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ABSTRACT 

Lightning is a phenomenon that can cause death or injury to humans and animals, damage to 

infrastructures, and can be a hazard to various sectors like the aviation and forestry industries. 

There is a need for prediction techniques to ensure the protection of people and property. In 

this dissertation, a new lightning threat index (LTI) is proposed for southern Africa. The aim of 

the LTI is to identify the areas where lightning is likely to occur during the day. Before the LTI 

could be developed, it was necessary to identify candidate model predictors capable of 

predicting the occurrence of lightning. In total 25 predictors were selected from literature that 

showed promising results to forecast the occurrence of lightning. The selected predictors are 

different variations from the following six groups of parameters; convective available potential 

energy, lifted index, precipitable water, equivalent potential temperature, relative humidity and 

air temperature. This study identifies the parameter from each of the six groups capable of 

predicting the occurrence of lightning over southern Africa the best during spring and summer 

by means of stepwise logistic regression techniques. The six parameters identified in this 

study for spring are; the most unstable convective available potential energy in the 1 - 6 km 

above ground level range, surface lifted index, mean precipitable water in the 850 to 300 hPa 

layer, minimum relative humidity in the 3-6 km above ground level layer, equivalent potential 

temperature lapse rate between 700 and 500 hPa and mean temperature in the 850 – 700 

hPa layer. During summer, the same parameters were identified, except that the average 

relative humidity in the 3-6 km above ground level layer and equivalent potential temperature 
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lapse rate between 850 and 400 hPa were identified. After the most appropriate parameters, 

capable of predicting the occurrence of lightning, were identified, the development of the new 

LTI could commence. Since the goal was to develop a single index that utilises the different 

model predictors to forecast the binary outcome of lightning occurrence (yes or no), attention 

was given to binary logistic regression techniques. In this study a rare-event binary logistic 

regression technique is used to develop equations for the LTI that utilise NWP model output 

early in the morning to provide a probability forecast of where lightning is expected to occur 

during the day between 07:00 and 21:00 UTC. The new LTI is evaluated over an entire 

independent spring and summer season. Results show that the LTI forecasts have a high 

sensitivity and specificity for both the spring and summer seasons. The LTI is not so reliable 

during the spring season, since it over-forecasts the occurrence of lightning, but during the 

summer season, the LTI forecast is reliable, only slightly over-forecasting the lightning activity. 

The LTI produces sharp forecasts during both the spring and summer seasons. The LTI will 

be a useful tool to operational weather forecasters or sectors interested in lightning forecasts, 

to provide guidance early in the morning on the areas of interest where lightning can be 

expected during the day, and can ultimately contribute to society by aiding with timely warnings 

of lightning or thunderstorms to protect humans, animals and property. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

At any given moment, there are approximately 2000 thunderstorms present around the 

world (Blumenthal et al., 2012). Severe thunderstorms are of paramount concern to the 

weather community as well as the public due to their ability to cause death, injury and damage 

(Lang et al., 2004). Lightning, tornadoes, strong wind, heavy rainfall and hail are some of the 

phenomenon associated with severe thunderstorms (Kohn et al., 2011). Lightning by itself is 

a phenomenon that can cause injury or death to humans and animals (Blumenthal et al., 

2012), damage to infrastructures (Lynn and Yair, 2010), and can be a hazard to various 

sectors like the aviation and forestry industries (Price, 2013). It is estimated that lightning 

strikes the earth about 100 times every second (Ahrens, 2012; Blumenthal et al., 2012; 

Newcott, 1993). This equates to more than 8 million strikes a day.  

Lightning is one of the leading causes of death from natural disasters, causing 

approximately 24,000 deaths annually around the globe as well as approximately 240,000 

injuries (Blumenthal et al., 2012). The annual death rate due to lightning in South Africa is 

estimated to be between 1.5 (urban areas) and 8.8 (rural areas) per million of the population 

(Blumenthal et. al., 2012, Holle, 2008). These statistics are likely to be an underestimation of 

the actual death rate since lightning deaths are often not reported, especially in rural areas 

(Blumenthal et. al., 2012; Trengrove and Jandrell, 2011), and the pathology of damage to the 

human body due to lightning is not so well understood (Gill, 2008). Bhavika (2007) stated that 

the number of deaths in South Africa is about four times higher than the global average. 

Severe damages to infrastructures can occur because of lightning. Just in the USA 

alone, the annual financial losses due to lightning damage are higher than $1 billion (McCaul, 

et al., 2009). In South Africa, insurance claims due to electrical equipment failure or fire caused 

by lightning amounts to more than R 500 million annually (Gill, 2008; Evert and Schulze, 2005). 

The Climate Information section at the South African Weather Service (SAWS) received 2,103 

queries from the insurance sector during the 2010/11 financial year, and most of these queries 

were lightning related. (Gijben, 2012; de Jager, 2011). During 1993 - 1999, about 30% of 

transmission line faults from Eskom, the power utility in South Africa, were due to lightning 
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(Bhavika, 2007; Bologna et. al., 2001). More recently, Peter and Mokhonoana (2010) reported 

that 24% of the transmission line faults from Eskom were due to lightning. 

The reason why lightning is so dangerous is due to the extremely large electrical 

currents and heat generated in the lightning stroke (Price, 2013). Typical currents in a lightning 

stroke are 20 kA and the heat generated by a lightning stroke can reach temperatures of 

30,000°C (Soul et al., 2002). The formation of lightning is related to the dynamical as well as 

microphysical processes found in clouds (Price, 2013), and will be presented in Chapter 2. A 

lightning stroke is the result of the neutralisation of the electrical charge in cloud causing the 

rapid expansion of the channel along which the charge flows. This causes a shock wave that 

produces the sound of thunder, while the flash is produced from the electrical discharge (Soul 

et al., 2002). Due to the hazardous nature of lightning, the need for prediction techniques to 

safeguard people and property is clear (McCaul et al. 2009; Lynn and Yair, 2010).  

Forecasting methods exist to aid with the nowcasting (0-2 hours), very short-range (2-

12 hours) and short-range (12-72 hours) forecasting of thunderstorms (Kohn et al. 2011, 

McCaul et al. 2009, Lynn & Yair, 2010) but remains a challenge. Past studies have utilised 

lightning data from lightning detection networks (LDN), parameters from atmospheric 

soundings and numerical weather prediction (NWP) models to aid with lightning forecasts. 

LDN are capable of detecting lightning strokes in real-time and the data measured by 

these networks could be utilised to aid in the nowcasting of thunderstorms. The data becomes 

available within seconds permitting the continuous monitoring of the most intense parts of 

storms. The nearly instantaneous data availability enables the monitoring of thunderstorms in 

those periods when data from other remote sensing instruments, like radar and satellite, are 

still being processed (Finke & Kreyer, 2002). Many of these LDN networks however are 

designed to detect only cloud-to-ground (CG) lightning (lightning that strikes the earth), and it 

has been shown that inconsistent relationships exist between CG lightning trends and 

thunderstorm nowcasting (Schultz et al, 2011). This means that CG lightning might be useful 

to monitor thunderstorms in real-time but have a much lower capability to aid with the 

nowcasting of thunderstorms with sufficient lead-times (minutes to hours ahead). In the past 

few years Very High Frequency (VHF) total lightning sensors, which detects lightning inside 

the cloud as well CG lightning, has become more readily available (Schultz et al, 2011). These 

sensors have been found to be useful in the nowcasting of CG lightning strikes since lightning 

in the clouds mostly precedes CG lightning on the ground. MacGorman et al. (2011) showed 

that cloud lightning can precede the first CG lightning flash by up to an hour. As a result, LDN 

which measures all lightning (cloud + CG) can be used to forecast the occurrence of CG 

lightning with a lead time of up to an hour since the cloud lightning occurs before the CG 
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lightning. LDN that only measures CG lightning is more useful for the monitoring of 

thunderstorms and lightning verification studies. Both types of LDN are however not designed 

to forecast the threat of lightning for the very short-range and short-range forecasting time 

scales but rather to monitor lightning occurrence. 

Statistical techniques have been used extensively to predict thunderstorms and 

lightning (Shafer and Fuelberg, 2008). These prediction schemes identify the threat of lightning 

by relying on connections between lightning occurrence and parameters of the pre-storm 

environment (Rajeevan et al., 2012; McCaul et al., 2009). These parameters are often derived 

from information of atmospheric soundings (Shafer and Fuelberg, 2008), which are typically 

performed only twice daily and at a limited number of locations. This limits the spatial and 

temporal representations of forecasts made with these accents. (de Coning et al., 2011).  

NWP models nowadays offer an alternative for thunderstorm predictions. They are 

capable of providing accurate forecasts, mimicking atmospheric soundings, with high spatial 

and temporal resolutions (Shafer and Fuelberg, 2008).  Many lightning prediction techniques 

also now rely on NWP models. The advantage of these methods are that lightning can be 

predicted on both the very short-range as well as short-range forecast time scales due to NWP 

models being capable of providing accurate parameters related to lightning formation for 

several hours ahead (McCaul et al., 2009). 

 

1.2 MOTIVATION 

Lightning is a common occurrence in South Africa. The summer rainfall regions, 

particularly the Highveld (region over the interior of South Africa with altitudes exceeding 

~1500 m above sea level) and north-eastern parts of the country, receive most of its 

precipitation through convective storms. Each year, these storms produce large amounts of 

lightning which results in numerous deaths, injuries and damages (Gijben, 2012; Blumenthal 

et al., 2012; Gill, 2008). In order to facilitate early warning of lightning there is a need to develop 

methods that can aid operational weather forecasters in issuing timeous lightning warnings.   

To the author’s knowledge, no product currently exists at SAWS or in South Africa that 

attempts to forecast the potential lightning threat directly. Different types of instability indices 

exist and are used to aid with the prediction of thunderstorms. Although lightning is a by-

product of all thunderstorms and consequently these indices can be used in an indirect manner 

to gain insight into lightning formation, no product exist that attempts to specifically assess the 

risk of lightning over South Africa in short range weather forecasts.  
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The atmospheric variables associated with lightning are well known, and parameters 

available from NWP models are used to aid with assessing the possible lightning risk (Reap, 

1994; Burrows et al., 2005; Bothwell, 2008; Shafer and Fuelberg, 2008; Rajeevan et al., 2012). 

The work done by Frisbie et al. (2009) that motivated this study combined NWP parameters 

into an index, called the Lightning Potential Index (LPI), that provides an outlook map of the 

possible lightning risk. The exact same model parameters and methodology used by Frisbie 

et al. (2009) was applied over South Africa and showed the potential to provide lightning 

forecasts for the country (Gijben, 2013). However, the geographical location and height above 

sea level of South Africa requires the development of a bespoke Lightning Threat Index (LTI). 

In this dissertation, an LTI is proposed for South Africa. The NWP parameters that are able to 

predict the occurrence of lightning over South Africa are identified first and then optimised into 

a new lightning prediction index designed specifically for South Africa.  

 

1.3 AIMS AND OBJECTIVES 

There are three main aims in this study: 

1. Identify the NWP parameters that are best suited to predict lightning over South Africa. 

2. Integrate the selected parameters into an LTI over South Africa for spring and summer.  

3. Evaluate the skill of the LTI over South Africa. 

 

To achieve these aims the following objectives will be applied: 

1. Identify numerous candidate NWP model parameters from the literature that have 

previously been found useful for lightning prediction. 

2. Make use of statistical techniques to identify the model parameters best capable of 

predicting the occurrence of lightning from the list of candidate predictors.  

3. Utilise the selected model parameters to develop a new LTI by means of rare-event 

logistic regression techniques.  

4. Evaluate the predictive capability of the LTI against observations of lightning by means 

of standard forecast verification techniques. 

5. Compare the newly developed LTI against the standard convective precipitation 

forecast from the Unified Model (UM) as well as against the Frisbie et al. (2009) 
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methodology of the LPI developed in the United States of America (USA). This will be 

achieved by means of case studies in order to determine if the new index adds value 

to lightning forecasts over South Africa. 

 

1.4 DISSERTATION OUTLINE 

In Chapter 2, an overview of lightning is presented. This includes a discussion of the 

processes involved in the formation of lightning, a summary of lightning detection systems, 

the distribution of lightning over South Africa and the globe, and lightning prediction 

techniques.  

Chapter 3 deals with the data and methodologies used in this study, and includes a 

discussion of the study area and period, the NWP and lightning data, the methods utilised to 

select the most appropriate model parameters for lightning prediction, how the new LTI was 

developed, and finally the verification techniques considered. 

Chapter 4 covers the development of the new LTI for South Africa. This chapter shows 

the results from the statistical techniques utilised to select the most appropriate model 

parameters for lightning prediction, followed by the results of the development of the LTI. 

In Chapter 5, the LTI is quantitatively evaluated against observations of lightning over 

an entire spring and summer season. A qualitative comparison between the LTI, the UM 

convective precipitation forecast, the Frisbie et al. (2009) LPI developed in the USA and 

observations of lightning is presented by means of six case studies. 

Chapter 6 provides the final summary, conclusions, contribution and recommendations 

of the material covered in this study. 
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CHAPTER 2 

LIGHTNING FORMATION, DETECTION AND PREDICTION 

 

2.1 INTRODUCTION 

In this chapter, the formation of lightning is presented. The discussion begins with an 

overview of the typical electrical structure of a thundercloud, the processes involved in the 

electrification of a thunderstorm (of which the ice-graupel mechanism is thought to be the most 

likely mechanism), and finally an explanation of the lightning discharge which acts to neutralise 

the charge in a thundercloud. 

The discussion on the formation of lightning is followed by a summary of lightning 

detection systems used to detect electromagnetic waves emitted by lightning discharges. 

These systems make it possible to provide information on the distribution of lightning around 

the globe and over South Africa. 

The chapter ends with a discussion on lightning prediction techniques. NWP model 

parameters are discussed as well as their usefulness for lightning prediction. The NWP 

parameters discussed are; Convective Available Potential Energy (CAPE), Lifted Index (LI), 

Precipitable Water (PW), Relative Humidity (RH), Equivalent Potential Temperature (Ɵe), and 

air temperature. The last section provides an overview of the LPI presented by Frisbie et al. 

(2009), which inspired the work in this thesis. 

 

2.2 LIGHTNING FORMATION 

2.2.1 Electrical structure of a thundercloud  

Wilson (1916) was the first to assume a dipole structure in a thundercloud. He 

concluded, by using ground-based observations, that positive charge regions are typically 

found above negative charge regions. This result was confirmed by extensive measurements 

of changes in electrical fields in New Mexico thunderstorms (Krehbiel et al., 1979). From 

observations, we now know that the charge structures in thunderclouds can be more 

complicated than a simple dipole, but most thunderclouds exhibit this feature where a main 
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positive charge region is found at the top of the cloud while a main negative charge region is 

found lower down (Lang et al., 2004). A small region of positive charge is also commonly 

observed near the base of the thundercloud (Krehbiel, 1986). When considering this region of 

lower positive charge, the thundercloud has a tripole structure (Lang et al., 2004). Studies 

have shown that the main positive charge region in a thundercloud is typically found at heights 

where the temperatures are lower than -20°C. The main negative charge region usually occurs 

between the -10°C and -20°C temperature level, and the small region of positive charge is 

found close to the 0°C level (Simpson and Scrase, 1937; Simpson and Robinson, 1941; 

Takahashi, 1978; Lang et al., 2004; Krehbiel, 1986; Koshak and Krider, 1989; Stolzenberg et 

al. 1998a,b). Malan (1963) investigated thunderstorms in South Africa and produced Figure 

2-1 that shows the most likely distribution of charge in a thundercloud. 

 

 

Figure 2-1: Most likely charge structure of a South African thundercloud [Cited from Uman 
(2012), Source: Malan (1963)] 
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2.2.2 Electrification of a thundercloud 

The electrification of a thundercloud involves a process that electrifies individual cloud-

particles as well as a process that separates these cloud-particles according to their polarity 

in different levels of the thundercloud (Rakov and Uman, 2003). Many theories have been 

proposed to explain the charge separation mechanisms of a thundercloud (Takahashi, 1984). 

Saunders (2008) provides a detailed description on possible mechanisms of thundercloud 

electrification that includes, drop break-up, ion charging, the convection mechanism, inductive 

charging, ice particle mechanism and ice-crystal/graupel mechanism. There is a growing 

amount of evidence that the non-inductive collisional graupel-ice mechanism is the main cause 

of electrification in a thundercloud (Rakov and Uman, 2003). This mechanism is called “non-

inductive” since the ambient electric field is not required in the electrification of the cloud-

particles (Saunders, 2008; Rakov and Uman, 2003).  The non-inductive charge-transfer model 

is considered the most likely cause of electrification in a thundercloud, thus only this graupel-

ice mechanism will be discussed. 

In the non-inductive graupel-ice mechanism, electrification of a thundercloud occurs 

because of collisions between precipitation particles (graupel) and cloud particles (ice-

crystals). Precipitation particles are larger particles with fall speeds greater than 0.3 ms-1 while 

cloud particles are smaller particles with lower fall speeds (Rakov and Uman, 2003). When 

graupel and ice-crystals collide, charge is transferred between them without any influence 

from the local electric field (non-inductive) (Saunders, 1993). Laboratory studies have shown 

that the collisions between graupel and ice particles should occur in the presence of 

supercooled water droplets in order for significant charge transfer to occur (Rakov and Uman, 

2003; Reynolds et al., 1957; Takahashi, 1978). Figure 2-2 shows how charge is transferred. 

The larger and heavier graupel particles fall through ice-crystals and supercoolded water 

droplets which are suspended in the cloud. The water droplets remain supercooled until they 

collide with the graupel or ice-crystals from where they freeze onto the surface in a process 

called riming. When the falling graupel particles collide with the suspended ice-crystals, charge 

is transferred between them. The sign and magnitude of charge transfer seems to be 

dependent on; the temperature where these collisions occur, cloud water content, rate of rime 

accretion, and droplet sizes. The temperature at which a reversal of the sign of the charge on 

graupel particles occur is called the reversal temperature. At heights above the reversal 

temperature (colder temperatures), collisions between the graupel and ice-crystals results in 

the graupel particles becoming negatively charged while the ice-crystals becomes positively 

charged. This can be due to the subliming graupel surfaces. When the temperature is below 

the reversal temperature (lower heights), graupel particles become positively charged while 
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the ice-crystals become negatively charged and can be due to the graupel particles growing 

by vapour diffusion. The exact cause of the reversal of charge is still debateable (Rakov and 

Uman, 2003; Saunders, 1993; Mansell et al., 2005). Studies have shown that reversal 

temperature usually occurs between -10°C and -20°C (Rakov and Uman, 2003; Saunders, 

1993; Mansell et al., 2005; Church, 1966; Takahashi, 1978; Gaskell and Illingworth, 1980). In 

Figure 2-2, the reversal temperature is assumed to be at -15°C. Jayratne et al. (1983) showed 

that the sign of charge reversal is dependent on the reversal temperature and that this reversal 

temperature height is dependent on the amount of liquid water content in a cloud. What is 

important to note is that the most commonly observed height of the reversal temperature 

(between -10°C and -20°C) corresponds with the height of the main negatively charged region 

of a thundercloud (Rakov and Uman, 2003; Saunders et al., 2006).  

 

 

Figure 2-2: Cloud electrification by means of charge transfer because of collisions between 
graupel and ice particles in the presence of water droplets. The assumption is made that the 
charge reversal temperature is -15°C and occurs at a height of 6 km. [Source: Rakov and Uman, 
2003].  
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2.2.3 Electrical Discharge 

Lightning is an electrical discharge that occurs between oppositely charged regions in 

the cloud when the accumulation of charge builds up sufficiently (Krehbiel, 1986). The primary 

forms of discharges are CG, intra-cloud (between oppositely charged regions of the same 

cloud), inter-cloud (cloud-to-cloud) and air discharge (cloud-to-air) (Figure 2-3). The three 

types of cloud lightning (intra-cloud, inter-cloud and air discharge) are usually collectively 

referred to as intra-cloud (IC) lightning. CG lightning is electrical discharges that transfers 

charge to the ground (Rakov and Uman, 2003). This is the most familiar type of lightning since 

it strikes the earth and affects humans and infrastructures. CG lightning mostly occurs 

between the main negatively charged region of a cloud and the ground (Krehbiel, 1986). 

