophages were used in the assays of lucigenin

chemiluminescence, intracellular H2O2 and NO production described below.

Measurement of the effects of Mn2+ on the generation and reactivities of ROS

When used in combination to measure the generation of ROS by activated

neutrophils and cell-free systems, the assays shown in Table 1 not only enable

identification of the type of ROS, but also the mechanism involved i.e. increased

production, conversion of one type of ROS to another, and/or ROS-scavenging

activity.

Lucigenin-enhanced chemiluminescence

Superoxide production was measured using a lucigenin (bis-N-methylacridinium

nitrate)-enhanced chemiluminescence method (Minkenberg and Ferber, 1984).

Neutrophils (1 x106/ml, final) were preincubated for 10min in 900 ml indicator-free

Hanks’ balanced salt solution (HBSS, pH 7.4, 1.25 mM CaCl2) containing 0.2 mM

lucigenin in the presence and absence of MnCl2 (0.1-100mM). The reaction

mixtures were then stimulated with either the phorbol ester, PMA (phorbol 12-
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myristate 13-acetate; 25ng/ml final) or the synthetic chemoattractant, N-formyl-L-

leucyl-L-phenylalanine (FMLP, 1μM final), and chemiluminescence responses

recorded in an LKB Wallac chemiluminometer (Turku, Finland) for PMA-activated

systems or a Lumac Biocounter 2010 for FMLP-stimulated systems. The results

are expressed as the peak responses in mV/sec and relative light units for PMA-

and FMLP-activated systems respectively.  These peak responses occurred at

30-60sec (FMLP) and 5min (PMA).

The effects of MnCl2 (50-400μM) on lucigenin-enhanced chemiluminescence

were also determined using PMA activated monocytes/macrophages (3x

105cells/ml) suspended in Ca2+-replete HBSS. The set-up of these experiments

was similar to that described above for neutrophils and the results expressed as

percentage of the Mn2+-free control system.

Additional experiments were undertaken to determine the potential of MnCl2 to

scavenge superoxide, using a cell-free, xanthine/xanthine oxidase superoxide-

generating system. Reaction mixtures consisted of xanthine oxidase (64mU/ml),

lucigenin (0.2 mM) and xanthine (0.9mM) in the presence or absence of MnCl2

(6.25-100μM) in a final volume of 1ml HBSS.  Results are expressed as the peak

chemiluminescence responses which occurred after approximately 14 min.
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Oxygen Consumption

This was measured using a three-channel oxygen electrode (Model DW1,

Hansatech Ltd, King’s Lynn, Norfolk, UK).  Neutrophils (2x106) were

preincubated for 10 min at 37°C in HBSS in the presence or absence of MnCl2

(25mM) followed by activation of the cells with PMA (25ng/ml). PO2 was

monitored for a further 10 minutes.  Oxygen consumption was measured over the

period when consumption was linear, which was 7 min, and the results

expressed as nmol/min/2X106 cells.

Luminol-enhanced chemiluminescence

Luminol-( 5-amino-2,3-dihydro-1,4-phthalazine dione) enhanced CL, which

detects hydroxyl radical, (Yildiz G & Demiryürek, 1998) was used in the following

cell-free experiments to determine: i) the potential of MnCl2 to generate hydroxyl

radical from H2O2 by a Fenton type reaction; and ii) the effects of MnCl2 on the

generation of hydroxyl radical in a Fenton reaction involving the interaction of

vanadium (III) chloride with H2O2 (Fickl et al., 2006).  In the case of the former,

reaction systems contained luminol (0.1mM), glucose, (5mM in HBSS) and

glucose oxidase (400mU/ml from Aspergillus niger) without and with MnCl2

(25μM) in a final reaction volume of 1 ml.  The latter system also contained

luminol, glucose and glucose oxidase, as well as vanadium (III) chloride (25μM)

without and with MnCl2 and the hydroxyl scavenger, mannitol (20mM).  In both
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experimental systems the reactions were initiated by the addition of glucose

oxidase, and luminol-enhanced chemiluminescence measured using the LKB

Wallac 1251 chemiluminometer as described above.