Approximately 90% of all CG lightning flashes transfer negative charge from the cloud down 

to the ground, and is called downward negative lightning. The remaining 10% or less, of CG 

lightning flashes, lowers positive charge to the ground and is called downward positive 

lightning. Upward positive and negative lightning also occurs but only from tall structures or 

structures on mountains (Rakov and Uman, 2003).   

 

 

Figure 2-3: The main types of lightning (cloud-to-ground, intra-cloud, cloud-to-cloud, and cloud-
to-air) [Adapted from Jaffer et. al. (2011), Source: Rakov and Uman (2003)] 
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Figure 2-4 shows the typical sequence of events in a downward moving, negatively 

charged CG lightning flash and is best described by Rakov and Uman (2003):  

The sequence starts with the distribution of charges in the cloud according to the main 

positive (P), main negative (N), and lower positive (LP) regions. From here, a process called 

the initial breakdown occurs inside the cloud prior to the occurrence of the stepped-leader. 

There is no agreed upon explanation for the initial breakdown, but it provides conditions 

favourable for the formation of the stepped-leader. After the initial breakdown, the stepped-

leader forms. The stepped-leader is a negatively charged plasma channel extending from the 

cloud to the ground. It descends towards the ground in a series of steps. Each step takes 

about 1µs. The stepped-leader serves to create a conducting path between the cloud and the 

ground, removes negative charge from the cloud, and transfers it downwards along the 

stepped-leader. As the downward moving stepped-leader approaches the ground, the electric 

field on the ground starts to increase. When the electric field on the ground exceeds a certain 

critical value, one or more upward-connecting leaders, called streamers, develop. The 

development of these streamers, because of the descending return-stroke, indicates the start 

of the attachment process. The attachment process ends when the downward moving 

stepped-leader connects with an upward moving streamer. When the two leaders connect, 

the first return stroke is initiated. A fully formed return-stroke occurs which neutralises the 

cloud charge stored in the stepped-leader by transporting the negative charge in the stepped-

leader to the ground. The return stroke rapidly heats up the channel to ±30 000˚C, resulting in 

the channel to expand to ±10 atmospheres, due to the high-current wave. This causes rapid 

expansion, optical radiation and a shockwave, which is the lightning we hear and see. In some 

cases, the lightning flash may end after the first return-stroke, but in most cases, a dart leader 

moves down the same channel from the first return-stroke. After the first return-stroke and 

before the initiation of this dart leader, J and K processes occur. J-processes are the 

redistribution of charges in the cloud after the return-stroke and are a slow moving leader from 

the origin of the flash into the negatively charged region. K-processes last for only a short 

period during the slower J-processes and are a streamer that starts at the tip of the positive 

leader and propagates to the origin of the flash. K-processes are often described as attempted 

dart-leaders. After the J and K processes, a dart leader moves down the channel from the 

preceding return-stroke. As the dart leader gets close to the ground, an attachment process 

similar to that of the first return-stroke takes place. When the dart leader connects to the 

ground, the second return-stroke takes place. 
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Figure 2-4: The processes involved in a typical negative cloud-to-ground lightning flash. P 
indicates the main positive charge region, N the main negative charge region and LP the lower 
positive charge region [Cited from Rakov and Uman (2003), Source: Uman (1987; 2001)] 

 

2.3 LIGHTNING DETECTION 

Lightning can be detected in real-time and over great distances due to lightning flashes 

producing electromagnetic radiation that propagate across the globe (Price, 2008). 

Electromagnetic radiation from lightning is emitted in a wide range of frequencies, from below 

1 Hz up to almost 300 MHz (Rakov and Uman, 2003). Higher frequency waves attenuate much 

quicker than lower frequency waves, and as a result, the lower frequency waves can be 

detected at much greater distances (Price, 2008). Lightning discharges predominantly emits 

electromagnetic waves in the low frequency (LF)/very low frequency (VLF) (3 – 300 kHz) up 

to VHF (3 – 300 MHz) frequency ranges (Betz et al., 2008). CG lightning produces a small 

amount of large amplitude electromagnetic pulses in the VLF range, while IC lightning mostly 

produces a couple of small amplitude pulses in the VLF range (Figure 2-5). CG and IC lightning 
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produces many pulses in the VHF range and both with similar amplitude (Cummins et al. 

2000).  

 

 

Figure 2-5: Electromagnetic pulse signatures from lightning flashes in the different frequency 
ranges [Cited from Vaisala (2004), Source: Malan (1963)] 

 

Most lightning locating systems that detect electromagnetic radiation make use of the 

time of arrival (TOA) and magnetic direction finding (MDF) methods (Rakov and Uman, 2003). 

For a detailed discussion of these techniques, the reader is referred to Gill (2008) and Vaisala 

(2004). Some sensors make use of a combination of TOA and MDF techniques to detect 

lightning, which provides more accuracy (Price, 2008) 

Most regional LDN’s utilise ground-based lightning sensors, which detect 

electromagnetic pulses in the VLF/LF range, since they can detect lightning over greater 

distances. These networks however detect mostly CG lightning and only a small fraction of IC 

lightning (Price, 2008). Some examples of regional LDN’s include the National Lightning 

Detection Network in the USA (Orville et al., 2011) and the Southern African Lightning 

Detection Network (SALDN) in South Africa (Gijben, 2012). Regions typically operate 

networks of sensors spaced relatively close to each other (e.g. the SALDN consists of 24 

sensors over South Africa). A number of global LDN’s also exist. Examples include, the World 

Wide Lightning Location Network (Virts et al., 2013) and the Global Lightning Dataset 
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(GLD360) (Mallick, 2014). These sensors operate in the VLF frequency and consist of sensors 

separated by large distances. The sensors mostly detect CG lightning, with large amplitude 

pulses and with lower detection efficiencies due to the increased distances between sensors 

(Rudlosky, 2014).  

Lightning sensors, which detects pulses in the VHF spectrum, can detect both CG and 

IC lightning with great accuracy but at small spatial scales (Price, 2008). Total lightning 

sensors, which detect CG and IC lightning, often make use of VHF waves. Examples include 

the Vaisala total lightning sensor, which also utilises VHF pulses to detect IC lightning (Murphy 

et al., 2013) and Lightning Mapping Arrays (LMA) such as the north Alabama Mapping Array 

(Koshak et al., 2004). These LMA’s consists of sensors grouped closely together (tens of 

kilometres) and can detect lightning in both two and three dimensions (Price, 2008). 

Lightning can also be detected from space by means of earth-orbiting satellites which 

either detects the light or electromagnetic waves from lightning discharges (Rakov and Uman, 

2003). The most famous lightning detectors on satellites include the National Aeronautics and 

Space Administration (NASA) Optical Transient Detector (OTD) and the Lightning Imaging 

Sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite (Christian et 

al., 2003).  

 

2.4 DISTRIBUTION OF LIGHTNING 

2.4.1 Globally 

Lightning occurrence varies across the globe. It is influenced by the atmospheric 

circulation patterns as well as the geographical locations of the continents and oceans (Price, 

2013; Price, 2006). Solar heating and water vapour is particularly useful to explain the 

distribution of lightning across the globe, since water vapour concentrations can increase with 

an increase in temperature, and water vapour plays an important role in the development of 

thunderstorms (Price, 2013). Approximately 78% of the global lightning occurs in the tropical 

regions between latitudes 30S and 30N (Christian et al., 2003) where the temperatures and 

water vapour concentrations are higher compared to extra-tropical and polar regions. Christian 

et al. (2003) also showed that the vast majority of lightning occurs over the continents.   

Figure 2-6 shows a map of the average annual lightning flash densities (flashes km-2 

yr-1) across the globe and is produced by observations from the NASA OTD and TRMM LIS 

instruments (Information Technology and Systems Centre, University of Alabama, 2015). The 

instruments on board these satellites measure all types of lightning (CG + IC) (Thompson et 
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al., 2014). The area that stands out the most is the Congo in central Africa, where flash 

densities exceed 70 flashes km-2 yr-1 in certain areas. Christian et al. (2003) stated that in his 

analysis of the LIS observations, flash densities over the Congo basin exceed 30 flashes km-

2 yr-1 over an area larger than 3 million km2 and that approximately 90% of lightning occurs 

over the continental regions while about 10% occurs over the oceans. The largest flash 

densities are seen in the tropics. The central interior of South Africa record flash densities 

between 20 and 30 flashes km-2 yr-1 and is comparable with the lightning hotspot areas of 

North and South America, Asia and Northern Australia, but is much lower than over Equatorial 

Africa.      

 

 

Figure 2-6: Global average annual lightning flash density on a 0.5° x 0.5° resolution from the 
combined observations of the NASA OTD and TRMM LIS instruments [Source: Information 
Technology and Systems Centre, University of Alabama, 2015]  

 

2.4.2 South Africa 

Lightning occurrence in South Africa is measured by the SALDN operated by the 

SAWS. This network detects only CG lightning, but is able to pinpoint the locations of lightning 

that strikes the earth with great accuracy. A detailed description of this network is provided in 

Chapter 3. Gill (2008) developed an initial lightning climatology of South Africa with the 2006 

lightning data from the SALDN. This was updated using data for 5-years (2006-2010) by 

Gijben (2012). The lightning climatology has consequently been updated annually. Over South 

Africa, the highest flash densities occur along the eastern escarpment of the country with 

values exceeding 15 flashes km-2 yr-1 over most areas and values higher than 20 flashes km-
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2 yr-1 in a few isolated areas. A large section of the Highveld region sees flash densities 

exceeding 10 flashes km-2 yr-1, while most of the central interior of the country experience 

more than 5 flashes km-2 yr-1. Flash densities decrease towards the west, the northern and 

north-eastern parts, as well as to the east and south coasts of the country. 

 

 

Figure 2-7: The average annual lightning ground flash densities (flashes km-2 yr-1) for the 9-year 
period from 2006 to 2014 over South Africa [Source: South African Weather Service] 

 

South Africa consists mainly of two rainfall seasons, the summer and winter rainfall 

seasons (Taljaard, 1996). Most of the central to northern interior of the country falls within the 

summer rainfall region and receive most of its rainfall from convective thunderstorms (de 

Coning and Poolman, 2011; Kruger, 2007; Landman et al., 2012; Tyson, 1986; Dyson et al., 

2015). During the months October to December (early summer), the weather systems are 

extra-tropical in nature while during January to March (late summer) the circulation is tropical 

in nature (Dyson et al., 2015). During late summer, tropical rain showers are more common 

than heat generated storms. For the winter rainfall regions of the south-western and coastal 

parts of the country, most rainfall is stratitform in nature and results from ridging high-pressure 

systems and cold fronts (de Coning and Poolman, 2011). Over South Africa, most lightning 

occurs during the spring/summer months of September to November (SON) and December 
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to February (DJF) (Figure 2-8a&b). Lower and very low amounts of lightning are detected 

during the autumn/winter months between March to May and June to August (Figure 2-8c&d).  

This is due to the convective nature of storms for the summer rainfall regions and the stratiform 

nature of rainfall over the winter rainfall region. 

 

 

Figure 2-8: The average annual lightning ground flash densities for (a) Spring (September, 
October, November), (b) Summer (December, January, February), (c) Autumn (March, April, May) 
and (d) Winter (June, July, August) over South Africa from 2006-2014 [Source: South African 
Weather Service]. 

 

2.5 PREDICTION OF LIGHTNING 

Forecasting thunderstorms remains a challenge due to their small spatial and temporal 

scales as well as variability in the processes governing thunderstorm development (Rajeevan 

et al., 2012). Thunderstorms require three key ingredients: instability, moisture and a trigger 

mechanism. Many thermodynamic and kinematic techniques have been developed to predict 

these ingredients (Kunz, 2007). To predict lightning in a thunderstorm remains an even bigger 
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challenge since the processes that govern the electrification of a thundercloud are still poorly 

understood (Shafer and Fuelberg, 2008). Many techniques have been developed to forecast 

lightning, ranging from the nowcasting up to short-range forecasting scales. 

 

2.5.1 Remote Sensing Instruments 

To address the nowcasting of lightning, techniques have been developed to forecast 

lightning initiation by means of weather radar (e.g. Woodard et al., 2012), and sophisticated 

LDN’s (e.g. Kohn et al., 2011). Statistical techniques have been used extensively to predict 

thunderstorms and lightning, with multiple linear regression and binary logistic regression 

techniques being the most common (Shafer and Fuelberg, 2008). These prediction schemes 

forecast the threat of lightning by relying on connections between lightning occurrence and 

parameters of the pre-storm environment (Rajeevan et al., 2012; McCaul et al., 2009). Many 

examples of such lightning prediction schemes exist (Livingston et al., 1996; Mazany et al., 

2002; Benson, 2005; Lambert et al., 2005; Shafer and Fuelberg, 2006). Parameters are often 

derived from atmospheric soundings to predict lightning (Shafer and Fuelberg, 2008), however 

soundings are typically only performed twice daily and at a limited amount of locations (de 

Coning et al., 2011). As a result, morning soundings are typically used to predict 

thunderstorms or lightning later in the day, which may result in inaccurate forecasts due to 

changes in atmospheric conditions later in the day or the site-specific sounding not being able 

to represent a large forecast domain (Shafer and Fuelberg, 2008).  

 

2.5.2 Numerical Weather Prediction Models 

NWP models offer an opportunity for lightning prediction since they are capable of 

providing sounding forecasts with high spatial and temporal resolution (Shafer and Fuelberg, 

2008). Many institutions that predict lightning are moving away from empirical lightning 

prediction methods to NWP model based techniques (Goodman, 2012). The advantage of 

these methods are that lightning can be predicted on both the very short-range as well as 

short-range forecast scales due to NWP models being capable of providing accurate 

parameters related to lightning formation for several hours ahead (McCaul et al., 2009). 

Statistical prediction schemes that forecast the threat of lightning by relying on connections 

between lightning occurrence and parameters of the pre-storm environment has also been 

developed by making use of NWP data (Reap, 1994 ; Burrows et al., 2005 ; Bothwell, 2008 ; 

Shafer and Fuelberg, 2008 ; Rajeevan et al., 2012) 
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Many of the statistical lightning prediction techniques make use of thermodynamic 

parameters to forecast lightning (Lynn et.al., 2012 ; Lynn and Yair, 2010) and typically perform 

quite well in identifying the lightning risk but they have a much lower capability to forecast the 

amount of lightning (Soul et al., 2002 ; McCaul et al., 2009). NWP models are now capable of 

forecasting various microphysical parameters related to charge separation in thunderstorms, 

like the mixing ratio of hydrometeors, which is correlated with lightning flash rates (McCaul et 

al., 2009). As a result, lightning prediction techniques are starting to focus on utilising the NWP 

microphysical parameters to improve the skill of current lightning forecasting techniques as 

well as to predict the amount of lightning that will occur. The capability of NWP models to 

resolve microphysical parameters is a new development and many older NWP models 

operated by some institutions currently do not have these capabilities. Due to the limitation 

where microphysical parameters are not available in some older NWP models, attempts to 

forecast the amount of lightning should not be considered with the available thermodynamic 

parameters from NWP models, however useful guidance forecasts about the location of where 

lightning may occur can be successfully developed (Shafer and Fuelberg, 2005). 

 

2.5.3 Parameters useful for lightning prediction  

A large number of parameters have been found to be useful predictors to forecast the 

occurrence of lightning. Numerous studies utilised CAPE, LI, Ɵe, PW, RH, and air temperature, 

in one form or the other, as predictors to forecast lightning (Livingston et al. 1996; Burrows et 

al., 2005; Lambert et al., 2005; Shafer and Fuelberg, 2006; Shafer and Fuelberg, 2008; Frisbie 

et al., 2009; Rajeevan et al., 2012; Zepka, 2014). A description of these parameters follows 

below: 

 

2.5.3.1 Convective Available Potential Energy 

CAPE is the total amount of energy available to an air parcel when lifted from the level 

of free convection (LFC) to the level of neutral buoyancy (LNB), and is calculated by a vertical 

integration of the parcel and environment virtual temperatures between these levels (Doswell 

and Rasmussen, 1994; Blanchard, 1998; Qie et al., 2003). CAPE can be expressed by 

Equation 2-1: 
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𝐶𝐴𝑃𝐸 = 𝑔 ∫ (
𝑇𝑣𝑝−𝑇𝑣𝑒

𝑇𝑣𝑒

) 𝑑𝑧
𝐿𝑁𝐵

𝐿𝐹𝐶
     (2-1) 

 

Where:  𝑇𝑣𝑝
 - Virtual temperature of the parcel 

  𝑇𝑣𝑒
 - Virtual temperature of the environment 

  LFC - Level of free convection 

  LNB - Level of neutral buoyancy 

  g - Acceleration due to gravity 

 

The virtual temperature is defined as the temperature that dry air must have in order 

to have the same density as moist air at the same pressure (Stull, 2012). Many computations 

of CAPE makes use of normal temperatures, but Doswell and Rasmussen (1994) showed the 

importance of using virtual temperatures in the calculations of CAPE in order to reduce errors, 

especially for lower values of CAPE. The LFC is the level at which the temperature of a rising 

parcel starts to exceed the temperature of the environment and becomes unstable, while the 

LNB is defined as the level where the temperature of the environment again starts to exceed 

the temperature of the parcel and becomes stable (Blanchard, 1998). 

CAPE is an important parameter used to predict thunderstorm development (Jayaratne 

and Kuleshov, 2006; Qie et al., 2003), and is a measure of the conditional instability in the 

atmosphere (Dyson et al., 2015). Conditional instability is defined as when the temperature 

lapse rate of a column of air is lower than the dry-adiabatic lapse rate but higher than the 

moist-adiabatic lapse rate (Peppler, 1988). Table 2-1 shows meaningful values of CAPE used 

in the United States.  

 

Table 2-1: Possible thresholds for CAPE [Adapted from Haby, Severe Weather Indices Page2015]  

Convective Available Potential Energy 

1 – 1500 Marginal Instability 

1500 – 2500 Large Instability 

≥ 2500 Extreme Instability 
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CAPE can however be computed in a variety of ways. Usually CAPE is calculated by 

lifting an air parcel from the surface however, this surface-based CAPE can be zero while a 

parcel lifted from higher up in the atmosphere may produce positive values of CAPE (Tuduri 

and Ramus, 1997). As a result, the most unstable CAPE (muCAPE) and mean layer CAPE 

(mlCAPE) are often used. The muCAPE is calculated by lifting the most unstable air parcel, 

within a defined section of the atmosphere, from the level with the highest Ɵe (Blanchard et 

al., 2002; Benson, 2005). The mlCAPE is computed by lifting a parcel with average properties 

of the Ɵe and mixing ratio within a section of the atmosphere (Benson, 2005; Bunkers et al., 

2002; Rasmussen and Blanchard, 1998; Doswell and Rasmussen, 1994). The muCAPE 

provides a better representation for elevated convection when the surface layer is stable, but 

instability exists above the surface layer. This makes muCAPE useful during the evening when 

the surface layer cools down and becomes stable, while the layer above remains unstable. 

On the other hand, the surface CAPE provides the best estimate for surface-based convection, 

but is often similar to the muCAPE during the afternoon and early evening (Bunkers et al., 

2002).  

One of the variables that may be used to describe lightning occurrence is CAPE. 