Intracellular H2O2 production

Intracellular H2O2 was measured using a 2',7'-dichlorodihydrofluorescein

diacetate (DCF-DA)-based spectrofluorimetric procedure (Rhee et al., 2010 ).

This agent is hydrolyzed by cellular esterases to 2',7'-dichlorodihydrofluorescein

which is oxidized to 2',7'-dichlorofluorescein primarily by H2O2.  DCF-DA (1μM)

was added to a reaction mixture containing 1x106/ml neutrophils or 1x105/ml

monocyte-derived macrophages in the absence and presence of MnCl2 (3-25μM)

in a total volume of 3 ml HBSS. The samples were then incubated for 10 min in a

37°C waterbath, then transferred to the thermoregulated cuvette holder of a

Hitachi 650 10S fluorescence spectrophotometer with excitation and emission

wavelengths set at 500 and 530nm respectively.  Baseline fluorescence

responses and those activated with FMLP (1μM) or PMA (25ng/ml) were then

monitored for 10min.  These experiments were performed in the presence and

absence of the MPO inhibitors sodium azide (0.7mM) or 4-aminobenzoic acid

hydrazide (ABAH, 50μM) to eliminate the complicating effects of oxidation by

hypochlorous acid (Kettle et al., 1997; Tintinger et al., 2007).  These results are

shown as the traces of representative experiments.
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The validity of using DCF-DA as an oxidizable substrate for the

spectrofluorimetric detection of H2O2 was confirmed in a series of preliminary

experiments using a cell-free H2O2-generating system (glucose/glucose oxidase),

which clearly demonstrated an intense increase in fluorescence intensity (data

not shown).

MPO-mediated protein iodination

This was performed according to the method of Root and Stossel with minor

modifications (Root & Stossel, 1974). Neutrophils were preincubated for 10 min

at 37°C in 900ml of HBSS containing 1 mCi of iodine-125 (as Na125I, 37MBq,

Perkin Elmer Life and Analytical Sciences, Boston, MA, USA), 20 mM cold carrier

NaI and 2mg/ml of bovine serum albumin (BSA) in the presence and absence of

MnCl2 (0.5-100mM). The cells were then activated by addition of either FMLP

(1mM) or PMA (25ng/ml) and incubated for 10min at 37°C after which the protein

in the reaction mixtures was precipitated by addition of 20% trichloroacetic acid

(TCA) and the precipitates pelleted by centrifugation, followed by 3 more wash

steps with TCA to remove unbound 125I. The amount of protein-associated 125I in

the precipitates was determined using a Perkin Elmer 2470 Automatic Gamma

Counter and the results expressed pmols 125I per 2X106 cells.

The following additional experiments were performed to determine: i) the effects

of DPI (diphenyleneiodonium chloride-10μM), an inhibitor of NADPH oxidase, or
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sodium azide (0.7mM), on modulation of MPO-mediated iodination by MnCl2; ii)

the effects of MnCl2  at a fixed concentration of 50μM on MPO-mediated protein

iodination in a cell-free system containing 50mU/ml of purified MPO (from human

leukocytes), Na125I (2μCi), 2mg/ml BSA and glucose (5mM in HBSS)/glucose

oxidase (1.5U/ml) as a source of H2O2 in a final reaction volume of 1ml.

Reactions were terminated and BSA precipitated after 10min of incubation and

the protein precipitates processed and analysed as above.