(Burrows et al., 2005). The size and shape of CAPE in the vertical is strongly related to the 

updraft velocities in thunderstorms (Murugavel et al., 2014). The velocities of updrafts above 

the LFC are a function of CAPE, when CAPE is perfectly converted into vertical kinetic energy 

(Bluestein et al., 1988; Lucas et al., 1994). Updrafts play an important role in the distribution 

of hydrometeors, which in turn plays and important role in the electrification of a thundercloud 

(Singh and O’Gormon, 2015). Sufficient values of CAPE is necessary in the 0°C to -20°C level 

in order to ensure that the updraft provides sufficient hydrometeors for charge separation 

(Bright et al., 2005). As was discussed in section 2.2.1, the main positive charge region in a 

thundercloud occurs at heights where the temperature is lower than -20°C, the main negative 

charge region is found between the -10°C and -20°C temperature level and the small region 

of positive charge is found near the 0°C level. In section 2.2.2, it was also discussed that the 

charge reversal zone is found in the -10°C and -20°C temperature range. From Figure 2-1, , 

it can be deduced that sufficient values of CAPE is thus required in about the 3-6 km above 

ground level range (0°C to -20°C) to supply hydrometeors for charge separation. Sufficient 

values of CAPE above 6 km may also be important since updrafts need to transport the 

positively charged ice crystals to the higher parts of a cloud.  

It has been shown in numerous studies that CAPE is useful for lightning prediction. In 

a study done by Solomon and Baker (1994), they showed that CAPE, calculated by lifting a 

parcel from cloud-base to cloud-top, is useful to predict lightning. They also showed that CAPE 

is a good predictor for the electrification of thunderstorms, but was not useful for forecasting 
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the amount of lightning. Livingston et al. (1996) found that mlCAPE in the lowest 2 km above 

ground level (AGL) performed well in their method to forecast active and inactive lightning 

days. Burrows et al. (2005), in the development of a warm season lightning prediction method, 

found that muCAPE in the lowest 200 hPa, was not a top-ranked predictor, but rather a middle-

ranked predictor for forecasting lightning, and concluded that CAPE must be used in 

conjunction with other predictors such as PW. Shafer and Fuelberg (2005; 2006) utilised 

surface CAPE as well as a modified CAPE in the development of a statistical procedure to 

forecast lightning. In another lightning forecast scheme by Shafer and Fuelberg (2008), 

various different variations of CAPE was considered. They utilised the top three performing 

CAPE’s, muCAPE from cloud base to -20°C, muCAPE between -10°C and -25°C, and 

muCAPE between -15°C and -20°C in the development of their scheme. Frisbie et al. (2009) 

utilised muCAPE in the 0 to 3 km AGL range as input to his model, while Frisbie et al. (2013) 

made use of muCAPE in the 1 to 6 km AGL level.  In a study by Zepka et al. (2014), it was 

showed that surface-based CAPE is useful for lightning prediction.   

In this dissertation, four different variations of CAPE were considered. The first CAPE to be 

considered was the surface CAPE since it was previously used in lightning studies (Shafer 

and Fuelberg, 2005; Zepka et al., 2014) and is calculated when a parcel is lifted from the 

surface. The remaining three CAPE parameters considered were the muCAPE between 

different sections of the atmosphere. Firstly, the muCAPE when a parcel is lifted between the 

surface and the lowest 300 hPa was calculated, secondly the muCAPE when a parcel is lifted 

between the 1-6 km AGL range and lastly the muCAPE when a parcel is lifted between the 

surface and 3 km AGL was considered.  

 

2.5.3.2 Lifted Index 

The LI is calculated by taking the temperature an air parcel will have when the parcel 

is lifted adiabatically from the surface layer of the atmosphere up to the 500 mb level, and then 

subtracting this temperature value from the temperature of the environment at 500 mb 

(Peppler, 1988; Galway, 1956). The LI can be expressed by Equation 2-2 (Peppler, 1988): 

 

𝐿𝐼 = 𝑇500 − 𝑇𝑝500
     (2-2) 

 

Where:  𝑇500 - Temperature of the environment at 500mb 
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  𝑇𝑝500
 - Temperature of parcel at 500mb 

 

Many variations of the thickness of the surface layer from where an air parcel is lifted 

have been proposed. The original LI developed by Galway (1956) considered the mid-level of 

the lowest 3000 feet of the atmosphere as the starting point for an air parcel to be lifted 

(Peppler, 1988). In some cases, the surface layer has been selected as the lowest 100 hPa 

(Tuduri and Ramus, 1997; Solomon and Baker, 1994; Goodman, 1990; Kunz, 2007), while 

the lowest 50 hPa has also been considered. Other variations for the calculation of the LI exist. 

One type of variation is calculated by lifting the air parcel from the surface to the 500 hPa level, 

and is often called the surface LI (SLI) (Shafer et al., 2005; Fuelberg and Biggar, 1994; Kunz, 

2007; Barlow, 1993). Another method uses the most unstable LI obtained when air parcels 

are lifted at levels between the surface and the 700 hPa level, and is called the best LI (BLI) 

(Shafer and Fuelberg, 2008; Stano et al., 2010; Frisbie et al., 2013).  

The LI measures the latent instability in the atmosphere. Latent instability is a measure 

of the stability of the section of a conditionally unstable column of air above the LFC, and is 

used to assess whether an air parcel is negative or positively buoyant (Peppler, 1988). Table 

2-2 shows typical threshold values for the LI used in the USA. 

 

Table 2-2: Possible thresholds for LI [Adapted from Haby, Severe Weather Indices Page, 2015]  

Lifted Index 

-1 to -4 Marginal Instability 

-4 to -7 Large Instability 

Less than -8 Extreme Instability 

 

The LI is a frequently used instability index to forecast lightning (Harats et al., 2010). 

As with CAPE, the LI measures the buoyancy of an air parcel in the atmosphere, and as such 

the potential for strong updrafts, which supplies hydrometeors to a thundercloud (Virts and 

Houze, 2015). As was stated in section 2.5.2.1, updrafts play an important role in the 

distribution of hydrometeors, which in turn plays and important role in the electrification of a 

thundercloud (Singh and O’Gormon, 2015). The LI provides the difference between the actual 

temperature of the environment at 500 hPa and the temperature a parcel will have when it 

was lifted adiabatically to the 500 hPa level (Haklander and Van Delden, 2003), and the 500 
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hPa level corresponds with the charge separation zone in a thundercloud. As such, it can be 

deduced that the LI can be a useful measure of the potential updraft that feeds the charging 

zone with a sufficient supply of hydrometeors for electrification. 

Many studies have utilised the LI to forecast lightning. Livingston et al. (1996) found 

that the LI is useful to forecast inactive lightning days. Shafer (2004) used a modified LI, which 

is similar to the standard LI, except that the maximum surface temperature is considered, in 

the development of statistical guidance to forecast warm season lightning over South Florida. 

Folsom (2004) developed a lightning forecast tool for the North Central and North Eastern 

USA and found that the LI was one of the two top predictors of lightning in many of the 

locations he investigated. Burrows et al. (2005) made use of the LI in their scheme to forecast 

warm season lightning over Canada and the Northern USA. Shafer and Fuelberg (2005; 2006) 

found that the LI is an important predictor of warm season lightning over South Florida. 

Another study by Shafer and Fuelberg (2008) considered the BLI in their final list of predictors 

to forecast lightning over South Florida. Keller (2006) utilised the LI in his lightning forecast 

scheme. The LI was used by Stano et al. (2010) to forecast lightning cessation at the Cape 

Canaveral Air Force Station and Kennedy Space Centre. Farukh et al. (2011) used the LI to 

assess lightning conditions in Alaska. Frisbie et al. (2013) utilised the BLI in his lightning 

forecasting scheme. Santos et al. (2013) found that CG lightning is related to five forcing 

factors, with the LI being one of them. Zepka et al. (2014) considered the LI as one of the 

parameters in her scheme to forecast lightning over south-eastern Brazil.  

In this dissertation both the SLI and BLI were considered as possible predictors of 

lightning. The SLI was calculated by lifting an air parcel adiabatically from the surface to the 

500 hPa level and subtracting this temperature from the temperature of the environment. The 

BLI was calculated by obtaining the most unstable LI when an air parcel was lifted 

adiabatically, between the surface and 700 hPa level in increments of 50 hPa, up to the 500 

hPa level, from where the parcels temperature was extracted from the temperature of the 

environment. 

 

2.5.3.3 Equivalent Potential Temperature 

The Ɵe is the potential temperature that an air parcel will have when lifted to the lifting 

condensation level dry adiabatically, then wet adiabatically to a height where all of the water 

vapour has condensed out of the parcel, and finally back to the surface dry adiabatically 

(Houze, 1993; Bolton, 1980). A good approximation for Ɵe for a saturated parcel is described 

by Holton (2013) with Equation 2-3:  
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𝜃𝑒 = 𝜃𝑒𝑥𝑝 (
𝐿𝑐𝑞𝑠

𝑐𝑝𝑇
)     (2-3) 

 

Where:  𝜃 - Potential Temperature 

  𝐿𝑐 - Latent heat of condensation  

  𝑞𝑠 - Saturation Mixing Ratio 

  𝑐𝑝 - Specific Heat of dry air at constant pressure 

  𝑇 - Temperature 

 

The Ɵe measures the potential (or convective) instability of a layer in the atmosphere. 

When Ɵe decreases with height (
dθe

dz
< 0), an unsaturated layer in the atmosphere is said to 

be potentially unstable (Kunz, 2007; Emanuel, 1994; Schultz et al., 2000; Madhulatha et al., 

2013). The Ɵe lapse rate (ƟeΓ) is useful to assess instabilities necessary for thunderstorms 

development (Madhulatha et al., 2013). Ɵe is also useful to assess changes in air masses 

(Dyson et al., 2015; Houston and Wilhelmson, 2012; Cummings, 2013; Huntrieser et al., 

2007). Kuo (1966) showed that ƟeΓ is related to vertical velocities, while Smith et al. (2000) 

also states that surface Ɵe can be used to estimate updraft velocities. As such, Ɵe can be 

useful to describe the potential updrafts in thunderstorms, which supplies hydrometeors for 

charge separation in a thunderstorm. Cohen et al. (2007), however states that ƟeΓ and CAPE 

represents similar processes in the atmosphere. Dyson et al. (2015) also showed that CAPE 

and ƟeΓ were closely related. As such, it would seem reasonable to suggest that both CAPE 

and ƟeΓ should not be considered together when forecasting lightning. However, ƟeΓ can 

provide information of elevated convection that can be missed by CAPE (Frisbie et al., 2009). 

Some studies have utilised Ɵe to predict lightning. Livingston et al. (1996) considered 

surface Ɵe in the development of his forecasting scheme and found a reasonable correlation 

between Ɵe and lightning. However, he did not consider Ɵe in his final prediction scheme since 

other parameters proved more useful. Rajeevan et al. (2012) considered mean Ɵe advection 

between 925 and 900 hPa for the development of lightning forecasting scheme. Frisbie et al. 

(2009) considered the ƟeΓ at 600 mb, Frisbie (2009) the ƟeΓ between 1 and 6 km AGL, and 

Frisbie et al. (2013) ƟeΓ between 2 and 5 km AGL as well as at the -10°C level, for the LPI. 

Zepka et al. (2014) did consider the surface Ɵe in the development of a lightning forecasting 

methodology, but found that the CAPE and Ɵe provided similar results when compared.  
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Seven different variation of the Ɵe was considered in this dissertation. The first to be 

considered was the surface Ɵe. The remaining six considered was ƟeΓ between different 

levels. The lapse rates were calculated at 600 hPa, between 850 and 400 hPa, between 850 

and 500 hPa, between 1 and 6 km AGL, between the -10˚C and -20˚C levels, and lastly 

between the 700 and 500 hPa levels. 

 

2.5.3.4 Precipitable Water 

PW is a parameter that gives an indication of the amount of water vapour available in 

the atmosphere, and is the mass of water vapour in a column of unit cross-sectional area 

between two layers in the atmosphere (Dupilka and Reuter, 2006). The PW can be calculated 

by Equation 2-4 from Tuduri and Ramus (1997): 

 

𝑃𝑊 =
1

𝑔
∫ 𝑞 𝑑𝑝

𝑝0

𝑝
     (2-4) 

 

Where:  g - Acceleration due to gravity 

  q - Specific humidity 

  p - Starting pressure level 

  po - Stopping pressure level 

 

One of the requirements for lightning formation (or thunderstorm formation) is moisture 

(Burrows et al., 2005). PW can be utilised to estimate the amount of moisture available in the 

atmosphere (Duplika and Reuter, 2006). Colson (1960) found that lightning flash rates were 

generally greater on days with large PW values. Thunderstorms will also produce large 

amounts of lightning when CAPE and PW values are high (Haby, Skew-T: A Look at PW, 

2015). This can be due to large updrafts transporting more water vapour to heights where 

charge separation occurs in thunderclouds (Rose, 2008).  

Mazany et al. (2002) found that PW derived from Global Positioning Systems (GPS) 

measurements proved useful to get an idea of where lightning will occur. Burrows et al. (2005) 

found that PW ranked third overall to predict warm-season lightning over Canada and the 
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Northern USA. Lambert et al. (2005) considered PW in his lightning scheme, but did not 

include PW in his final calculations since it was not one of the top five predictors. Shafer & 

Fuelberg (2005; 2006) considered PW as a possible predictor but did not include it in their 

final scheme. Another study by Shafer and Fuelberg (2008) utilised the PW to forecast warm-

season lightning over Florida. Kehrer et al. (2008) found that GPS PW showed favourable 

results to forecast lightning. Frisbie et al. (2009) considered PW in the development of his LPI. 

Stano et al. (2010) considered PW to forecast lightning but did not utilise it in his final 

prediction. PW was one of the 12 short listed parameters in the lightning forecast scheme of 

Rajeevan et al. (2012). In this study, PW was calculated between the surface and 100 hPa, 

between 700 and 400 hPa, and between 850 and 300 hPa. 

 

2.5.3.5 Relative Humidity 

The RH is described as the ratio between the vapour pressure and the saturation 

vapour pressure of water that gives an indication of how close to saturation the air is. RH 

values of 100% indicate that the atmosphere is saturated (Houze, 1993). The RH can be 

expressed by Equation 2-5 (Houze, 1993): 

 

𝑅𝐻 =
𝑒

𝑒𝑠
     (2-5) 

 

Where:  𝑒 - Vapour Pressure 

  𝑒𝑠 - Saturation vapour pressure 

 

One of the requirements for lightning formation (or thunderstorm formation) is moisture 

(Burrows et al., 2005). RH provides information on how saturated the air is. It has been shown 

that RH can have an influence on lightning formation. Xiong et al. (2006) found that lightning 

corresponds well with RH in longitudinal belts where RH values are greater than 74% and 

negatively with RH in longitudinal belts where the RH is less than 72%. They also found a 

similar result for latitudinal belts. This means that higher RH values in dry regions causes more 

lightning activity, while high RH values in wet regions lowers the levels of lightning activity 

(Xiong et al., 2006). This same study also showed that when the RH is too high (greater than 

72%) in wet regions, lightning can be supressed. Berdeklis and List (2001) performed an 
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experiment with a new Triple Interaction Facility that allows for the analysis of cloud particles 

in a simulated cloud. In their experiments, they found that there is a good correlation between 

charge transfer and RH. This is most pronounced in the -12 to -18 degrees Celsius level where 

charge transfers occurs when ice and graupel particles in the presence of supercooled water 

collides. They stated that increases in RH values results in greater negative charges while 

lower values of RH is related closer to smaller negative charges and higher positive charges.  

Livingston et al. (1996) considered RH in his final scheme to forecast inactive lightning 

days. Lambert et al. (2005), Shafer and Fuelberg (2006; 2008) and Stano et al. (2010) 

considered RH in their schemes to forecast lightning, but did not include RH in their final 

product since RH was not one of the top predictors. Frisbie et al. (2009) considered RH at -

10°C in their LPI, while Frisbie et al. (2013) considered the mean RH, maximum RH and 

minimum RH in the 3-6 km AGL level. Rajeevan et al. (2012) found that the RH was one of 

the 12 top ranked predictors in his scheme to forecast lightning. 

Five different RH parameters were considered in this study, which includes the RH at 

the -10˚C level, the mean RH between the -12˚C and -18˚C levels, and the minimum, 

maximum and average RH between the 3-6 km AGL range.  

 

2.5.3.6 Air temperature  

The atmosphere can be seen as a heat engine, where the sun heats up the earth’s 

surface, which in turn causes our weather systems that transfers heat and moisture to other 

parts of the globe (Laliberté et al., 2015). Surface heating from the sun is responsible for the 

convective processes that result in atmospheric instabilities (Bharatdwaj, 2006). This means 

that air temperature plays a big role in the development of thunderstorms. Price (2013) lists 

many studies (e.g. Williams, 1992; Williams, 1994; Williams, 2009; Reeve and Toumi, 1999; 

Markson and Price, 1999; Price, 1993; Price and Asfur, 2006; Markson, 2007), which have 

shown that lightning is closely related to the surface temperature. Due to this important link 

between temperature and lightning, temperature should be investigated as a possible 

predictor for lightning occurrence. 

In this dissertation four different air temperature parameters were consider. This 

include the temperature at 1.5 m AGL, temperature at the 700 hPa level, the mean 

temperature of all pressure levels between the 850 and 700 hPa level, and the mean 

temperature between the 500 and 300 hPa levels.  
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2.6 NWS LIGHTNING POTENTIAL INDEX 

This study was inspired by a paper presented by Frisbie et al. (2009). The LPI, uses 

the NWP prognosis of CAPE, LI, ƟeΓ, air temperature at 850 mb (T850), PW and RH at -10oC 

to calculate the potential of lightning (Frisbie et al., 2009). This version of the LPI differs from 

the LPI proposed by Lynn and Yair (2010) in that the Lynn and Yair (2010) methodology 

utilises model microphysical fields. The capability of NWP models to resolve microphysical 

parameters is a relatively new development and many older NWP models operated by some 

institutions currently do not have these capabilities or at least the specific microphysical 

parameters needed for the Lynn and Yair (2010) LPI. As such the Lynn and Yair (2010) 

approach was not considered. The Frisbie et al. (2009) version of the LPI is still in the 

developing phase, but has shown the ability to be useful in improving lightning predictions. It 

was developed at The National Weather Service (NWS) Forecast Office in Grand Junction, 

Colorado. The operational index provides three lightning outlook maps for each day. Figure 2-

9 contains three outlook maps for the State of Colorado, which displays the level of risk that 

can be expected during the given time periods and the legend at the bottom of the maps 

explains what the risk categories means. 