MPO release

MPO was measured in the supernatants of neutrophils activated with FMLP

(1μM)/cytochalasinB (1μM, added to enhance degranulation), or PMA (25ng/ml),

in the absence and presence of 50μM MnCl2.  Neutrophils (2 x106/ml, final) in

HBSS were preincubated for 10min at 37°C with MnCl2 after which the cells were

activated and the reaction mixtures incubated for a further 10 min at 37°C.  The

tubes were then transferred to an ice-bath, followed by centrifugation at 400 g for

5min to pellet the cells.  The neutrophil-free supernatants were then decanted

and assayed for MPO using a double-antibody, capture ELISA procedure

(Kamiya Biomedical Company, Seattle, WA, USA).
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Nitric oxide production

For these experiments, monocyte-derived macrophages suspended in HBSS

were added to the wells of micro-tissue culture plates (105 cells/well, final volume

200μl) and incubated for 2 hours at 37°C/ 5% CO2 to promote adherence, after

which the HBSS was replaced with serum supplemented RPMI 1640 and the

plates incubated overnight at 37°C/ 5% CO2.  The next day the RPMI 1640/

serum medium in each well was replaced with HBSS without and with MnCl2

(100μM) followed 30 min later by the macrophage activator, bacterial

lipopolysaccharide (from Escherichia coli 0127:B8, 1μg/well, final).  The plates

were then incubated for 24 hours at 37°C/ 5% CO2 after which the cell-free

supernatants were assayed spectrophotometrically for nitrite as a surrogate for

NO using the Calbiochem Colorimetric Nitric Oxide Kit (Calbiochem - EMD4

Biosciences, San Diego, CA, USA).  Using this procedure, nitrate, also a product

of NO, is converted to nitrite by the addition of nitrate reductase.  Total nitrite is

then determined spectrophotometrically using the Greiss reagent at a wavelength

of 540nm and the results expressed as nmol nitrite/105 cells.

Cellular ATP levels

To determine the effects of MnCl2 (100mM) on neutrophil viability, intracellular

ATP concentrations were measured in cell lysates (2X106 cells/ml) following
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exposure of the cells to the metal for 10 min using a luciferin/luciferase

chemiluminescence procedure (Holmsen et al., 1972).

Statistical analysis of data

With respect to organization of data in the “Results” section, these are grouped

according to the assays mentioned in the “Materials and Methods” section.  In the

cases of MPO-mediated iodination and MPO release, only data for neutrophils

are shown because of the absence of this enzyme in macrophages, while in the

case of nitric oxide production only data for activated macrophages are shown.

The results of each series of experiments are presented as the mean values ±

SEM, either as the absolute values or as mean percentages of the corresponding

metal-free control systems, where n = the number of different donors used in

each series of experiments. Levels of statistical significance were determined by

comparing the absolute values for each drug-treated system with the

corresponding values for the relevant drug-free control systems for each assay

using the Wilcoxon matched-pairs signed-ranks test.

Results:

Lucigenin-enhanced chemiluminescence

The effects of MnCl2 on superoxide production by neutrophils activated with

FMLP (1mM) or PMA (25ng/ml) are shown in Figure 1.  MnCl2 at concentrations
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of 0.1-100mM and 1.5-100mM in the case of FMLP - and PMA-activated cells,

respectively, caused significant dose-related inhibition of the lucigenin-enhanced

CL responses.  In the case of macrophages, inhibitory effects on

chemiluminescence were only seen at higher concentrations of MnCl2 and the

results are shown in Figure 2..

The cell-free xanthine/xanthine oxidase superoxide-generating system was used

to assess the superoxide-scavenging potential of MnCl2.  These results are

shown in Figure 3 which demonstrate dose-dependent, statistically significant

inhibition of chemiluminescence in the presence of the metal. (*P<0.05 for

comparison for each concentration in comparison with the MnCl2-free control

system; data from 8 experiments).

Oxygen Consumption

Activation of neutrophils with PMA was accompanied by a marked increase in

oxygen consumption by the cells that was sustained over a 5-10min period and

unaffected by MnCl2 (25μM). The results for the control PMA-stimulated systems

and those treated with 25μM of MnCl2 were 64±4 and 62±6 nmol O2

consumed/min/2 x 106 cells, respectively (n=6).  The corresponding values for

unstimulated cells in the presence and absence of the metal were 21± 2 and

22±2 nmol/min/2x106 cells.  These results clearly demonstrate that Mn2+ does not

activate NADPH oxidase. Likewise oxygen consumption by the xanthine/xanthine
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oxidase system was unaffected by MnCl2, excluding possible inhibitory effects on

the oxidase.  Results for oxygen consumption by the xanthine/xanthine oxidase

control and MnCl2 (25μM)-treated systems were 86±2 and 86±6 nmol O2

consumed/min respectively (data from 3 experiments).

Taken together these results are compatible with superoxide dismutase mimetic

activity of MnCl2 in both the neutrophils and xanthine oxidase system.

Luminol-enhanced chemiluminescence

.The cell-free, glucose/glucose oxidase, H2O2-producing, luminol-enhanced

chemiluminescence system was used to assess the potential of MnCl2 to: i)

initiate hydroxyl radical generation via a Fenton-type reaction; and ii) to scavenge

hydroxyl radical generated via a Fenton-type reaction (the interaction of

vanadium (III) chloride (25μM) with H2O2). Luminol-enhanced

chemiluminescence values for the control, glucose/glucose oxidase containing

systems and those treated with 25μM MnCl2 were neglible, being 11±2 and10 ± 3

mV/sec respectively, demonstrating lack of reactivity of H2O2 with luminol, as well

as H2O2 with MnCl2.  Addition of vanadium III to the H2O2 producing systems,

however, resulted in a significant increase in chemiluminescence with a peak

response of 2142±235 mV/sec (P=0.008 for comparison with the vanadium-free

control system); inclusion of MnCl2 significantly (P=0.008) attenuated the

chemiluminescence signal generated by the vanadium III/H2O2 interaction which

decreased to 175±36 mV/sec (data from 8 experiments).  Importantly, the
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vanadium/H2O2 chemiluminescence signal was also attenuated by the traditional

hydroxyl radical scavenger mannitol (20mM).  Luminol-enhanced CL values for

the control, glucose/glucose oxidase systems and those treated with vanadium

only or vanadium + mannitol were 37±7, 3107±411 and 1074±206 mV/sec

respectively (data from 5 experiments).

Taken together, these results demonstrate that under our experimental

conditions MnCl2 does not interact with H2O2 to generate hydroxyl radical, but

rather appears to function as a scavenger of this potent ROS.

Intracellular H2O2 production

The results shown in Figure 4 are typical traces from one representative

experiment (n=4) which depict the effects of MnCl2 (3-25μM) on the DCF-DA

fluorescence responses of FMLP (1mM) - and PMA (25ng/ml)-activated

neutrophils in the presence of sodium azide. Treatment of the cells with MnCl2

caused a dose-dependent increase in fluorescence intensity compatible with

augmentation of intracellular H2O2 production by both FMLP and PMA-activated

neutrophils.  PMA-activated cells treated with MnCl2 in the presence of ABAH

showed similar trends (results not shown).  As shown in Figure 5, treatment of

macrophages with 25μM MnCl2 also resulted in significant augmentation of

intracellular H2O2 production.
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MPO-mediated protein iodination

The effects of MnCl2 (0.5-100mM) on the activity of the MPO/H2O2/halide system

of FMLP- or PMA-activated neutrophils, are shown in Figure 6.  MnCl2 at

concentrations of 0.5mM and higher, caused significant, dose-related

enhancement of neutrophil MPO-mediated iodination of BSA following activation

of the cells with either FMLP or PMA.  In the case of FMLP-activated cells,

inclusion of MnCl2 at 0.5-100μM resulted in 19-146% enhancement of MPO-

mediated iodination, while with PMA 19%-65% enhancement was noted with

metal concentrations of 0.5-12.5μM, reaching a plateau thereafter.