 

 

Figure 2-9: LPI outlook maps for the State of Colorado together with the colour key and 
explanation [Source: National Weather Service, 2013] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

30 
 

Frisbie et al. (2009) developed his methodology for calculating the LPI by combining 

the model parameters into a single index using Equations 2-6 to 2-8: 

 

𝐴 = (𝑅𝐻)2 × (𝜃𝑒Γ) × (𝐿𝐼)2 × (−1)    (2-6) 

 

𝐵 = (𝑚𝑢𝐶𝐴𝑃𝐸) × (𝑃𝑊) × (𝑅𝐻) × 0.001   (2-7) 

 

𝐿𝑃𝐼 = (𝐴 + 𝐵) × (𝑇850 − 272.15)    (2-8) 

 

Where:  RH - Relative Humidity at -10oC 

ΘeΓ - Equivalent Potential Temperature Lapse Rate at 600mb 

LI - Lifted Index 

      muCAPE -  Most Unstable CAPE in the 0-3 km above ground level range 

PW - Precipitable Water 

T850 - 850mb Temperature in Kelvin 

 

With the following conditions:  LI=0 if the LI>0 

LPI=0 if the LPI<0  

LPI=20000 if LPI>20000 

 

The same methodology was tested over South Africa and showed promising results 

on certain days (Gijben, 2013). Atmospheric conditions in South Africa are different to the 

conditions in Colorado, due to for example the altitude, latitude, distance from the oceans and 

general circulation patterns (Nelson, 2007; Taljaard, 1994). The traits of the different NWP 

models used in Colorado and South Africa can also affect the performance of the LPI. In this 

dissertation, the LPI was redeveloped for South African conditions.  
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2.7 SUMMARY 

Thunderstorms require three key ingredients to develop: instability, moisture and a 

trigger mechanism, while the electrification of a thundercloud involves a process that electrifies 

individual cloud-particles as well as a process that separates these cloud-particles according 

to their polarity in different levels of the thundercloud. Electrification of a thundercloud occurs 

because of collisions between cloud-particles in the presence of supercooled water droplets, 

and updrafts play an important role to distribute these particles to different heights in a 

thundercloud. The updrafts transport positively charged ice particles to heights where the 

temperature is lower than -20°C (main positive charge region), negatively charged graupel 

particles to heights between -10°C and -20°C (main negative charge region), and positively 

charged ice crystals to a small region found near the 0°C level. Statistical prediction schemes 

forecast the threat of lightning by relying on connections between lightning occurrence and 

parameters of the pre-storm environment to model the processes involved for thunderstorm 

development and electrification of a thundercloud. The CAPE, LI and Ɵe, which are measures 

of conditional, latent, and potential instability respectively, provides useful insights into the 

buoyancy of air parcels in the atmosphere. These parameters are linked to potential updrafts 

that supply thunderclouds with the hydrometeors necessary for electrification, as well as to 

distribute these charged particles in a thundercloud. In order for thunderstorms to develop and 

to ensure that sufficient amounts of hydrometeors are present for the electrification of a 

thundercloud, the availability of moisture is vital. PW and RH are useful parameters to monitor 

the amount moisture available in the atmosphere. Solar heating plays an important role in the 

distribution of lightning across the global since increases in temperatures results in the 

increase of water vapour concentrations as well the instabilities that drive thunderstorm and 

lightning development. These parameters are usually derived from atmospheric soundings, 

however with the advent of accurate numerical weather prediction models, many of the 

limitations found with soundings can be overcome in order to provide accurate forecasts of 

the potential areas where lightning can occur.      
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CHAPTER 3 

DATA AND METHODOLOGY 

 

3.1 INTRODUCTION 

This chapter discusses the data and methodologies used in this study. The first section 

(Section 3.2) gives an overview of the study area and period considered. The next section 

(Section 3.3) deals with the lightning and NWP data. An overview is provided of the SALDN, 

and the NWP data is presented with an overview of the UM.  In Section 3.4, a description of 

the development of the LTI is provided. This includes the techniques used to select the most 

appropriate parameters for lightning prediction as well as the development of the new LTI by 

means of rare-event logistic regression. The chapter concludes (Section 3.5) with the methods 

used to evaluate the LTI. This includes a discussion on probabilistic and deterministic 

statistical scores, as well as eyeball verification techniques.  

 

3.2 STUDY AREA AND PERIOD 

3.2.1 Study area 

This study was conducted over southern Africa in the area depicted in Figure 3-1. The 

grey in Figure3-1 depicts areas where the SALDN cannot provide accurate information. This 

is due to the detection efficiency (DE) of LDN’s decreasing rapidly outside the confines of a 

network (Cummins, 1998a).  

The study domain was divided into a 0.5˚ X 0.5˚ grid resulting in 795 grid points. The 

model data, (Section 3.4), is available on a higher resolution (0.11˚ X 0.11˚) grid. Due to the 

extensive computational time, the amount of computing resources available and the long 

periods considered (Section 3.2.2), the coarser grid had to be implemented. If the model grid 

resolution was utilised in this study, there would have been a 22 times increase in computation 

time of all the parameter extractions and calculations. Apart from this increase in the 

extractions and calculations of model data, the regression procedures would also have taken 

much longer due to the increase in data points. It was thus decided that utilising the model 

grid would have been unfeasible. A higher resolution would have provided more detail in the 
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LTI especially with the smaller forecast scales of thunderstorms. The coarser grid was 

however used only for the development of the LTI, and the equations can still be applied to a 

higher resolution model when the product becomes operationally available. A visual 

comparison between the LTI on the 0.11° X 0.11° UM resolution and the LTI on the 0.5° X 

0.5° resolution utilised in this study is shown in Case 4 of Section 5.4.4.  

 

 

Figure 3-1: The study domain. Grey areas are excluded.  

 

3.2.2 Study period 

One of the aims of this study was to produce a lightning outlook map for the day, and 

was created by utilising hourly NWP prognosis for the period 07:00 - 21:00 Coordinated 

Universal Time (UTC). Most thunderstorm activity occurs during the afternoon and evening in 

South Africa (de Coning et al., 2011), but convection also occurs in the morning (Rouault et 

al., 2013). On average approximately 65% of the daily lightning over South Africa occurs 

between 07:00 - 21:00 UTC. Figure 3-2 shows the average 8-year diurnal cycle of lighting over 

South Africa, produced with lightning data for the period 2006 – 2013. The figure shows the 

percentage of the total daily lightning amounts for each hour of the day, where the red bars 

indicate the lightning within the period 07:00 – 21:00 UTC. Figure 3-2 shows that the largest 

percentages of lightning occur during late afternoon and early evening, but lightning is also 

seen in the early hours of the morning. Ideally one would want to produce a lightning outlook 

map for the entire day but the NWP model output and the processing of the lightning outlook 
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maps with the NWP fields would only be available operationally early in the morning. As a 

result, the outlook map was created with NWP prognosis for the period 07:00 – 21:00 UTC 

which is 09:00 - 23:00 South Africa Standard Time (SAST). Lightning data for the period 06:30 

– 21:30 UTC (the reasoning for this period will be discussed in Section 3.3.2) was considered 

in this study, and essentially the NWP prognosis will forecast lightning activity during this 15-

hour period, ending just before midnight SAST.  

 

 

Figure 3-2: The average diurnal cycle of lightning over South Africa for the period 2006-2013, 
expressed as a percentage of the daily total. 

 

The NWP parameters best suited to predict lightning over South Africa were 

identified by extracting the appropriate data from the NWP model for the austral summer days 

of 2011/12 and 2012/13. The same period were used to select the most appropriate 

parameters to predict lightning and to train the LTI statistical model (Section 3.5). However, 

austral summer was divided into spring months (September to November) and summer 

months (December to February) and a different LTI was developed for these seasons 

separately. The atmospheric conditions in South Africa are different between the seasons. 

This is because in early summer, the atmospheric circulation is generally extra-tropical with a 

conditionally unstable atmosphere over certain parts of South Africa, while in late summer the 

circulation is tropical with a convectively unstable atmosphere (Dyson et al., 2015). The spring 

and summer LTI’s were verified for the austral summer of 2013/14. For the training period, 17 

out of the 363 days considered could not be utilised, while for the evaluation period, 6 out of 

the 181 days could not be used. This was due to the NWP model that did not run on these 

days.  
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3.3 LIGHTNING DATA 

3.3.1 Southern African Lightning Detection Network 

3.3.1.1 The network 

Towards the end of 2005, SAWS installed its first LDN that utilises Vaisala sensors. 

This original network comprised of 19 sensors distributed across the country (van de 

Groenendaal, 2007). Over the years, the network has undergone a series of upgrades where 

sensors have been relocated and new sensors installed (Gijben, 2012). During the 2009/10 

upgrade, 4 new sensors were added to the network (one of the new sensors replaced the old 

sensor at Springbok), which resulted in a network of 22 sensors. One of these sensors were 

installed in Swaziland, after which the network became known as the SALDN. Another 

upgrade was performed on the SALDN in 2011, where 4 sensors were relocated and 2 new 

sensors were added to the network. This resulted in a network consisting of 24 sensors, which 

was completed in August 2011 (Ngwato, 2014). These upgrades improved the performance 

of the SALDN (Hunt et al., 2014). The 24 sensors shown in Figure 3-3 made up the SALDN 

network for the entire study period. 

 

 

Figure 3-3: The location of the 24 lightning detection sensors of the SALDN network operated 
by SAWS [Map created from information from Ngwato (2014)] 
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The SALDN can detect lightning flashes with a predicted DE of 90% or more over most 

of the country (van de Groenendaal; Gill, 2008; Gijben, 2012). This means that at least 90% 

of CG lightning flashes are detected over South Africa. Lightning strokes can also be detected 

with a median location accuracy (LA) of 0.5 km over most of the country, which means that a 

CG lightning stroke can be accurately positioned within 500 meters of the actual stroke 

(Gijben, 2012). These estimated values are derived from the Vaisala Network Performance 

Evaluation Program (NPEP) (Vaisala, 2016). In order to get exact network performance 

statistics would require either the controlled measurements of rocket triggered lightning or 

photographs of lightning striking objects (Gill, 2008). Figure 3-4a shows the projected DE and 

Figure 3-4b the median LA. The red lines show the 90% DE and 0.5 km LA, while the blue 

lines show the 70% DE and 1.0 km LA range rings.   

 

 

Figure 3-4: The projected (a) detection efficiencies and (b) location accuracies of the SALDN 
from the Vaisala NPEP 

 

The maximum range of the SALDN is shown in Figure 3-5 and extends far outside the 

borders of South Africa. The sensors that make up the SALDN is located within the borders of 

South Africa and the DE and LA of LDN networks decreases rapidly outside the confines of a 

network (Cummins, 1998a). In order to utilise accurate lightning data, the areas inside the 

range rings of the DE and LA from Figure 3-4 were used to identify the study domain (Figure 

3-1).  

a) b) 
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Figure 3-5: Absolute maximum range of the SALDN, where the blue area represents the areas 
where lightning can be detected. Outside the borders of SA, the accuracy of lightning detection 
reduces rapidly. 

 

3.3.1.2 The sensors 

The SALDN consists of Vaisala lightning detection sensors, which makes use of a 

combination of LS7000 and LS7001 sensors (Gijben 2012). Most lightning detection sensors 

utilise either MDF or TOA techniques to detect lightning (Cummins et al., 1998b), however the 

latest lightning detection sensors, including those in the SALDN, makes use of a combination 

of MDF and TOA principles. This combined technology sensors are able to detect lightning 

more accurately since the combined intersection of the MDF vectors and TOA circles will 

provide a more accurate measurement than using one of these techniques individually (Gill, 

2008; Cummins et al., 2000). By using only the MDF or TOA technique, at least three sensors 

need to participate in a network to accurately detect a lightning flash. With the combined 

technology, a lightning flash can be accurately detected by using only two sensor (Vaisala, 

2004; Gill, 2008; Cummins et al., 1998b; Cummins et al., 2000). The SALDN sensors are 

designed to detect the electromagnetic waves emitted by CG lightning in the VLF and LF 

range (Gijben, 2012). As was discussed in Section 2.3 of Chapter 2, this enables the sensors 

to detect CG lightning over greater distances, but only a small amount of IC lightning can be 

detected.  
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3.3.1.3 Advantages and limitations 

The biggest advantage of lightning measurements from the SALDN is the ability to 

measure the occurrence of CG lightning over the entire South Africa with great accuracy. Each 

lightning stroke or flash that strikes the earth is recorded with a date, time, latitude and 

longitude coordinate, strength and many more parameters. Lightning data from the SALDN is 

extremely reliable and contains no gaps. Even if a lightning sensor in the network fails, the 

other sensors in the network are able to detect lightning near the offline sensor. 

A limitation of the SALDN is the inability to detect most of the IC lightning. Intra and 

inter-cloud lightning (IC) is the lightning that occurs within a cloud and between two different 

clouds respectively and makes up approximately 70% of all lightning (Price, 2008). The 

SALDN is designed to detect CG lightning that contributes to about 30% of all lightning. One 

can argue that CG lightning is the type of lightning that affects humans and infrastructures, 

however cloud lightning can provide valuable information on thunderstorms.  

 

3.3.2 Lightning data utilised in this study 

Lightning data served three purposes in this study: 1) to determine which model 

parameters are the best to predict lightning 2) to train the new LTI and 3) to evaluate the 

performance of the newly developed LTI.  

Lightning flash and stroke data are available from the SALDN. A lightning flash is the 

entire electrical discharge while the components of a flash that strikes the ground are called 

strokes (Gijben, 2012; Rodger and Russel, 2002; Uman, 1987).  A lightning flash can produce 

more than one stroke. The SALDN uses an algorithm to cluster strokes into a flash, and a 

description on this algorithm can be found in Gijben (2012) and Gill (2008). In this study 

lightning stroke data from the SALDN was utilised. 

The study domain was divided into grid boxes of size 0.5˚ X 0.5˚. Lightning data was 

accumulated between 06:30 and 21:30 UTC and was spatially assigned to the correct grid 

box. Model data is available hourly and represents a forecast on the hour. This means that for 

example a 12:00 UTC model forecast is valid for 12:00 UTC and does not necessarily mean 

a forecast for 12:00 – 13:00 UTC. For this reason lightning data surrounding the model time 

step (in the 30-minutes before and after) was considered. Since one outlook map for the day, 

between 07:00 UTC and 21:00 UTC, was created from model data, the corresponding 

accumulation of lightning data was between 06:30 and 21:30 UTC.  
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The purpose of the LTI is to predict whether lightning will occur or not and it does not 

aim to predict the amount of lightning. Statistical techniques that make use of thermodynamic 

parameters to forecast lightning perform well in predicting the risk of lightning, but have a lower 

capability to predict the amount of lightning (Soul et al., 2002; McCaul et al., 2009). As a result, 

the lightning accumulations in each grid box were converted to a binary outcome. If one or 

more lightning strokes occurred in a grid box during the forecast period of the day, the grid 

box was given a value of 1. If no lightning occurred the grid box was given a value of 0. 

 

3.4 NUMERICAL WEATHER PREDICTION MODEL DATA 

3.4.1 The Unified Model 

3.4.1.1 The model 

The UM is the NWP model developed at the United Kingdom Meteorological Office 

(UKMO) (de Coning et al., 2011). This UM was first made operational during 1991/2 at the 

UKMO (Cullen et al., 1997), but is regularly updated to improve its forecasting capabilities 

(Davies et al., 2005). In 2002, a series of upgrades was performed on the UM, which resulted, 

among others, in the model becoming a non-hydrostatic model that follows the terrain and 

resolves many layers in the atmosphere with height based vertical coordinates (Davies et al., 

2005). The UKMO runs the UM on various resolutions, but also offers a global model which 

runs 4 times daily on a 40 km resolution (Landman et al., 2012).  

The SAWS runs a local version of the UM, which has been operational at SAWS since 

2006. Different version of the UM runs with different configurations (parametrization schemes, 

horizontal resolutions and with or without data assimilation) at SAWS and makes use of initial 

and boundary conditions from the global model from the UKMO (Landman et al., 2012).  

Among the different configurations are three model runs, called xaana, xaang and xaant, all 

with a 12 km horizontal resolution. The xaana and xaang model runs utilise version 6.1 of the 

UM, while the xaant model run makes use of the newer version 7.3 of the UM. All three of 

these models run once daily and produce hourly forecasts on 38 vertical levels and for 48 

hours ahead (Landman et al., 2012). Both the xaana and newer xaant model have no data 

assimilation, while the xaang model has continuous data assimilation. Data assimilation is the 

process where observational data is assimilated into a model in order to achieve a more 

accurate representation of reality (Constantinescu et al., 2007). Observational data is often 

assimilated into numerical weather prediction models to provide the initial conditions of the 
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model (Whitaker et al., 2004). In this study the newer xaant model (version 7.3 of UM) was 

utilised. The local version of the UM covers the domain as depicted in Figure 3-6. 

 

 

Figure 3-6: The domain of the 12 km horizontal resolution Unified Model at SAWS 

 

3.4.1.2 Advantages and limitations 

NWP models have improved significantly during the last few years, due to improved 

dynamical and physical representations of reality, increases in the horizontal and vertical 

resolutions and improved parametrization schemes (Schulze, 2007). As a result, accurate and 

reliable forecasts are now possible from NWP models. The UM has also undergone upgrades 

and provides accurate forecasts of various parameters for 48 hours ahead, on a 12 km 

horizontal resolution for 38 levels in the vertical (Landman et al., 2012). Using UM derived 

parameters in the creation of the LTI means that data for the entire South Africa can be utilised 

with great accuracy. A limitation of the UM is that the parameters remain a model 

representation or proxy of reality, and can sometimes perform poorly.  
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3.4.2 Model data utilised in this study 

Frisbie et al. (2009) utilised a form of CAPE, LI, Ɵe, PW, RH and air temperature in the 

development of the LPI. In this study, the same type of parameters were considered. The 

atmospheric conditions as well as the NWP model utilised in South Africa are different to 

Colorado in the USA and as such, different variations of Frisbie et al.’s parameters were 

considered for the development of the LTI. Table 3-1 lists the six main groups of parameters 

as well as the individual predictors in each of the main groups considered in this study. The 

predictors were selected from literature (listed in Table 3-1) where they were found useful in 

either lightning prediction studies or thunderstorm/rainfall development. Most of the 

parameters listed in Table 3-1 were not directly available from the UM and had to be 

calculated. Only the T1p5m, and T700 parameters in Table 3-1 was available. A description on 

how the different parameters were calculated is provided in the table.  

All of the model predictors were interpolated to a 0.5˚ X 0.5˚ grid in order to correspond 

to the lightning data. Hourly model data between 07:00 and 21:00 UTC were utilised. To group 

the hourly model data into a single daily forecast, the maximum absolute value of the hourly 

forecasts was used. 
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Table 3-1: Candidate predictors for inclusion in the lightning prediction model 

Group Abbreviation Name Equation Reference 

1 

muCAPE0,3km_AGL 

[J kg-1] 
Most unstable CAPE 

between various levels 

Largest CAPE obtained when each parcel between 
the surface and 3 km above the ground is lifted 
from the level with the highest Ɵe 

Frisbie et al. (2009)  
Groenemeijer and van Delden 
(2007) 

muCAPE1,6km_AGL 

[J kg-1] 
Most unstable CAPE 

between various levels 

Largest CAPE obtained when each parcel between 
1 km and 6 km above the ground is lifted from the 
level with the highest Ɵe 

Frisbie et al. (2013) 

muCAPElowest_300 

[J kg-1] 
Most unstable CAPE 

between various levels 

Largest CAPE obtained when each parcel between 
the surface and lowest 300 hPa above the ground 
is lifted from the level with the highest Ɵe 

Craven & Brooks (2004) 

CAPEsurf 

[J kg-1] 
Surface CAPE 

CAPE obtained when a parcel is lifted from the 
surface 

Zepka et al. (2014) 

2 

 

[K] 
 

Surface equivalent 
potential temperature 

 

Livingston et al. (1996) 
Zepka et al. (2014) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate at 600 hPa Frisbie et al. (2009) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate between 850 and 400 hPa Dyson et al. (2015) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate between 850 and 500 hPa Dyson et al. (2015) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate between 1 and 6 km AGL Frisbie (2009) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate between -10˚C and -20˚C levels Frisbie et al. (2013) 

 

[K] 
 

Equivalent potential 
temperature lapse rate 

Ɵe lapse rate between 700 and 500 hPa Zepka et al. (2013) 

𝜃𝑒𝛤600 

𝜃𝑒 

𝜃𝑒𝛤850,500 

𝜃𝑒𝛤850,400 

𝜃𝑒𝛤1,6𝑘𝑚_𝐴𝐺𝐿 

𝜃𝑒𝛤𝑚10,𝑚20 

𝜃𝑒𝛤700,500 
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Table 3-1: Candidate predictors for inclusion in the lightning prediction model (continued) 

Group Abbreviation/units Name Equation Reference 

3 SLI 
[˚C] 

Surface lifted index 𝑆𝐿𝐼 = 𝑇500 − 𝑇𝑝500
   (Lifting the parcel from the 

surface) 

Garreaud et al. (2014) 
Haklander & van Delden 
(2003) 

BLI 
[˚C] 

Best lifted index The most unstable LI when each parcel is lifted 
between the surface and 700 hPa 

Frisbie et al. (2013) 
Shafer and Fuelberg (2008) 

4 PW850,300 

[cm] 
Precipitable water Mean precipitable water in the 850-300 hPa level Dyson et al. (2015) 

PW700,400 

[cm] 
Precipitable water Mean precipitable water in the 700-400 hPa level Burrows et al. (2005) 

PWsurf,100 

[cm] 
Precipitable water Mean precipitable water from the surface to 100 

hPa level 
Burrows et al. (2005) 
Shafer and Fuelberg (2008) 

5 RHm10 

[%] 
Relative humidity at 

the -10˚C level 
Relative humidity at the -10˚C level  (𝑅𝐻 =

𝑒

𝑒𝑠
 ) Frisbie et al. (2009) 

RHm12,m18 

[%] 
Mean relative humidity Mean relative humidity between the -12˚C to -18˚C 

level 
Frisbie et al. (2013) 

aveRH3,6km_AGL 

[%] 
Mean relative humidity Mean relative humidity between 3-6 km above 

ground level 
Frisbie et al. (2013) 

maxRH3,6km_AGL 
[%] 

Maximum relative 
humidity 

Maximum relative humidity between 3-6 km above 
ground level 

Frisbie et al. (2013) 

minRH3,6km_AGL 

[%] 
Minimum relative 

humidity 
Minimum relative humidity between 3-6 km above 
ground level 

Frisbie et al. (2013) 

6 T1p5m 

[K] 
Temperature Temperature at 1.5 meters above the ground Mazany et al. (2002) 

T700 

[K] 
Temperature Temperature at the 700 hPa level Burrows et al. (2005) 

T850,700 

[K] 
Mean temperature Mean temperature of all pressure levels between 

850 and 700 hPa 
Dyson et al. (2015) 

T500,300 

[K] 
Mean temperature Mean temperature of all pressure levels between 

500 and 300 hPa 
Dyson et al. (2015) 
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3.5 DEVELOPMENT OF A NEW LIGHTNING THREAT INDEX (LTI) 

3.5.1 Parameter Selection 

An aim of this study was to select the model parameters that work best to predict 

lightning in South Africa. The objective is to select one parameter out of each of the six main 

groups (CAPE, LI, Ɵe, PW, RH and air temperature) that will be used in the development of 

the LTI. Both the Statistical and Analysis Software (SAS) and R software were utilised to select 

the best model predictors. 