The stimulatory effects of MnCl2 (25μM) on FMLP-activated MPO-mediated

protein iodination were significantly attenuated by inclusion of DPI (10mM) or

sodium azide (1mM). The results for unstimulated cells, the FMLP-activated

control system, and systems treated with MnCl2 only, MnCl2 + DPI, or MnCl2 +

sodium azide, were: 18±5, 214±39, 465±86, 0.13±0.07* and 141±49* pmol

125I/2x106cells, respectively. (*P<0.05 for comparison with MnCl2 only systems).

The effects of MnCl2 (50μM) on the iodination of BSA by a cell-free MPO +

glucose/glucose oxidase + 125I system were also evaluated.  MnCl2 did not

significantly affect protein iodination by the cell-free MPO/H2O2/125I system.

Values for the systems with and without MnCl2 were 417±29, and 473±42 pmol

125I/2mg BSA respectively, while the corresponding values for the background
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control systems (without glucose oxidase) were 94±9 and 86±5 pmol 125I/2mg

BSA.

MPO release

MPO release from neutrophils activated with FMLP/cytochalasin B (F/CB) or

PMA was not significantly affected by MnCl2. The results for the unstimulated

cells, the F/CB activated control system, and systems treated with 50μM MnCl2

were 146±17, 1243±133 and 1160±111 ng/ml MPO, respectively. The

corresponding results for the PMA-activated control system and those treated

with 50μM MnCl2 were 548±50 and 510±43 ng/ml MPO, respectively (n=6).

Nitric oxide production

The respective values for production of NO by control monocyte-derived

macrophages and those treated with 100μM MnCl2 were 6.2±0.8 and 6.2±0.8

nmols/105 cells respectively.  The corresponding values for LPS-activated control

cells and those treated with 100μM of MnCl2 were 9.6±0.8 and 6.6±0.8 nmols/105

cells (n=5 with 2 replicates for each system in each experiment; no significant

differences were detected with respect to comparison of the control and MnCl2-

treated systems).

Cellular ATP levels
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Exposure of neutrophils to MnCl2 (100mM) for 10 min did not significantly affect

cellular ATP levels, demonstrating lack of cytotoxicity of the metal at the

concentrations and experimental conditions in which these cells were used. The

values for control cells and those exposed to MnCl2 at concentrations of 100mM

were: 211 ± 23 and 204 ± 20 pmols ATP/2x107 cells, respectively (n=4, with 3-6

replicates for each system.)  Similar results were found using a flow cytometric,

propidium iodide dye exclusion procedure, the mean percentages viability for the

control and metal-treated (50μM) systems being 99.4±0.1% and 99.5.±0.1%

respectively.

Discussion

The results of the current study have demonstrated that Mn2+ potentiates the

production of H2O2 by human neutrophils and macrophages.  Somewhat

paradoxically, these pro-oxidative interactions of Mn2+ with human phagocytes

are a consequence of the superoxide dismutase mimetic activity of the metal.

While H2O2 per se may predispose to oxidant-mediated tissue damage, the

toxicity of this ROS is enhanced via its transformation to hypohalous acids by

neutrophils and monocytes (Klebanoff et al., 1993).

The SOD mimetic activity of Mn2+ was documented in an initial series of

experiments in which co-incubation of activated human neutrophils and

monocyte-derived macrophages with the metal resulted in dose-dependent
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inhibition of lucigenin-enhanced chemiluminescence. Relative to neutrophils,

somewhat higher concentrations of Mn2+ were required to cause significant

inhibition of the chemiluminescence responses of activated macrophages,

possibly as a consequence of the absence of MPO in these cells, which was

confirmed in the current study (not shown). MPO is a negative regulator of

superoxide production by activated neutrophils and monocytes (Locksley et al.,

1983, Nauseef et al., 1983). The following lines of evidence confirmed that Mn2+

neutralizes superoxide as opposed to being an inhibitor of its generation by

activated phagocytes: i) similar effects to those observed with activated

neutrophils and macrophages were observed using a cell-free xanthine/xanthine

oxidase superoxide-generating system; ii) the metal did not affect oxygen

utilization by either the phagocyte NADPH oxidase or xanthine oxidase; and iii)

the production of NO, which in excess neutralizes superoxide (Cauwels et al.,

2005), was unaffected by treatment of macrophages with Mn2+. These

neutralizing interactions of Mn2+ with the superoxide anion have been described

in several previous studies (Klebanoff et al., 1993; Mackenzie and Martin, 1998;