 

3.5.1.1 Stepwise regression with SAS 

In order to select the best parameters to predict lightning, SAS statistical software was 

used to perform a full (backwards and forwards) stepwise logistic regression by using Firth’s 

Penalised Likelihood method. Firth’s methodology (Firth, 1993) solves the issue of bias for 

maximum likelihood estimates (due to separation) in logistic regression (Shen and Gao, 2008). 

The PROC LOGISTIC function in SAS was used to perform the stepwise logistic regression 

by making use of the option SELECTION=STEPWISE. In order to make use of Firth’s 

Penalised Likelihood Method, the FIRTH option was used in the PROC LOGISTIC function 

(Robin et al., 2011; SAS Institute Inc., 2010). 

When SAS performs a stepwise regression, it first estimates parameters based on the 

intercepts and explanatory variables added to the model. The score chi-square statistic is then 

calculated for each variable. The parameter with the highest chi-square score is added to the 

model if it is significant at the specified significance level. With a stepwise regression, 

parameters that were already added to the model can still be removed. The parameters are 

added and removed in such a way that every forward selection can be followed by backward 

removals of parameters. Once all of the variables were added to the model, or if the model is 

the same as the previous model, the stepwise regression stops (SAS Institute Inc., 2010). 

Not all 25 parameters listed in Table 3-1 were added to the stepwise regression 

simultaneously. The parameters from each of the 6 main groups were added in turn to the 

stepwise regression models, in order to identify the parameter that predicted lightning 

occurrence the best. As an example, all the CAPE parameters were added to the stepwise 

regression model from where the CAPE that performed the best were selected. The most 

appropriate parameter was selected by making use of the chi-square value from the score chi-

square statistic. The following procedure was followed in this study:  
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1) Add the parameters from each main group to the logistic procedure. 

2) Calculate the score chi-square statistic for each variable. The parameter with the 

highest chi-square statistic is considered the best and is added to the model. 

3) Add/remove parameters to the one with the highest chi-square value in step 2. Once 

again, the best model that contains two variables is selected based on the highest chi-

square value. 

4) Step 3 is repeated until all the variables were added to the model or if the model is the 

same as the previous. 

Since the aim in this study was to select one parameter out of the six main groups that 

predicts lightning the best, only the first two steps were of interest. As such, the variables out 

of a main group was added to the stepwise regression, and the one with the highest chi-square 

value was considered the best in that group. 

 

3.5.1.2 Stepwise regression with R 

A stepwise regression with R-software was performed in order to select the best 

parameters to predict lightning. Not all 25 parameters listed in Table 3-1 were added to the 

stepwise regression simultaneously. The parameters from each of the 6 main groups were 

added in turn to the stepwise regression models, in order to achieve the goal of selecting one 

parameter out of each main groups that performs the best for lightning prediction. As an 

example, all the CAPE parameters were added to the stepwise regression model individually 

from where the CAPE that performed the best were selected. The most appropriate parameter 

was selected by making use of the Akaike Information Criterion (AIC). 

The AIC is one of the most common model or variable selection techniques used in 

many statistical software (Chaurasia and Harel, 2012). The AIC utilises the Kullback-Leibler 

divergence, which is a measure of how close a model is to reality, to determine how much 

information is lost when using a model to predict reality (Posada and Buckley, 2004). It is a 

simple measure that is easily applied, but is based on sophisticated statistical techniques 

(Burnham and Anderson, 2004). The model having the lowest AIC value represent the model, 

which is closest to reality (Snipes and Taylor, 2014). The AIC can be computed by Equation 

3-1: 

 

𝐴𝐼𝐶 = 2𝐾 − 2𝐿     (3-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

46 
 

where K is the number of estimable parameters and L is the maximised log-likelihood (Posada 

and Buckley, 2004). A single value of the AIC has no meaning and needs to be used together 

with other AIC values. AIC values are also affected by the size of the samples used in the 

model and can take on a range of values. As such, the AIC values are often re-written with 

Equation 3-2: 

 

∆𝑖= 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛     (3-2) 

 

where AICmin is the lowest AIC value from all the models with the best model will having a Δ 

value of 0 (Burnham and Anderson, 2004). 

In this study, the “glm” and “step” functions from the R-package “stats” were utilised to 

perform the stepwise logistic regression for selecting the best parameters (R Development 

Core Team, 2015). The “glm” package performed the binary logistic regression between 

lightning occurrence and the parameters, while the initial model output from the “glm” package 

was used in the “step” function. The AIC values from the “step” function were written to file 

and could be used to identify the parameter that performed the best to predict lightning.  

 

3.5.2 Development of LTI with logistic regression 

Logistic regression techniques were used to develop the new LTI. Logistic regression 

is often used to predict the probability of an event by means of a set of predictors (Kiezun et 

al., 2009) and can be expressed by Equation 3-3, where 𝑝𝑖 is the probability of the event as a 

function of 𝑚 independent variables 𝑋, when 𝑖 ranges from 1 to 𝑚. The regression coefficients, 

�̂� and �̂�, are estimated from the dataset by means of the maximum likelihood method (Guns 

and Vanacker, 2012; Kleinbaum and Klein, 2010). 

 

𝑝𝑖 =
1

1+𝑒−(�̂�+∑ 𝛽�̂�𝑋𝑖)
     (3-3) 

 

In the development of the LTI by means of the logistic regression technique, lightning 

was the dependent variable, while the six model parameters selected in Section 3.5.1 were 
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the independent variables. The daily lightning and associated model data were concatenated 

into a single text file. Table 3-2 shows an example of the format of the text file. All of the daily 

data for the 2011 and 2012 SON period (in the format of Table 3-2) were then concatenated 

into one text file. Similarly, all the daily data for the 2011/12 and 2012/13 DJF period were 

added into one text file. This produced two large text files for the regression analysis to train 

the LTI model.  

 

Table 3-2: Example of dataset used as input to the regression analysis to build the LTI 

Lightning 

(yes/no) 

Model Parameters 

CAPE PW LI Ɵe RH T 

1 1654.4 2.8 -4.3 -20.2 47.4 291.5 

1 1610.5 2.9 -4 -19.9 52 291.1 

0 1370 2.9 -4.6 -18 55.2 290.9 

 

Initial tests in the development of the LTI by means of logistic regression revealed that 

probabilities of lightning occurrence are extremely low. Upon further investigation it was 

discovered that a study by King and Zeng (2001) showed that ordinary logistic regression, as 

indicated by Equation 3-3, often underestimates the probabilities of rare events (Guns and 

Vanacker, 2012). This underestimation is due to the logistic regression favouring the larger 

amount of non-events (0’s) compared to the smaller amount of events (1’s) when developing 

a model. King and Zeng (2001) states that rare events in a dataset are classified as dozens 

to thousands of times more non-events compared to events, while Yap et al. (2014) considers 

a rare event to be when the events make up 5% or less of the data. In the datasets considered 

in this study, there were approximately 20 times more non-events than events for the SON 

dataset, and approximately 34 times more non-events than events for the DJF dataset. In both 

datasets, the non-events made up less than 5% of data.  

King and Zeng (2001) developed an approach to perform a rare event logistic 

regression. This 3-step approach is summarised by Guns and Vanacker (2012) as follows: 1) 

Make use of endogenous stratified sampling by taking all events together with a random 

sample of non-events. 2) Apply a correction to the intercept term that may be significantly 

biased due to sampling. 3) The underestimation of probabilities is taken into account by adding 

the correction term to the estimated probabilities. An R software package, called ‘Zelig’ exists 

which performs the above-mentioned corrections to the probabilities (Imai et al., 2008; 2009). 
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The LTI was developed by means of the following approach: 

1. Take all the events (1’s or lightning occurrences) in the dataset and select a random 

sample of non-events (0’s or no lightning occurrences) with equal size from the data. 

2. Run the ‘Zelig’ package in R to perform a rare event logistic regression with the bias 

correction and addition of the correction term to the estimated probabilities. 

3. Repeat the above steps 1000 times by selecting a new sample of random non-events 

(0’s or no lightning occurrences). The random samples of non-events are taken with 

repetition where the non-events of the previous sample are added back to the dataset 

and have the chance to be chosen again.  

 

The 1000 models produced by the procedure above were combined by averaging their output. 

This means that the average of the intercept term and regression coefficients of the 1000 

models were calculated. This process is similar to the bootstrap aggregating technique that 

aims to improve any instability found in the estimation of the regression output (Kotsiantis et 

al., 2006). The average of the intercept term and regression coefficients could then be added 

to Equation 3-3. Separate equations for the SON and DJF periods were developed with this 

approach by performing the rare event logistic regression on each of the SON and DJF 

datasets. 

 

3.6 VERIFICATION OF THE LTI 

3.6.1 Probabilistic verification 

3.6.1.1 ROC curve 

The Receiver Operating Characteristic (ROC) curve is a useful tool to determine the 

performance of a probabilistic forecast (Mason and Graham, 2002). ROC curves are used to 

compare the sensitivity and specificity of a forecast over the range of all possible values 

(Florkowski, 2008). Sensitivity is the ability of a forecast to predict events, while specificity is 

the ability of the forecast to predict the non-events (Robin et al., 2011). The ROC curve is 

created by using corresponding forecasts and observations to plot the sensitivity (hit rate) 

against 1-specificity (false alarm rate) (Mason and Graham, 2002). The ideal forecast would 

have a sensitivity and specificity of 1, which will be a curve starting at 0 on the x and y axis, 

moving to a value of 1 on the y-axis and a value of 0 on the x-axis, and ending at 1 on the x 

and y axis (Bewick et al., 2004) (A on Figure 3-7). It is however unlikely that this ideal forecast 

can be achieved (Fan et al., 2006). Forecasts with good predictive skill approach the top left 
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corner of the ROC plot (Curve B in Figure 3-7), while the diagonal line (Curve C in Figure 3-

7) indicates a forecast with no skill (Zou et al., 2007). A ROC curve is often accompanied by 

the area under the ROC curve (AUC), which is a single value that gives a representation of 

the overall performance of the forecast (Fawcett, 2006). For curve A in Figure 3-7, the AUC 

will be 1.0 and for curve B it will be 0.85 (Zou et al., 2007). The diagonal line C in Figure 3-7 

will have an AUC of 0.5, but since this line represents a random guess with no skill, no realistic 

AUC value should be 0.5 or less (Fawcett, 2006).  

In this study, the “plot.roc” function in the R-package “pROC” was utilised to plot the 

ROC curves and AUC values for the validation of the LTI (Robin et al., 2011; R Development 

Core Team, 2015). The lightning observations (1’s for lightning occurrence and 0’s for no 

lightning occurrence) and LTI forecast probabilities (probability values represented by values 

between 0 and 1) were incorporated into the “plot.roc” function. The daily forecasts and 

observations were combined into one dataset for the entire evaluation periods. A ROC plot 

was created for both the SON and DJF periods. 

 

 

Figure 3-7: An explanation of a ROC curve. Line A represents a perfect forecast (AUC=1), line B 
a typical ROC curve (AUC=0.85) and line C represents no skill or random chance (AUC=0.5) 
[Adapted from Zou et. al., 2007] 
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3.6.1.2 Reliability diagram 

A reliability diagram is often used to determine the reliability of a probabilistic forecast 

by showing how well forecasted probabilities correspond to their observed frequency of 

occurrence (Weisheimer and Palmer, 2014). As such, the reliability diagram is created by 

plotting the observed relative frequencies against forecast probabilities, where the forecast 

probabilities are divided into bins (Bröcker and Smith, 2007). A perfectly reliable forecast will 

follow the diagonal line as indicated in Figure 3-8 (Lott et al., 2014). The closer a curve lies to 

the diagonal line, the more reliable a forecast. If a curve lies below the diagonal line it indicates 

over-forecasting, and if the curve is above the diagonal line, it indicates under-forecasting. A 

curve that follows the horizontal line will have no resolution since the forecast cannot 

discriminate from one probability bin to next (Holliday et al., 2012).  

 

 

Figure 3-8: An example of a reliability diagram. The blue line represents a hypothetical forecast, 
the black diagonal line will be a forecast with perfect reliability, and the horizontal dotted line 
will be a forecast with no resolution. 

 

In this study the “verify” and “reliability.plot” functions in the R-package “verification” 

were utilised to plot the reliability diagrams for the validation of the LTI (NCAR - Research 

Applications Laboratory, 2015; R Core Team, 2015). The lightning observations (1’s for 
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lightning occurrence and 0’s for no lightning occurrence) and LTI forecast probabilities 

(probability values represented by values between 0 and 1) were incorporated into the “verify” 

function to create a class object to be used in the “reliability.plot” function (NCAR - Research 

Applications Laboratory, 2015). The daily forecasts and observations were combined into one 

dataset for the entire evaluation periods. A reliability plot was created for both the SON and 

DJF periods. 

 

3.6.1.3 Sharpness diagram 

The sharpness of a forecast is a measure of how forecast probabilities varies and is 

often presented on a sharpness diagram or sharpness histogram which displays the relative 

frequencies of occurrence for probability intervals (bins). Sharpness diagrams often 

accompany reliability plots (Callado et al., 2013). A probabilistic forecast has perfect 

sharpness when only probabilities of 0 and 1 are forecasted, good sharpness with a U-shaped 

distribution (values close to 0 and 1), and a lack of sharpness when probabilities are uniformly 

distributed (Murphy and Wilks, 1998). Figure 3-9 shows an example of a typical sharpness 

diagram. 

 

 

Figure 3-9: Example of a sharpness diagram [Adapted from Cintineo et al., 2010] 
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In this study the “verify” and “reliability.plot” functions in the R-package “verification” 

were modified to plot the sharpness diagrams separately from the reliability plots for the 

validation of the LTI (NCAR - Research Applications Laboratory, 2015; R Development Core 

Team, 2015). The lightning observations (1’s for lightning occurrence and 0’s for no lightning 

occurrence) and LTI forecast probabilities (probability values represented by values between 

0 and 1) were incorporated into the “verify” function to create a class object to be used in the 

“reliability.plot” function (NCAR - Research Applications Laboratory, 2015). The daily forecasts 

and observations were combined into one dataset for the entire evaluation periods. A 

sharpness plot was created for both the SON and DJF periods. 

 

3.6.2 Dichotomous verification 

In addition to the standard probabilistic verification techniques, the LTI was also 

evaluated by means of dichotomous verification techniques. The performance of a yes/no-

dichotomous forecast is evaluated by means of a contingency table approach that contains 

hits, misses, false alarms and correct negatives (Tartaglione, 2010). Figure 3-10 shows a 

standard 2 X 2 contingency table. The performance of a forecast is measured by the frequency 

of the ‘yes’ and ‘no’ forecasts compared to the ‘yes’ and ‘no’ observations (Landman et al., 

2012). From the contingency table verification scores like the Probability of Detection (POD), 

Probability of False Detection (POFD), False Alarm Ratio (FAR), Hanssen and Kuipers 

Discriminant (HK) and Frequency bias can be calculate. These skills scores are discussed in 

section 3.6.2.1 to 3.6.2.5.  

 

 

Figure 3-10: A standard 2 x 2 contingency table 
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Since the LTI is a probabilistic forecast, the dichotomous verification had to be 

performed over the entire range of probabilities. A similar technique was used by de Coning 

et al. (2011). In this approach, probability thresholds in intervals of 10% were considered for 

the calculation of skill scores. The first threshold will be 0% where all areas exceeding 0% 

probability is considered the forecast. This will be the entire domain where all observed 

lightning would occur in the forecasted area. As such, the POD will be 100% but the FAR will 

also be high. The next threshold will be all areas exceeding 10% probability, then 20% and so 

on. By the time, the probability threshold is for example 80%, the POD will be low but the FAR 

will be low as well, since lightning will also occur in areas where the probability is below 80%. 

The ultimate aim of this evaluation approach will be to find the areas where the POD is high 

and the FAR is low in order to establish at which probabilities of the LTI it is the mostly likely 

to see lightning. 

 

3.6.2.1 Probability of Detection 

The POD or hit rate measures the percentage of observed events that were correctly 

forecasted. The POD can range between 0 and 1, where 1 is a perfect score (Jolliffe and 

Stephenson, 2003). The POD can be expressed by Equation 3-4: 

 

𝑃𝑂𝐷 =
𝐻𝐼𝑇𝑆

𝐻𝐼𝑇𝑆+𝑀𝐼𝑆𝑆𝐸𝑆
     (3-4) 

 

3.6.2.2 Probability of false detection 

The POFD or false alarm rate indicates what percentage of the observed non-events 

were incorrectly forecasted. The POFD can range between 0 and 1 where 0 is a perfect score 

(Jolliffe and Stephenson, 2003). The POFD is given by Equation 3-5: 

 

𝑃𝑂𝐹𝐷 =
𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆

𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸𝑆+𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆
    (3-5) 
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3.6.2.3 False alarm ratio 

The FAR is the percentage of forecasted events that did not occur. The FAR can range 

between 0 and 1, where 0 is as a perfect score (Jolliffe and Stephenson, 2003). The FAR can 

be expressed by Equation 3-6:  

 

𝐹𝐴𝑅 =
𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆

𝐻𝐼𝑇𝑆+𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆
     (3-6) 

 

3.6.2.4 Hanssen and Kuipers Discriminant 

The HK or true skill score is a measure of how well a forecast distinguishes between 

the yes and no events. The HK can range from -1 to 1, where 0 indicates no skill and 1 is a 

perfect score (Weusthoff and Ament, 2010). The HK can be calculated with Equation 3-7:  

 

𝐻𝐾 = 𝑃𝑂𝐷 − 𝑃𝑂𝐹𝐷 =
𝐻𝐼𝑇𝑆

𝐻𝐼𝑇𝑆+𝑀𝐼𝑆𝑆𝐸𝑆
−

𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆

𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸𝑆+𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆
  (3-7) 

 

3.6.2.5 Frequency Bias 

The Frequency bias is the ratio between the forecasted events and the observed 

events. A perfect forecast has a bias of 1 (Jolliffe and Stephenson, 2003). A bias less than 1 

indicates under-forecasting, while a bias greater than 1 shows over-forecasting. The bias can 

be calculated with Equation 3-8: 

 

𝐵𝐼𝐴𝑆 =
𝐻𝐼𝑇𝑆+𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝑆

𝐻𝐼𝑇𝑆+𝑀𝐼𝑆𝑆𝐸𝑆
     (3-8) 

 

3.6.3 Eyeball verification 

Sections 3.6.1 and 3.6.2 deals with the statistical evaluations of the LTI against 

lightning and gives a quantitative evaluation of the overall performance of the model. Another 
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verification method is the old-fashioned eyeball method that visually compares a forecast 

against an observation (WWRP/WGNE Joint Working Group on Verification, 2015). 