Hussain and Ali, 1999).  Although Mn2+ was also found to neutralize hydroxyl

radical in a cell-free system, the relevance of this observation in the

pathophysiological setting is doubtful, as the production of this highly toxic ROS

by phagocytes is stringently controlled by metal-binding proteins.

The effects of Mn2+, at non-cytotoxic concentrations, on intracellular H2O2

concentrations in activated neutrophils and macrophages were investigated using
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DCF-DA, a fluorescent dye which emits light when oxidised by H2O2, and to a

lesser extent with MPO-derived hypochlorous acid (Gomes et al., 2005; Rhee et

al., 2010). When using neutrophils, which contain high concentrations of MPO,

these experiments were performed in the absence and presence of the MPO

inhibitors, sodium azide and ABAH, to control for the complicating effects of

oxidation of DCF by hypochlorous acid. Activation of DCF-DA-loaded neutrophils

by FMLP or PMA resulted in marked increases in fluorescence intensity which

were considerably greater in the presence of Mn2+. Importantly, these effects

were evident in the presence of sodium azide or ABAH, compatible with

increased intracellular concentrations of H2O2. Similar effects were observed with

PMA-activated monocyte-derived macrophages at concentrations of Mn2+

equivalent to those used in the neutrophil experiments, albeit in the absence of

sodium azide/ABAH as these cells do not contain MPO.

These experiments were extended to investigate the effects of Mn2+ on the

generation of hypohalous acids following activation of the neutrophils by FMLP or

PMA. Inclusion of Mn2+ caused significant dose-related enhancement of the

iodination of added protein, which was attenuated by the inclusion of inhibitors of

NADPH oxidase or MPO. The following lines of evidence implicated increased

formation of H2O2 via superoxide dismutase mimetic activity as the mechanism of

Mn2+-mediated increase in iodination of proteins by activated neutrophils: i) these

effects of Mn2+ were not observed in a cell-free system consisting of purified
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human MPO, H2O2 and 125I; ii) there was no detectable increase in the release of

MPO from activated neutrophils in the presence of Mn2+.

With the exception of an earlier study by Klebanoff et al. (1993), the pro-oxidative

interactions of Mn2+ with human phagocytes and their possible involvement in the

pathogenesis of occupation-related neurological and respiratory disorders are

largely under-appreciated. Klebanoff and colleagues (1993) also concluded that

Mn2+, by acting as a superoxide dismutase mimetic, resulted in increased

accumulation of H2O2 by activated phagocytes. However, these investigators

used a scopoletin-based spectrofluorimetric procedure which does not distinguish

between H2O2 and hypochlorous acid, as opposed to the DCF-DA-based method

used in the current study. Notwithstanding efforts to exclude effects of Mn2+ on

the release and activity of MPO, other important distinctions between the two

studies include our findings that Mn2+ does not affect the activity of NADPH

oxidase, and, most importantly, that the metal also interacts pro-oxidatively with

human monocyte-derived macrophages. We do concede, however, that the

effects of Mn2+ with these cells may not be entirely representative of the

interactions of the metal with alveolar macrophages.