The methodology of the LPI developed by Frisbie et al. (2009), which inspired this 

work, has been tested over South Africa and proved useful in certain conditions (Gijben, 2013). 

As was discussed in Chapter 2, the atmospheric conditions as well as the NWP models in 

South Africa and Colorado are different, which necessitated the development of the LTI for 

local conditions. It seems reasonable then to compare the Frisbie et al. (2009) LPI with the 

newly developed LTI for South Africa to determine if an improved lightning prediction model 

was developed. The LPI forecast assesses the lightning risk (low, moderate, severe and 

extreme) for the day while the newly developed LTI gives the probability of lightning 

occurrence. This makes a statistical comparison between the two difficult since they both 

provide different types of forecasts.  

The UM model produces daily forecasts of convective rainfall. Just like lightning, 

convective rainfall is associated with thunderstorm cloud (cumulonimbus) dynamics and 

microphysics (Petersen and Rutledge, 1998). It also seems reasonable to compare the newly 

developed LTI against the convective rainfall from the UM. This is to determine if a superior 

product to the standard convective rainfall from the UM was developed that can predict the 

areas where lightning will occur. The convective rainfall product forecasts the amount of 

rainfall in cm that can be expected, and as such provides a different type of forecast than both 

the LPI and LTI. 

By considering the differences in the types of forecasts discussed above, eyeball 

verification between the LPI, LTI, convective rainfall, and lightning occurrence was conducted 

by means of case studies to determine which of the three products performs the best. In total 

six cases were considered covering the SON months of 2013 and DJF months of 2013/14. 

One case from each of the months was randomly selected where significant amounts of 

lightning were observed. Table 3-3 shows the cases considered: 

  

Table 3-3: Case studies selected for the eyeball verification of the LPI, LTI and convective rainfall 
against the occurrence of lightning 

19 September 2013 20 December 2013 

10 October 2013 15 January 2014 

7 November 2013 6 February 2014 
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3.7 SUMMARY 

This chapter presented the data and methodologies used in this study. It started with 

an overview of the study period and domain, followed by a description of the lightning and 

NWP data utilised. The methods applied in the development of the new LTI were presented, 

which includes a description of the techniques used for the selection of the most appropriate 

parameters for lightning prediction as well as the development of the equations for the new 

LTI. The chapter ended with the evaluation methods used for the verification of the newly 

developed LTI.      
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CHAPTER 4 

DEVELOPMENT OF A NEW LIGHTNING THREAT INDEX 

 

4.1 INTRODUCTION 

This chapter deals with the development of the new LTI. The LTI was developed with 

CG lightning data from the SALDN as well as NWP data from the UM. Data from the 2011 and 

2012 SON and the 2011/12 and 2012/13 DJF seasons was utilised for the development of the 

LTI forecast over the daily period between 07:00 – 21:00 UTC. Before the new index could be 

developed, the most appropriate model parameters had to be selected from Table 3-1 that will 

predict the occurrence of lightning over South Africa the best. This was achieved by means of 

stepwise logistic regression techniques. Six model parameters were selected for both SON 

and DJF. These selected parameters could then be used in the development of the LTI, where 

a rare event logistic regression technique was utilised to produce 1,000 regression models. 

The models were combined to produce a single lightning prediction model from where the 

regression output was used to develop the equation of the new LTI. The LTI predicts the 

probability of lightning occurrence and an equation was produced for SON as well as DJF.  

 

4.2 PARAMETER SELECTION 

Before the new LTI could be developed, it was necessary to select the most 

appropriate NWP model parameters to include in the LTI model. Frisbie et al. (2009), whose 

work formed the basis of this study, utilised a form of CAPE, LI, PW, RH, Ɵe and air 

temperature in the development of his LPI for Colorado in the USA. More specifically they 

utilised the muCAPE0,3km_AGL, LI, total column PW, RHm10, ƟeΓ600, and the T850. However, the 

most appropriate combination of variables for South African conditions and operational NWP 

model had to be identified. The parameters utilised in this study are listed in Table 3-1 and are 

similar to those used by Frisbie et al. (2009), but different variations of these parameters were 

considered.  

In this study, the goal was to select the best performing CAPE, LI, PW, RH, Ɵe and air 

temperature capable of predicting the occurrence of lightning over South Africa that could 

ultimately be used in the development of the new LTI. To achieve this goal, both SAS and R 
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software’s were used to select the most appropriate parameters for lightning prediction by 

making use of stepwise logistic regression techniques. The SAS and R methodologies are 

similar, and serve the same purpose of selecting the most appropriate model parameters to 

include in the LTI. Both methodologies were considered to serve as an additional confirmation 

that correct parameters are chosen for the development of the LTI.  

In both the SAS and R procedures, separate stepwise regression models were 

considered for each main group of parameters. As an example, a stepwise regression was 

performed on all the CAPE parameters. The CAPE parameter that predicted lightning 

occurrence the best in the regression model was selected to be the most appropriate CAPE 

that could be used in the LTI. This was repeated for all the main groups. The candidate 

predictors from each main group of NWP parameters were added one-by-one to the 

regression model. After all of the parameters in a main group were added individually to the 

regression model, a second parameter was added to the model by means of forward and 

backwards addition/elimination, to produce two-parameter models. This continued until all the 

parameters from main groups were added to the regression model. Only the results from the 

one-parameter model of the regression procedure will be shown since only these results are 

of interest to select the top performing parameter from each main group.  

Lightning occurrence, represented by the binary outcome of 1 (lightning) and 0 (no 

lightning), was the dependent variable in both the SAS and R stepwise regression procedures, 

while the NWP model parameters from the UM were the independent variables. The 

regression procedures were performed on SON and DJF separately in order to determine the 

most appropriate parameters to predict lightning for the different seasons. This was necessary 

since the atmospheric conditions in South Africa are different between the seasons. In early 

summer, the atmospheric circulation is generally extra-tropical with a conditionally unstable 

atmosphere over certain parts of South Africa, while in late summer the circulation is tropical 

with a convectively unstable atmosphere (Dyson et al., 2015). These differences in the 

atmospheric circulation between seasons can result in the selection of different parameters to 

include in the LTI.  

In order to select the most appropriate NWP parameter to predict the occurrence of 

lightning in the SAS regression procedure, the score chi-square statistic was calculated for 

each NWP parameter added to the regression model. The parameter with the highest chi-

square statistic was selected to be the most appropriate parameter to predict lightning 

occurrence. A comparison between the chi-square value from the best one-parameter model 

and the chi-square value of the model with all the parameters from a main group added will 

be discussed. The output from the SAS regression models will be shown in tables that are 
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sorted numerically, where the parameter with the highest chi-square score is located at the 

top and the one with the lowest chi-square score at the bottom of the table i.e.: Table 4-1  

Just like with the SAS procedure, R software was also used select the most appropriate 

NWP model parameters to predict the occurrence lightning and to confirm the results found 

with the SAS regression procedure With the R regression procedure, the parameter with the 

lowest AIC score was selected to be the most appropriate parameter to predict lightning 

occurrence. Unlike with SAS, the stepwise regression in R did not continue with the addition 

of more than one parameter from a main group to the model. Only the first step of the stepwise 

regression was of interest since the aim was to select the one-parameter model that predicted 

lightning occurrence the best. The output from the R regression model will also be shown in 

tables that are sorted numerically. In these tables, the parameter with the lowest AIC value is 

located at the top and the one with the highest AIC at the bottom of the table i.e.: Table 4-2 

The output from the SAS and R stepwise regression models will now be discussed and 

results presented according to parameter group. At the end of Section 4.2, a summary will be 

provided on the six parameters selected for the SON and DJF seasons. 

 

4.2.1 Convective Available Potential Energy (CAPE) 

The first stepwise regression analysis was performed on all the CAPE parameters. 

Four different CAPE parameters were added together with lightning occurrence to the 

stepwise logistic regression models. The CAPE parameters considered in the analysis were 

the most unstable CAPE in the 0-3 km AGL range (muCAPE0,3km_AGL), most unstable CAPE in 

the 1-6 km AGL range (muCAPE1,6km_AGL), most unstable CAPE between the surface and 300 

hPa level (muCAPElowest,300), and finally the surface CAPE (CAPEsurf).  

From the SAS stepwise regression analysis, muCAPE1,6km_AGL had the highest score 

chi-square statistic for both SON and DJF (Table 4.1). This was followed by muCAPElowest,300 

and muCAPE0,3km_AGL, which had a chi-square score very similar to muCAPE1,6km_AGL. CAPEsurf 

had the lowest score chi-square statistic and this value was much lower compared to the other 

CAPE variables. muCAPE1,6km_AGL had a chi-square score of 5,927.18 for SON and 5,958.34 

for DJF. When all four of the CAPE parameters were added simultaneously to the regression 

model, the chi-square score was 6,005.20 for SON and 5,975.28 for DJF. As such, the chi-

square score increased by 78.02 for SON and by 16.94 for DJF. These small improvements 

to the chi-square scores show that the inclusion of all four of the CAPE parameters into the 

model did not add additional predictive value to the model compared to when only 
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muCAPE1,6km_AGL was used to predict the occurrence of lightning. Based on these results, the 

muCAPE1,6km_AGL parameter performed the best with the SAS regression model process and 

was selected to be the most appropriate parameter to predict lightning occurrence. 

 

Table 4-1: SAS output from the stepwise logistic regression model for all CAPE variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

5,927.18 muCAPE1,6km_AGL 5,958.34 muCAPE1,6km_AGL 

5,926.20 muCAPElowest,300 5,957.69 muCAPElowest,300 

5,926.19 muCAPE0,3km_AGL 5,957.69 muCAPE0,3km_AGL 

5,404.34 CAPEsurf 5,569.30 CAPEsurf 

 

In the R regression analysis, the muCAPE1,6km_AGL parameter once again performed 

the best since it had the lowest AIC score for both SON and DJF (Table 4-2). This was followed 

by muCAPElowest,300 and muCAPE0,3km_AGL, which had an AIC value very similar to 

muCAPE1,6km_AGL. CAPEsurf had the highest AIC value and was higher compared to the other 

CAPE parameters. The muCAPE1,6km_AGL had an AIC score of 88,602.42 for SON and 

126,330.31 for DJF, while CAPEsurf had an AIC value of 5,404.31 and 5,569.30 for the SON 

and DJF periods respectively. 

 

Table 4-2: R output of the stepwise logistic regression model for all CAPE variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

88,602.42 muCAPE1,6km_AGL 126,330.31 muCAPE1,6km_AGL 

88,608.10 muCAPElowest,300 126,332.75 muCAPE0,3km_AGL 

88,608.13 muCAPE0,3km_AGL 126,332.76 muCAPElowest,300 

90,488.28 CAPEsurf 128,122.26 CAPEsurf 
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Based on the results from the stepwise regression with SAS and R, muCAPE1,6km_AGL 

was selected to be the best CAPE to be used when predicting lightning occurrence since it 

had the highest chi-square score and the lowest AIC value. As was discussed in Section 

2.5.3.1 of Chapter 2, CAPE is strongly related to the updraft velocities in thunderstorms and 

plays an important role in the distribution of hydrometeors responsible for lightning formation 

(Murugavel et al., 2014; Singh and O’Gormon, 2015). Sufficient values of CAPE are required 

in the 0°C to -20°C level of a thunderstorm to ensure that the updraft provides the 

hydrometeors necessary for electrification to occur (Bright et al., 2005). In Figure 2-1, it was 

shown that the 0°C to -20°C level in a South African thundercloud is found approximately 3-6 

km above ground level. Since CAPE is closely related to updraft velocities in thunderclouds, 

sufficient CAPE is required as low as 1 - 3 km AGL to feed the charge separation zone of the 

storm (3 - 6 km AGL) with hydrometeors for electrification to occur. Updrafts are also important 

inside the separation zone to transport the positively charged ice particles to the top of the 

cloud. This can explain why the muCAPE1,6km_AGL parameter performed the best since strong 

updrafts are required below and inside the charge separation zone of a thundercloud.  

 

 

Figure 4-1: Box and whisker plots of muCAPE1,6km_AGL between 07:00 – 21:00 UTC for lightning 
and no Lightning. SON is shown on the left and DJF on the right. CAPE units are in J kg-1. The 
thick horizontal bar indicates the median value; the boxes denote the 25th –75th percentiles, and 
the whiskers show the full range of values. The circles indicate outliers.  

 

During SON, 75% of the muCAPE1,6km_AGL values were ≤1,000 J kg-1 when no lightning 

occurred, while 75% of the muCAPE1,6km_AGL values were ≥1000 J kg-1 when lightning did occur 
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(Figure 4-1). For the DJF period, 75% of the muCAPE1,6km_AGL values were ≤1,750 J kg-1 or 

less when no lightning occurred, while 75% of the muCAPE1,6km_AGL values were ≥1,750 J kg-

1 or more when lightning occurred. The muCAPE1,6km_AGL is useful to distinguish between the 

occurrence of lightning and no lightning. Figure 4-1 provides additional confirmation that this 

parameter is a good choice for lightning prediction over South Africa. During the SON period, 

muCAPE1,6km_AGL values above 1,000 J kg-1 can be a good indicator that lightning might occur, 

while muCAPE1,6km_AGL values of 1,750 J kg-1 or more during the DJF season can be indicative 

of lightning formation. 

 

4.2.2 Lifted Index (LI) 

The next parameter to be considered was the LI. Two different types of LI parameters 

were added together with lightning occurrence to the stepwise logistic regression models, and 

were the surface lifted index (SLI) and the best lifted index (BLI) (Table 3-1).  

The two LI parameters were added to the SAS model from where the score chi-square 

statistic was calculated. SLI had the highest score chi-score statistic during SON and DJF, 

while the score for BLI was considerably lower than that of the SLI (Table 4-3). The chi-square 

value of the SLI was 4,067.59 for SON and 4,470.85 for DJF. The BLI values of 2,088.78 and 

1,873.81 for SON and DJF were much lower. When both the SLI and BLI were added to the 

regression model, the score chi-square statistic was 4,516.43 for SON and 4,509.48 for DJF. 

As such, the chi-square score increased by 448.84 for SON period and by 38.63 for DJF. This 

shows that the inclusion of both forms of the LI into the model does not add additional 

predictive value, especially for DJF. The SLI was selected to be the best LI to predict lightning 

occurrence. 

 

Table 4-3: SAS output of the stepwise logistic regression models for all LI variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

4,067.59 SLI 4,470.82 SLI 

2,088.78 BLI 1,873.81 BLI 
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The two LI parameters were also added to the R model from where the AIC score was 

calculated. The SLI parameter had the lowest AIC score for both SON and DJF, while the BLI 

had the highest AIC value. The AIC value of BLI was considerably higher when compared to 

the SLI (Table 4.4). The SLI had an AIC score of 84,375.93 for SON, which is 12,498.69 lower 

than that of the BLI. For DJF, the SLI had an AIC value of 119,939.39, which is 19,323.13 

lower than that of the BLI parameter. The AIC scores show that the SLI was the parameter 

that performed the best. 

 

Table 4-4: R output of stepwise logistic regression for all LI variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

84,375.93 SLI 119,939.39 SLI 

96,874.62 BLI 139,262.52 BLI 

 

The SLI was selected to be the most appropriate form of the LI to predict lightning 

occurrence. As with CAPE, the LI is a good indicator of updraft strength and supplies the 

hydrometeors responsible for electrification to occur in a thundercloud (Singh and O’Gormon, 

2015). As was discussed in Section 2.5.3.2, the SLI provides the difference between the actual 

temperature of the environment at 500 hPa and the temperature a parcel will have when it 

was lifted adiabatically from the surface to the 500 hPa level (Haklander and Van Delden, 

2003). The 500 hPa level corresponds with the charge separation zone in a thundercloud. The 

BLI, used by Frisbie et al. (2013), is the most unstable LI obtained when a parcel is lifted from 

the levels between 850 hPa and 700 hPa up to the 500 hPa level. The reason why the BLI 

could have performed significantly worse than the SLI in this study can be due to some areas 

of South Africa being lower in pressure than the 850 hPa pressure level. As such, the 850 to 

700 hPa layer will be higher up in the atmosphere over these areas resulting in the instability 

near the surface to be missed. The SLI will capture the instability in the lower levels of the 

atmosphere missed by the BLI over the areas of South Africa lower in pressure than 850 hPa 

level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

64 
 

 

Figure 4-2: Box and whisker plots of SLI between 07:00 – 21:00 UTC for lightning and no 
lightning. SON is shown on the left and DJF on the right. SLI units are in ˚C. The thick horizontal 
bar indicates the median value; the boxes denote the 25th –75th percentiles, and the whiskers 
show the full range of values. The circles indicate outliers. 

 

During SON, 75% of the SLI values were ≥-3˚C when no lightning occurred, while 75% 

of the SLI values were ≤-3˚C when lightning did occur (Figure 4-2). For DJF the same applied, 

except that the SLI value was -5 ˚C. This shows that the SLI parameter can in most cases be 

useful to distinguish between the occurrence of lightning, and gives additional confirmation 

that this parameter is a good choice for lightning prediction over South Africa. A SLI value of 

-3 ˚C or less during SON, and a SLI value of -5 ˚C or less during DJF may be used as 

thresholds for lightning to occur. 

 

4.2.3 Precipitable Water (PW) 

Three different PW parameters were added together with lightning occurrence to the 

stepwise logistic regression models. The PW parameters considered were the mean PW in 

the 850-300 hPa level (PW850,300), mean PW in the 700-400 hPa level (PW700,400), and mean 

PW from the surface to 100 hPa level (PWsurf,100).  

In the SAS regression procedure, the three PW parameters were added individually to 

the model from where the score chi-square statistic was calculated. The analysis shows that 

PW850,300 had the highest score chi-score statistic for both SON and DJF. During SON and 

DJF, the chi-square score for PW700,400 and PWsurf,100 was considerably lower than that of 
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PW850,300 (Table 4.5). This was especially true for PWsurf,100. The chi-square value of PW850,300 

was 8,701.11 for SON and 5,680.31 for DJF, while the PWsurf,100 had a chi-square score of 

6,820.04 and 2,574.49 for SON and DJF respectively. If all three of the different PW 

parameters were added together in the regression model, the score chi-square statistic was 

8,721.76 for SON and 5,940.14 for DJF. This shows that the chi-square score increase by 

20.65 for SON and by 259.83 for DJF. When all three forms of PW are entered simultaneously 

into the model, no additional predictive value is achieved to the lightning prediction model 

compared to when only PW850,300 is utilised. This is true especially for SON. As such, PW850,300 

was selected to be the most appropriate PW parameter to predict the occurrence of lightning. 

 

Table 4-5: SAS output of stepwise logistic regression for all PW variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

8,701.11 PW850,300 5,680.31 PW850,300 

7,559.84 PW700,400 4,781.82 PW700,400 

6,820.04 PWsurf,100 2,574.49 PWsurf,100 

 

Table 4-6: R output of stepwise logistic regression for all PW variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

71,881.75 PW850,300 113,031.51 PW850,300 

77,236.62 PW700,400 122,863.53 PW700,400 

89,262.38 PWsurf,100 145,142.50 PWsurf,100 

 

PW850,300 had the lowest AIC score for both SON and DJF and was the parameter that 

performed the best (Table 4-6). PWsurf,100 had the highest AIC value and was considerably 

higher than the AIC value for PW850,300. PW850,300 had an AIC score of 71,881.75 (17,380.63 

lower than the PWsurf,100) for SON and 113,031.51 (32,110.99 lower than the PWsurf,100) for 
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DJF. Based on these results, PW850,300 was again the PW parameter that performed the best 

during SON and DJF and was selected to be the most appropriate PW parameter to use when 

predicting lightning occurrence. 

Based on the result from the SAS and R regression models, PW850,300 was selected to 

be the most appropriate form of the PW to predict lightning occurrence. As was discussed in 

Chapter 2, moisture is one of the requirements for lightning formation (or thunderstorm 

formation) and PW provided the liquid water content within a layer in the atmosphere (Burrows 

et al., 2005; Duplika and Reuter, 2006). PW850,300 corresponds well with the charging zone in 

a thundercloud and shows that sufficient moisture is required between the 850 hPa and 300 

hPa levels in the atmosphere for electrification to occur in storm. 

During SON, 75% of the PW850,300 values were ≤ 2 cm when no lightning occurred, 

while 75% of the PW850,300 values were ≥ 2.3 cm when lightning did occur (Figure 4-3). For 

DJF, 75% of the PW850,300 values were ≤ 2.8 cm when no lightning occurred, while the PW850,300 

values were ≥ 2.8 cm when lightning did occur. This shows that the PW850,300 parameter can 

in most cases be useful to distinguish between the occurrence of lightning, and gives 

additional confirmation that this parameter is a good choice for lightning prediction over South 

Africa. A PW850,300 value of ≥ 2.3 cm during SON season and ≥ 2.8 cm during DJF may be 

useful to determine if lightning will occur. 

 

 

Figure 4-3: Box and whisker plots of PW850,300 between 07:00 – 21:00 UTC for lightning and no 
Lightning. SON is shown on the left and DJF on the right. PW units are in cm. The thick horizontal 
bar indicates the median value; the boxes denote the 25th –75th percentiles, and the whiskers 
show the full range of values. The circles indicate outliers. 
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4.2.4 Relative Humidity (RH) 

Five different RH parameters were added together with lightning occurrence to the 

stepwise regression models. The different variations of RH considered in this analysis were 

the RH at the -10°C level (RHm10), mean RH between the -12°C and -18°C level (RHm12,m18), 

mean RH between 3-6 km AGL (aveRH3,6km_AGL), maximum RH between 3-6 km AGL 

(maxRH3,6km_AGL), and minimum RH between 3-6 km AGL (minRH3,6km_AGL).  

In the SAS regression procedure, minRH3,6km_AGL had the highest score chi-square 

statistic for SON, while aveRH3,6km_AGL had the highest score for DJF (Table 4-7). For both 

SON and DJF, RHm10, RHm12,m18 and maxRH3,6km_AGL performed considerably lower. In SON, 

aveRH3,6km_AGL, which was the top performing parameter in DJF, also performed considerably 

lower than minRH3,6km_AGL. During DJF however, the aveRH3,6km_AGL and minRH3,6km_AGL 

parameters were very similar. When all five of the RH parameters were added to the 

regression model, the score chi-square statistic was 7,025.88 for SON and 4,663.71 for DJF 

period. As such, the chi-square score increased by 154.44 for SON and by 279.65 for DJF. 

This shows that the inclusion of all five forms of the RH into the model does not add additional 

predictive value to the prediction of lightning occurrence compared to when only 

minRH3,6km_AGL and aveRH3,6km_AGL is used for SON and DJF. Based on these results from the 

analysis, the minRH3,6km_AGL parameter was selected for SON as the best form of RH to predict 

lightning occurrence, while during the DJF season the aveRH3,6km_AGL parameter was selected. 

 

Table 4-7: SAS output of stepwise logistic regression for all RH variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

6,871.44 minRH3,6km_AGL 4,384.06 aveRH3,6km_AGL 

5,789.37 aveRH3,6km_AGL 4,363.11 minRH3,6km_AGL 

4,556.92 RHm10 3,398.36 RHm10 

4,556.47 RHm12,m18 3,353.86 maxRH3,6km_AGL 

3,865.23 maxRH3,6km_AGL 3,062.44 RHm12,m18 
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From Table 4-8, minRH3,6km_AGL had the lowest AIC score for SON, while aveRH3,6km_AGL 

had the lowest AIC score during DJF. On the other end of the table, RHm12,m18 had the highest 

AIC value for both SON and DJF. During SON, minRH3,6km_AGL had an AIC score of 82,909.95, 

which is 7,118.28 lower than that of RHm12,m18. For DJF, aveRH3,6km_AGL had an AIC score of 

128,754.57. This is 10,338.89 lower than the AIC score of RHm12,m18. Just like in the SAS 

analysis, the results from the R regression model confirm that the minRH3,6km_AGL parameter 

performed the best during SON and the aveRH3,6km_AGL parameter performed the best during 

DJF. 

 

Table 4-8: R output of stepwise logistic regression for all RH variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

82,909.95 minRH3,6km_AGL 128,754.57 aveRH3,6km_AGL 

83,385.71 aveRH3,6km_AGL 130,608.02 minRH3,6km_AGL 

87,377.42 maxRH3,6km_AGL 131,387.89 maxRH3,6km_AGL 

88,584.35 RHm10 136,558.43 RHm10 

90,028.23 RHm12,m18 139,093.46 RHm12,m18 

 

The minRH3,6km_AGL parameter was selected to be the most appropriate parameter for 

lightning prediction during SON, while aveRH3,6km_AGL was selected for DJF. RH provides 

information on how close to saturation the atmosphere is. Studies by Berdeklis and List (2001) 

have shown that there is a good correlation between RH and the charge transfer in the 

electrification zone of a thundercloud. Xiong et al. (2006) found that lightning corresponds well 

with RH in longitudinal belts where RH values are greater than 74% and negatively with RH 

in longitudinal belts where the RH is less than 72%. They also found a similar result for 

latitudinal belts. This means that higher RH values in dry regions causes more lightning 

activity, while high RH values in wet regions lowers the levels of lightning activity. This same 

study also showed that when the RH is too high (greater than 72%) in wet regions, lightning 

can be supressed. When considering the typical charge structure of a thundercloud (Figure 2-

1, the 3-6km AGL corresponds well with the charge separation zone of the cloud. The output 

from the regression analysis shows that minRH3,6km_AGL is the most appropriate RH parameter 

during SON while aveRH3,6km_AGL is the most appropriate for DJF to predict lightning. In early 
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summer, the atmospheric circulation is generally extra-tropical with a conditionally unstable 

atmosphere over certain parts of SA and the atmosphere is drier compared to late summer. 

In late summer, the circulation is tropical with a convectively unstable atmosphere and more 

moisture is available (Dyson et al., 2015).  

 

 

Figure 4-4: Box and whisker plots of minRH3,6km_AGL during SON (left) and aveRH3,6km_AGL during 
DJF (right) between 07:00 – 21:00 UTC for lightning and no Lightning. RH units are in %. The 
thick horizontal bar indicates the median value; the boxes denote the 25th –75th percentiles, 
and the whiskers show the full range of values. The circles indicate outliers. 

 

During SON, 75% of the minRH3,6km_AGL values were ~38% or less when no lightning 

occurred, while 75% of the minRH3,6km_AGL values were ~45% or more when lightning did occur. 

For the DJF period, 75% of the aveRH3,6km_AGL values were ~58% or less when lightning did 

not occur, while 75% of the aveRH3,6km_AGL values were ~56% or more when lightning did 

occur. This shows that the minRH3,6km_AGL and aveRH3,6km_AGL parameters can in most cases 

be useful to distinguish between the occurrence of lightning, and gives additional confirmation 

that these parameters are good choices for lightning prediction over South Africa. A threshold 

value of 45% or more for minRH3,6km_AGL during the SON season and 58% or more for 

aveRH3,6km_AGL during the DJF season can be a good indicator that lightning will occur. 
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4.2.5 Equivalent Potential Temperature (Ɵe) 

Seven different Ɵe parameters were added together with lightning occurrence to the 

stepwise logistic regression models. The Ɵe parameters considered were the ƟeΓ between 

700 and 500 hPa (ƟeΓ700,500), ƟeΓ at 600 hPa (ƟeΓ600), ƟeΓ between 850 and 400 hPa 

(ƟeΓ850,400), ƟeΓ between 850 and 500 hPa (ƟeΓ850,500), ƟeΓ between 1 and 6 km AGL 

(ƟeΓ1,6km_AGL), ƟeΓ between the -10˚C and -20˚C level (ƟeΓm10,m20), and the surface Ɵe (ƟeΓsurf).  

In the SAS stepwise logistic regression, ƟeΓ700,500 had the highest score chi-square 

statistic for SON, while ƟeΓ850,400 had the highest chi-square value for DJF (Table 4-9). For 

both SON and DJF, ƟeΓm10,m20 had the lowest score chi-square statistic. Interestingly, 

ƟeΓ700,500, the best performing parameter during SON, did not perform well during DJF. The 

best performing parameter during DJF, ƟeΓ850,400, was the third best performing parameter 

during SON. When all seven of the Ɵe parameters were added to the regression model, the 

score chi-square statistic was 5,617.41 for SON and 5,401.02 for DJF. As such, the chi-square 

score increased by 915.10 for SON and by 895.10 for DJF. This shows that the inclusion of 

all seven forms of the Ɵe into the model does not add additional value to the lightning 

prediction. A comparison between the Ɵe parameters for SON and DJF show that differences 

exist and that Ɵe plays different roles in the prediction of lightning occurrence between the two 

seasons. 

 

Table 4-9: SAS output of stepwise logistic regression for all Ɵe variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

4,702.31 ƟeΓ700,500 4,505.92 ƟeΓ850,400 

4,602.85 ƟeΓ1,6km_AGL 3,853.54 ƟeΓsurf 

4,257.70 ƟeΓ850,400 3,727.38 ƟeΓ850,500 

3,771.14 ƟeΓ850,500 3,420.59 ƟeΓ1,6km_AGL 

3,713.37 ƟeΓsurf 2,813.12 ƟeΓ700,500 

3,665.83 ƟeΓ600 1,618.77 ƟeΓ600 

1,083.31 ƟeΓm10,m20 327.76 ƟeΓm10,m20 
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In the R regression procedure, the seven Ɵe parameters were added individually to 

the model from where the AIC score was calculated. ƟeΓ700,500 had the lowest AIC score for 

SON, while ƟeΓ850,400 had the lowest AIC score during DJF. The ƟeΓm10,m20 parameter had the 

highest AIC value during SON and DJF. During SON, ƟeΓ700,500 had an AIC score of 83,527.00 

(21,356.01 lower than the ƟeΓm10,m20) and ƟeΓ850,400 had an AIC score of 123,469.63 

(33,228.45 lower than the ƟeΓm10,m20) for DJF. Based on these results, the ƟeΓ700,500 performed 

the best during SON and ƟeΓ850,400 performed the best during DJF. 

 

Table 4-10: R output of stepwise logistic regression for all Ɵe variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

83,527.00 ƟeΓ700,500 123,469.63 ƟeΓ850,400 

85,267.96 ƟeΓ850,400 128,390.15 ƟeΓsurf 

87,293.15 ƟeΓ850,500 129,355.69 ƟeΓ850,500 

87,899.68 ƟeΓ1,6km_AGL 136,539.83 ƟeΓ1,6km_AGL 

90,102.71 ƟeΓ600 138,085.18 ƟeΓ700,500 

92,081.29 ƟeΓsurf 146,943.98 ƟeΓ600 

104,883.01 ƟeΓm10,m20 156,698.08 ƟeΓm10,m20 

 

Based on the results above, ƟeΓ700,500 was selected as the most appropriate parameter 

to predict lightning occurrence during SON, while ƟeΓ850,400 was selected for DJF. The lapse 

rate of Ɵe is useful to assess instabilities necessary for thunderstorms development, can be 

useful to assess changes in air masses, and can be used to estimate updraft velocities 

(Madhulatha et al., 2013; Dyson et al., 2015; Houstan and Wilhelmson, 2012; Cummings, 

2013; Huntrieser et al., 2007; Kuo, 1966). This means that ƟeΓ can be useful to describe the 

potential updrafts in thunderstorms, which supplies hydrometeors for charge separation in a 

thunderstorm. The differences in the parameters selected for SON and DJF can be due to the 

atmospheric conditions in South Africa being different between the seasons. In early summer, 

the atmospheric circulation is generally extra-tropical with a conditionally unstable atmosphere 

over SA, while in late summer the circulation is tropical with a convectively unstable 

atmosphere (Dyson et al., 2015). ƟeΓ measures the convective instability of a layer in the 
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atmosphere. ƟeΓ850,400 fairs well in both seasons but from these results, a thinner layer of 

convective instability in SON (between 700 and 500 hPa) is better associated with lightning.  

 

 

Figure 4-5: Box and whisker plots of ƟeΓ700,500 during SON (left) and ƟeΓ850,400 during DJF (right) 
between 07:00 – 21:00 UTC for lightning and no Lightning. ƟeΓ units are in K. The thick horizontal 
bar indicates the median value; the boxes denote the 25th –75th percentiles, and the whiskers 
show the full range of values. The circles indicate outliers.  

 

During SON, 75% of the ƟeΓ700,500 values were ≥ -5 K when no lightning occurred, while 

75% of the ƟeΓ700,500 values were ≤ -5 K when lightning did occur. For DJF, 75% of the 

ƟeΓ850,400 values were ≥ -12 K when lightning did not occur, while 75% of the ƟeΓ850,400 values 

were ≤ -12 K when lightning did occur. This shows that the ƟeΓ700,500 and ƟeΓ850,400 parameters 

can in most cases be useful to distinguish between the occurrence of lightning, and gives 

additional confirmation that these parameter is a good choice for lightning prediction over 

South Africa. A threshold value of ≤ -5 K for ƟeΓ700,500 during SON and ≤ -12 K for ƟeΓ850,400 

during DJF can be a good indicator that lightning might occur. It is interesting to note that 

during DJF the atmosphere is mostly convectively unstable even on occasions when no 

Lightning occurs.   
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4.2.6 Temperature 

The air temperature parameters considered were the temperature at 1.5 m above the 

ground (T1p5m), the temperature at 700 hPa (T700), the mean temperature between 850 hPa 

and 700 hPa (T850,700), and the mean temperature between 500 hPa and 300 hPa (T500,300).  

The SAS output in Table 4-11 shows that T850,700 had the highest score chi-square 

statistic during SON and DJF. T850,700 had a chi-square score of 1,161.85 for SON and a chi-

square score of 1,674.74 for DJF. T1p5m was the temperature parameter that performed the 

worst during SON, while T500,300 had the lowest chi-square score during DJF. When all four of 

the temperature parameters were added to the regression model, the score chi-square statistic 

was 1,271.96 for SON and 2,087.32 for DJF. As such, the chi-square score increased by 

110.11 for SON and by 412.58 for DJF. This shows that the inclusion of all four forms of 

temperature into the model does not add additional value to the lightning prediction, especially 

for SON. 

 

Table 4-11: SAS output of stepwise logistic regression for all temperature variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Chi-

Square 

Variables Included in 

Model 

Chi-

Square 

Variables Included in 

Model 

1,161.85 T850,700 1,674.74 T850,700 

1,114.29 T700 957.20 T700 

738.46 T500,300 725.57 T1p5m 

551.75 T1p5m 406.79 T500,300 

 

For the analysis with R (Table 4-12), T850,700 had the lowest AIC score for both SON 

and DJF. The T1p5m parameter had the highest AIC value during SON, while T500,300 had the 

highest AIC value during DJF. During SON, T850,700 had an AIC score of 102,927.19 (4,638.58 

lower than the T1p5m) and an AIC score of 147,184.06 (7,876.73 lower than the T500,300) for 

DJF. Based on these results, the T850,700 parameter performed the best during SON and DJF. 
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Table 4-12: R output of stepwise logistic regression for all temperature variables. 

Regression Models Selected by Score Criterion 

SON DJF 

Score AIC Variables Included in Model Score AIC Variables Included in Model 

102,927.19 T850,700 147,184.06 T850,700 

104,828.31 T700 153,294.85 T700 

107,561.45 T500,300 154,742.13 T1p5m 

107,565.77 T1p5m 155,060.79 T500,300 

 

Based on the results above, T850,700 was selected to be the most appropriate parameter 

to predict lightning occurrence. Surface heating from the sun is responsible for the convective 

processes that result in atmospheric instabilities (Bharatdwaj, 2006) and this means that 

temperature plays a big role in the development of thunderstorms. Price (2013) listed many 

studies (e.g. Williams, 1992; Williams, 1994; Williams, 2009; Reeve and Toumi, 1999; 

Markson and Price, 1999; Price, 1993; Price and Asfur, 2006; Markson, 2007), which have 

shown that lightning is closely related to the surface temperature. The regression analysis 

above shows that the average temperatures in the lowest 1500 m AGL (850 hPa to 700 hPa) 

level play an important role in lightning formation. 

 

 

Figure 4-6: Box and whisker plots of T850,700 during SON (left) and DJF (right) between 07:00 – 
21:00 UTC for lightning and no Lightning. Temperature units are in K. The thick horizontal bar 
indicates the median value; the boxes denote the 25th –75th percentiles, and the whiskers show 
the full range of values. The circles indicate outliers. 
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During SON, 75% of the T850,700 values were ≤ 290 K when no lightning occurred, while 

75% of the T850,700 values were ≥ 287 K when lightning did occur (Figure 4-6). For DJF, 75% 

of the T850,700 values were ≤ 292 K when no lightning occurred, while 75% of the T850,700 values 

were ≥ 290 K when lightning did occur. This shows that the T850,700 parameter can in most 

cases be useful to distinguish between the occurrence of lightning, and gives additional 

confirmation that this parameter is a good choice for lightning prediction over South Africa. 

There was a slight overlap between the temperature values when lightning did and did not 

occur. For SON, a temperature ≥ 290 K might be a good threshold value for lightning to occur 

and a value of ≥ 293 K for DJF. 

 

4.2.7 Summary of selected parameters 

The same variant of CAPE, LI, PW and temperature were selected for SON and DJF 

while different RH and ƟeΓ parameters were identified (Table 4-13). All of the parameters, 

except for LI, differ from the ones used by Frisbie et al. (2009) in their LPI. This highlights the 

importance of selecting the most appropriate parameters for different climatic regions and for 

the utilisation of a different NWP model when developing a lightning prediction model. 

 

Table 4-13: Summary of most appropriate parameters selected for the SON and DJF periods. 

SON DJF 

muCAPE1,6km_AGL muCAPE1,6km_AGL 

SLI SLI 

PW850,300 PW850,300 

minRH3,6km_AGL aveRH3,6km_AGL 

ƟeΓ700,500 ƟeΓ850,400 

T850,700 T850,700 
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4.3 DEVELOPMENT OF THE NEW LTI 

The new LTI was developed by making use of rare event logistic regression 

techniques. In this approach, the most appropriate parameters selected in Section 4.2 and 

listed in Table 4-13 were used as the independent variables in the regression analysis, while 

the binary outcome of lightning occurrence was the dependent variable. The rare event logistic 

regression procedure, discussed in Section 3.5.2, was followed. The aim was to develop an 

equation to predict lightning occurrence for SON and DJF separately. 

 

4.3.1 SON period 

The dataset for SON consisted of 137,864 observations, from which 3,945 were events 

and 133,919 were non-events. This essentially means that 137,864 grid boxes were 

considered during the SON period, where 3,945 grid boxes contained at least one lightning 

stroke (events) and 133,919 grid boxes did not contain any lightning strokes (non-events). 

Events were given a value of 1, while the non-events were given a value of 0. The six NWP 

model parameters listed in Table 4-13 had a value corresponding to the 137,864 grid boxes. 