Although SOD mimetics can be protective by scavenging superoxide radicals and

attenuating oxidative stress (Vuokko and Crapo, 2003), these agents have the

potential to induce tissue injury at higher concentrations (McCord and Edeas,

2005). A bell-shaped dose-response curve exists for superoxide dismutases with
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the protective effect being lost above a threshold concentration (McCord and

Edeas, 2005). Multiple mechanisms for the increase in tissue injury have been

proposed, including an increase in H2O2 concentrations (Omar et al., 1990).

However, irrespective of the mechanism/s involved, SOD mimetics may

exacerbate tissue damage (Ye et al., 2011; Batinic-Haberle et al., 2011).

Blood levels of Mn2+ have been reported to range from 4-12 μg/L (73-210 nmol/L)

in healthy individuals (Reynolds et al., 1994), reaching up to 17.3 μg/L in

individuals occupationally exposed to high atmospheric levels of the metal (Smith

et al., 2007). Although somewhat lower than the threshold concentration of Mn2+

at which augmentation of intracellular H2O2 concentrations were observed in

activated neutrophils/macrophages (0.5 μM=27.5 ng/ml Mn2+), it is noteworthy

that blood levels of the metal do not reflect those of cells and tissues, which are

considerably higher (Smith et al., 2007; Finkelstein et al., 2008; Pejović-Milić et

al., 2009). Store-operated calcium channels, as well as other mechanisms

operative at the blood-brain barrier are likely to promote cellular uptake of Mn2+

(Crossgrove and Yokel, 2005). Our study is potentially limited by an absence of

data on the long-term effects of Mn2+ deposition within tissues.

In humans, the respiratory tract represents the primary route of access of Mn2+,

predisposing in the occupational setting to the inflammatory airway disorders

bronchitis and pneumonitis, as well as subacute bronchiolitis in experimentally-

exposed rhesus monkeys (Dorman et al., 2005). Inhaled Mn2+ enters the
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bloodstream and accumulates in the central nervous system (Roels et al., 1997;

Dorman et al., 2001) where it interacts with tissue macrophages (microglial cells)

to potentiate lipopolysaccharide/interferon-g- induced TNF-a gene expression

(Chen et al., 2006). Activated glial cells release pro-inflammatory cytokines

(Filipov et al., 2005), mediators and reactive oxidants (Chen et al., 2006), which

may injure adjacent neurons (Minghetti and Levi, 1998) and predispose to

neurodegenerative disorders (Hirsch, 2000).  These pro-inflammatory effects of

the metal appear to result from oxidative activation of the transcription factor NF

kappa B (Barhoumi et al., 2004; Filipov et al., 2005).  These effects are

summarized in Figure 7.

Phagocyte-derived ROS are potent cytotoxic and pro-inflammatory agents that

directly oxidize critical protein sulfhydryls, iron-sulfur centers and heme moieties,

and react with amines to form chloramines (Goud et al., 2008). In addition, H2O2

is a well-recognised activator of intracellular signalling mechanisms, promoting

oxidative activation of transcription factors such as nuclear factor κ-B and Ca2+

influx in various types of immune and inflammatory cells, creating a highly pro-

inflammatory environment (Schimdt et al., 1995; Takada et al., 2003;

Giambelluca and Gende, 2008).

In conclusion, Mn2+, at concentrations which may be relevant in the setting of

occupational exposure to the metal, increases the formation of H2O2 by activated

neutrophils and macrophages. If not counteracted by the superoxide- and
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hydroxyl radical-neutralizing activities of Mn2+, the pro-oxidative interactions of

the metal with phagocytes may contribute to the pathogenesis of Mn2+-mediated

respiratory and neurological disorders.
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Table 1 Strategies used to identify the effects of manganese on the generation of

ROS by activated neutrophils and cell-free enzymatic systems, as well as on the

reactivities of these oxidants.

Assay
                          Application using:

Activated Neutrophils               Cell-free systems

Lucigenin-enhanced
CL*

Primarily detects
superoxide production

To detect superoxide
scavenging activity using the
xanthine/xanthine oxidase
system

Luminol-enhanced CL
                  -

To monitor hydroxyl radical-
scavenging activity using a
glucose/glucose/vanadium(3+)
system

Dichlorofluorescein
diacetate fluorescence

Detects intracellular
hydrogen peroxide

                      -

MPO+-mediated
iodination

Detects hypohalous
acids

To determine effects on MPO,
as well as hypohalous acid
scavenging activity using a
system with added MPO, 125I,
bovine serum albumin, and
glucose/glucose oxidase to
generate hydrogen peroxide

Oxygen Consumption

To measure effects on
activation/activity of
NADPH oxidase

To validate superoxide-
scavenging activity using the
xanthine/xanthine oxidase
system

* CL= chemiluminescence; + MPO=myeloperoxidase
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Legends to Figures

Figure 1

Effects of MnCl2 (0.1-100μM) on the lucigenin-enhanced chemiluminescence

responses of neutrophils activated by FMLP (1μM) and PMA (25ng/ml).  The

results are expressed as the mean peak chemiluminescence values in relative

light units (FMLP systems) and mV/sec (PMA systems) ±SEM (n=5 with 2-5

replicates for each system). The absolute values for the unstimulated and FMLP

activated systems and those for the unstimulated and PMA-activated systems

were 3453±1290, 6272±763 relative light units and 623±94, 4742±284 mV/sec,

respectively. *P<0.05 for comparison with the MnCl2-free control system.

Figure 2

Effects of MnCl2 (50-400μM) on the lucigenin-enhanced chemiluminescence

responses of macrophages activated by PMA (25ng/ml).  The results are

expressed as the mean peak chemiluminescence values in mV/sec ± SEM (n=5).

The absolute values for the unstimulated and PMA-activated systems were

557±177, 2952±842 mV/sec, respectively. *P<0.05 for comparison with the

MnCl2-free control system.
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Figure 3

Effects of MnCl2 (6.25-100μM) on the lucigenin-enhanced chemiluminescence by

the cell-free, xanthine/xanthine oxidase superoxide-generating system. The

results are expressed as the mean peak chemiluminescence values in mV/sec ±

SEM (8 replicates). *P<0.05 for comparison with the MnCl2-free control system.

Figure 4

Traces from a single representative experiment (n=4) showing the effects of

MnCl2 at concentrations of 3-25μM on the dichlorofluorescein diacetate

fluorescence responses of FMLP(1μM)- and PMA (25ng/ml)-activated

neutrophils.  FMLP and PMA were added as indicated (¯) after a stable baseline

was obtained.

Figure 5. PMA-activated dichlorofluorescein fluorescence responses in

macrophages activated with PMA (25ng/ml) in the absence (¾) and presence

(----) of 25μM of MnCl2.  PMA was added as indicated (¯) after a stable baseline

was obtained. These are 3 typical traces from 4 experiments using cells from 4

different donors.
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Figure 6

Effects of MnCl2 (0.5-100μM) on MPO-mediated iodination of protein by

neutrophils activated with FMLP (1μM) or PMA (25ng/ml).  The results are

expressed as the mean values in pmol 125I/2x106cells ± SEM (n=6 with triplicate

values for each system). The absolute values for MPO-mediated iodination for

unstimulated, FMLP- and PMA activated systems were, 14±4, 168±13 and

2354±258 pmol 125I/2x106 cells, respectively. *P<0.05 for comparison with the

MnCl2-free control system.

Figure 7

Neutrophil membrane- associated NADPH oxidase generates superoxide anions

(O2
-) which in the presence of Mn2+, an SOD mimetic, is converted to hydrogen

peroxide (H2O2). H2O2 activates NF-kB and promotes the synthesis of pro-

inflammatory cytokines and is also transformed to HOCl by myeloperoxidase

(MPO) released from primary granules. Both HOCl and pro-inflammatory

cytokines such as IL-1, IL-6, IL-8 and TNF-a contribute to neutrophil-mediated

inflammation and tissue injury.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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