The SON dataset used in the regression analysis looked similar to the example dataset shown 

in Table 3-2 and consisted of 137,864 lines. 

The rare event logistic regression procedure discussed in Section 3.5.2 was followed. 

All of the 3,945 events were taken together with a random sample of 3,945 non-events to form 

a new dataset. This new dataset was used to perform the rare event logistic regression that 

provided the output for the first regression model. From here the random sample of non-events 

were added back to the original dataset and had an equal probability of being selected again. 

This entire process was repeated 1,000 times, where a new random sample of non-events 

was selected for every model. In the end, there were 1,000 models, each with its own 

regression analysis output. The 1,000 models were combined by averaging the intercept term, 

regression coefficients and statistics output.  

  Table 4-14 shows the output of the rare-event logistic regression when the 1,000 

models were combined. The intercept term does not have a MPV and MPI value. The MPV is 

simply the largest value of a parameter (or smallest for parameters where a negative value is 

of importance) in the dataset. The MPI is the MPV multiplied by Coef and is a measure to 

determine the most important variables in the analysis (Guns and Vanacker, 2012; 

Vanwalleghem et al., 2008). Most of the values in Table 4-14 were rounded for presentation 

purposes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

77 
 

Table 4-14: Output from the rare event logistic regression for SON, providing the regression 
coefficients (Coef), p-value (P), standard error on Coef (SE), Odds ratio (Odds), z-value (Z), 
maximum parameter value (MPV) and measure of parameter importance (MPI) for the intercept 
term and the six model parameters. 

 Coef P SE Odds Z MPV MPI 

Intercept 81.256445 <0.05 1.8435 4.96E+35 44.08   

muCAPE1,6km_AGL -0.000034 0.35 3.15E-5 1.000 -1.09 7545.15 -0.26 

PW850,300 1.871132 <0.05 0.0549 6.5031 34.10 3.90 7.30 

SLI -0.307571 <0.05 0.0092 0.7352 -33.36 -17.05 5.24 

ƟeΓ700,500 -0.200460 <0.05 0.0059 0.8184 -34.11 -20.83 4.18 

minRH3,6km_AGL 0.021858 < 0.05 0.0008 1.0221 26.18 100.00 2.19 

T850,700 -0.307643 < 0.05 0.0066 0.7352 -46.36 298.81 -91.93 

 

The intercept term as well as five out of the six model parameters are significant at the 

5% significance level (P less than 0.05 and Z not being between -1.96 and +1.96) (Table 4.14). 

MuCAPE1-6km is the only exception. The MPI values also confirm that muCAPE1-6km is not as 

important when predicting lightning occurrence during SON since it has a very low MPI value 

compared to the other parameters. Since the muCAPE1-6km parameter was not significant 

during SON, it was discarded from the list of candidate predictors in Table 4-13. The rare-

event logistic regression procedure for SON, discussed above, was again repeated, but this 

time with muCAPE1-6km removed from the analysis. Only the remaining five parameters were 

considered in the new regression analysis. Table 4-15 shows the output of the new rare-event 

regression for SON. 

  

Table 4-15: Results from the new rare event logistic regression for the SON period with 
muCAPE1-6km removed from the analysis.  

 Coef P SE Odds Z MPV MPI 

Intercept 81.597771 <0.05 1.8112 6.612E+35 45.05   

PW850,300 1.858302 <0.05 0.0536 6.4196 34.70 3.90 7.25 

SLI -0.301027 <0.05 0.0070 0.7401 -42.72 -17.04 5.13 

ƟeΓ700,500 -0.199863 <0.05 0.0059 0.8189 -34.16 -20.83 4.16 

minRH3,6km_AGL 0.021953 <0.05 0.0008 1.0222 26.41 104.10 2.29 

T850,700 -0.308811 <0.05 0.0065 0.7343 -47.29 298.81 -92.28 
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The intercept term and all five of the model parameters are significant at the 5% 

significance level (P less than 0.05 and Z not being between -1.96 and +1.96). All of the 

parameters have a very low SE value, which means that the model fits the data well. T850-700 

plays the biggest role in the regression model as can be seen from the large MPI value. PW850-

300 is the second most important parameter, followed by the SLI, ƟeΓ700-500 and minRH3-6km.   

The intercept term and the regression coefficients listed in Table 4-15 could then be 

added to Equation 3-3 to produce the new LTI. The LTI for SON is given by Equation 4-1 that 

provides the probability of lightning occurrence. The output will give a value between 0 and 1, 

which can be multiplied by 100 to provide a probability between 0% and 100%. 

 

𝐿𝑇𝐼 =
1

1 + 𝑒−[�̂�+ 𝛽1̂(𝑃𝑊850,300)+𝛽2̂(𝑆𝐿𝐼)+𝛽3̂(𝜃𝑒𝛤700,500)+ 𝛽4̂(𝑚𝑖𝑛𝑅𝐻3,6𝑘𝑚_𝐴𝐺𝐿)+𝛽5̂(𝑇850,700)]
 

(4-1) 

 

Where:  �̂� = 81.597771 𝛽1̂ = 1.858302  𝛽2̂ = −0.301027 

𝛽3̂ = −0.199863 𝛽4̂ = 0.021953  𝛽5̂ = −0.308811 

 

4.3.2 DJF period 

The dataset for the DJF period consisted of 128,562 observations. From the 128,562 

grid boxes considered during DJF 6,118 grid boxes contained at least one lightning stroke 

(events) and 122,444 grid boxes contained no lightning strokes (non-events). The same 

techniques used for SON was applied to DJF and the output of the rare-event logistic 

regression when the 1,000 models were combined are shown in Table 4-16 

  The intercept term and all six of the model parameters are significant at the 5% 

significance level (P less than 0.05). The Z confirms that all of the parameters are significant 

since Z does not fall between -1.96 and +1.96. All of the parameters have a very low SE value, 

which means that the model fits the data well. T850-700 is by far the most important parameter 

in the regression model as can be seen from the large MPI value. ƟeΓ850-400 is the second 

most important parameter in the model, followed by the PW850-300, SLI, muCAPE1-6km and 

aveRH3-6km. 
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Table 4-16: Output from the rare event logistic regression for DJF.  

 Coef P SE Odds Z MPV MPI 

Intercept 96.37400 <0.05 1.8712 1.985E+42 51.50   

muCAPE1,6km_AGL -0.00036 <0.05 2.378E-5 0.9996 -15.23 6757.06 -2.45 

PW850-300 1.64985 <0.05 0.0349 5.2081 47.25 4.80 7.92 

SLI -0.27441 <0.05 0.0089 0.7600 -30.94 -13.63 3.74 

ƟeΓ850,400 -0.25384 <0.05 0.0039 0.7758 -64.75 -33.60 8.53 

aveRH3,6km_AGL 0.02284 <0.05 0.0007 1.0231 30.69 105.60 2.41 

T850-700 -0.36468 <0.05 0.0066 0.6944 -55.19 299.80 -109.33 

 

The intercept term and the regression coefficients listed in Table 4-16 could then be 

added to Equation 3-3 to produce the new lightning forecast. The LTI for DJF is given by 

Equation 4-2 that provides the probability of lightning occurrence. The output will give a value 

between 0 and 1, which can be multiplied by 100 to provide a probability between 0% and 

100%. 

 

𝐿𝑇𝐼 =
1

1 + 𝑒−[�̂�+𝛽1̂(𝑚𝑢𝐶𝐴𝑃𝐸1,6𝑘𝑚_𝐴𝐺𝐿)+ 𝛽2̂(𝑃𝑊850,300)+𝛽3̂(𝑆𝐿𝐼)+𝛽4̂(𝜃𝑒𝛤850,400)+ 𝛽5̂(𝑎𝑣𝑅𝐻3,6𝑘𝑚_𝐴𝐺𝐿)+𝛽6̂(𝑇850,700)]
 

(4-2) 

 

Where:  �̂� = 96.373973 𝛽1̂ = −0.000362 𝛽2̂ = 1.649851 

𝛽3̂ = −0.274410 𝛽4̂ = −0.253844 𝛽5̂ = 0.022844 

𝛽6̂ = −0.364683 
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4.4 SUMMARY 

Chapter 3 deals with the development of the new LTI. Stepwise logistic regression 

techniques were utilised to select the most appropriate NWP model parameters to predict the 

occurrence of lightning over South Africa. During SON, the most unstable CAPE in the 1-6 km 

above ground level, surface Lifted Index, mean Precipitable Water between the 850 and 300 

hPa levels, minimum Relative Humidity in the 3-6 km above ground level, Equivalent Potential 

Temperature lapse rate between 700 and 500 hPa, and mean Temperature between 850 and 

700 hPa proved to be the most appropriate parameters. For the DJF season, the same 

parameters were selected except that the minimum Relative Humidity in the 3-6 km above 

ground level was replaced with the average Relative Humidity in the 3-6 km above ground 

level, and the Equivalent Potential Temperature lapse rate between 700 and 500 hPa was 

replaced with the Equivalent Potential Temperature lapse rate between 850 and 400 hPa. 

The six parameters selected for each season were utilised to develop the new LTI by 

means of rare event logistic regression techniques. Two equations were produced, one for 

SON and one for DJF. The muCAPE1,6km_AGL parameter was omitted from the LTI equation 

during SON, since it did not add value to the forecast. As such, five parameters were utilised. 

For DJF, all six of the selected parameters were used. Both equations make use of the 

selected NWP model parameters to predict the probability of lightning occurrence. This new 

LTI will utilise UM model output early in the morning to provide a probability forecast of where 

lightning is expected to occur between 07:00 and 21:00 UTC. 
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CHAPTER 5 

VERIFICATION OF THE LIGHTNING THREAT INDEX 

 

5.1 INTRODUCTION 

 In the previous chapter the statistical techniques used to develop of the new LTI were 

described. Two LTI’s are proposed for the SON and DJF seasons separately. This chapter 

will evaluate the performance of the newly developed LTI over independent SON and DJF 

seasons to determine how well the index performs when predicting the occurrence of lightning. 

The new LTI was developed over the 2011 and 2012 SON and 2011/12 and 2012/13 DJF 

seasons, while the evaluation was performed on the 2013 SON and 2013/14 DJF seasons. 

In section 5.2 and 5.3, a quantitative evaluation of the new LTI against the occurrence 

of lightning will be performed over SON and DJF. Section 5.2 will deal with the probabilistic 

verification of the LTI, while dichotomous verification statistics will be shown in section 5.3. 

The chapter ends with a visual comparison, by means of case studies, of the original LPI, 

newly developed LTI and UM convective rainfall forecast against the occurrence of observed 

lightning. The case studies will demonstrate the output of the product that will be used in an 

operational environment. 

 

5.2 PROBABILISTIC VERIFICATION 

This section deals with the probabilistic evaluation of the new LTI against observed 

lightning. The LTI is a probabilistic forecast, and as such, this section provides the main 

evaluation results of this chapter. From the probabilistic evaluation scores the sensitivity, 

reliability and sharpness of the LTI will be examined. For this a ROC analysis, reliability 

diagram, and sharpness diagram will be considered. 
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5.2.1 ROC curve 

The ROC analysis performed on the LTI (Figure 5-1) shows how well the LTI can 

distinguish between the occurrences and non-occurrences of lightning over all possible 

probability values.  

During both the SON and DJF seasons, the ROC curves in Figure 5-1 approaches the 

top left corner of the diagram and falls way above the no skill diagonal line. The curves show 

that the LTI has a high sensitivity (or high hit rate) and high specificity (or low false alarm rate) 

across all of the possible probability ranges. The high sensitivity indicates that the LTI correctly 

predicts the lightning events, while the high specificity shows that the LTI correctly predicts 

the lightning non-events. One can conclude from the ROC curves in Figure 5-1 that the LTI 

discriminates well between lightning occurrences and non-occurrences and that the LTI 

forecasts are accurate.   

The ROC curves in Figure 5-1 are also accompanied by an AUC value that gives a 

representation of the overall performance of the LTI. During SON, the AUC value was 0.927, 

and for DJF it was 0.899. Since an AUC value of 1.0 represents a perfect forecast, and a value 

of 0.5 or less represent a worthless forecast (Fawcett, 2006), the LTI performed really well, 

since the AUC values are close to 1.0. The AUC was slightly higher for SON than for DJF. 

 

 

Figure 5-1: ROC curves and AUC values for the UM LTI forecasts during (a) SON of 2013 and (b) 
DJF of 2013/14.  
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5.2.2 Reliability 

The reliability plots of the probabilistic LTI forecasts are depicted in Figure 5-2. These 

diagrams show how well the forecasted probabilities of the LTI correspond with the observed 

frequency of lightning occurrence (Weisheimer and Palmer, 2014). The probabilities in Figure 

5-2 are divided into 10 probability bins. 

During SON (Figure 5-2a), the LTI over-forecasts the observed frequency of lightning 

occurrence. This is evident from the curve falling quite a bit under the diagonal line. For the 

first bin, the forecast is reliable, but becomes increasingly more unreliable towards the 8th bin, 

and then starts moving back to the diagonal line. The LTI forecast during SON generally over-

forecasts the lightning. 

The reliability diagram for DJF (Figure 5-2b) looks much better than that of the SON. 

The LTI only slightly over-forecasts the observed frequency of lightning occurrence, which is 

evident from the curve falling just under the diagonal line. The forecast starts out reliable in 

the first bin, then slightly moves away from the diagonal line up to about the 6th bin, from where 

it gradually moves back to the diagonal line. This shows that the LTI forecast is reliable during 

the DJF season and much more reliable than the LTI forecasts for the SON period.  

 

 

Figure 5-2: Reliability diagrams for the UM LTI forecasts during (a) SON of 2013 and (b) DJF of 
2013/14  
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5.2.3 Sharpness 

The sharpness diagrams in Figure 5-3 measures, as the name suggests, the 

sharpness of a forecast, which is a measure of how the relative frequency of lightning 

occurrence varies across all the probabilities of the LTI forecast (Callado et al., 2013). The 

probabilities of the sharpness diagrams in Figure 5-3 are divided into 10 bins. 

The LTI forecast has good sharpness during SON and DJF since the sharpness 

diagrams have a U-shape distribution. The most number of forecasts are made in the first 

probability bin for both the SON and DJF seasons, from where it decreases to the sixth 

probability bin for SON and fifth bin for DJF. From here, it then starts to increase again. During 

DJF, the number of forecasts in the ninth probability bin is higher compared to the tenth 

probability bin.   

 

 

Figure 5-3: Sharpness diagrams for the UM LTI forecasts during (a) SON of 2013 and (b) DJF of 
2013/14 

 

5.3 DICHOTOMOUS VERIFICATION 

This section provides the results from the contingency table evaluation as discussed 

in Section 3.6.2. Since the LTI forecast provides the probability of lightning occurrence as 

output, this dichotomous evaluation had to be performed over the entire range of probabilities. 

Probability thresholds in intervals of 10% were considered to calculate the evaluation statistics 

for areas of the domain where the LTI probabilities exceeded certain threshold values. At first, 
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the statistics are calculated for the area of the LTI forecast where the probabilities exceed 0% 

(the entire forecast domain). Then the scores are calculated for the areas where the LTI 

forecast probabilities are greater than 10%, and so forth. This continues in intervals of 10% 

until the last threshold is reached where the probabilities of the LTI are greater than 90%. In 

the first interval, the POD is high, but so is the POFD and FAR. From here, the POD 

decreases, but so does the POFD and FAR. This approach evaluates the performance of the 

LTI over all of the probabilities of the forecast and is useful to determine at what probability 

threshold of the LTI one is likely to see lightning. 

 

Table 5-1: Contingency table for all the probability thresholds of the UM LTI during SON of 2013. 

Probabilities 

(%) 
Hits Misses False Alarms 

Correct  

Negatives 

>0 9,099 0 59,574 0 

>10 8,887 212 23,889 35,685 

>20 8,727 372 18,721 40,853 

>30 8,542 557 15,531 44,043 

>40 8,326 773 13,038 46,536 

>50 8,078 1,021 10,901 48,673 

>60 7,794 1,305 8,963 50,611 

>70 7,373 1,726 7,110 52,464 

>80 6,682 2,417 5,116 54,458 

>90 5,266 3,833 2,839 56,735 

 

The statistical scores shown in Figure 5-4 were calculated from the contingency table 

shown in Table 5-1. For probabilities > 0%, the POD is 1.0, but the POFD (1.0) and FAR (0.87) 

is also high. This is due to the area of probabilities > 0% consisting of the entire study domain, 

so all lightning activity will be captured (no misses and correct negatives), but there will be a 

large number of false alarms where no lightning occurred. The HK score is also 0 for this 

threshold. For the next threshold (probabilities greater than 10%), the POD remains high 

(0.98), the FAR decreases to 0.73, the POFD drops to 0.4, and the HK score increases to 

0.58. From here, as the probability threshold increases, the POD gradually decreases, 

reaching a minimum of 0.58 when the probability threshold is 90%. The same applies for the 

POFD and FAR, reaching its lowest value of 0.05 and 0.35 respectively when the probability 
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threshold is 90%. The HK score increases up to the 60% probability threshold, reaching a 

maximum value of 0.706, and then starts decreasing again. 

The POD values are high for all probability thresholds while the POFD values are low. 

This shows that the LTI performs well since it is able to identify the lightning events while at 

the same time also identify the non-events. The FAR is high, which indicates that the LTI does 

somewhat over-forecast lightning occurrence during SON. This confirms the result obtained 

from the reliability plot in the previous section. Since the HK score measures the overall 

performance of how well the LTI forecast can distinguish between the lightning events and 

non-events, the maximum HK value of 0.706 when the probabilities exceed 60%, is a good 

threshold value to predict areas where lightning is likely to occur. 

 

 

Figure 5-4: Statistical scores for the UM LTI forecasts during SON of 2013.  

 

Another measure of how the LTI is over or under-forecasting lightning activity during 

the SON season is the frequency bias shown in Figure 5-5. A perfect bias is 1.0. For the first 

interval, the bias is very large (7.55). From here, the bias decreases as the probability 

threshold increases. By the time the threshold reaches the 60% probability interval, where the 

HK was the highest, the bias is 1.84, indicating that the LTI does still over-forecast the lightning 

occurrence. The LTI bias is 0.89 when the probability threshold is 90%, indicating slight under-

forecasting. It can be concluded from Figure 5-5 that the LTI over-forecasts for all probabilities, 

except for the 90% threshold, but the bias does improve with higher probabilities.  
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Figure 5-5: Frequency bias for the UM LTI forecasts during SON of 2013. 

 

Table 5-2: Contingency table for all the probability thresholds of the UM LTI during DJF of 
2013/14. 

Probabilities 

(%) 
Hits Misses False Alarms 

Correct  

Negatives 

>0 18,393 0 47,963 0 

>10 18,077 316 24,120 23,843 

>20 17,712 681 18,728 29,235 

>30 17,196 1,197 15,071 32,892 

>40 16,488 1,905 11,986 35,977 

>50 15,457 2,936 9,336 38,627 

>60 13,877 4,516 6,842 41,121 

>70 11,455 6,938 4,452 43,511 

>80 7,734 10,659 2234 45,729 

>90 2,656 15,737 570 47,393 

 

The statistical scores for DJF shown in Figure 5-6 was calculated from the contingency 

table shown in Table 5-2. Once again, in the first threshold, when the probabilities are > 0%, 

the POD is 1.0, but the POFD (1.0) and FAR (0.72) is high. This is due to the area of 
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probabilities > 0% consisting of the entire study domain, so all lightning activity will be captured 

(no misses and correct negatives), but there will be a large amount of false alarms where no 

lightning occurred. The HK score is also 0 for this threshold. For the next threshold 

(probabilities greater than 10%), the POD remains high (0.98), the FAR decreases to 0.57, 

the POFD drops to 0.5, and the HK score increases to 0.48. From here, as the probability 

threshold increases, the POD gradually decreases, reaching a minimum of 0.13 when the 

probability threshold is 90%. The same applies for the POFD and FAR, reaching its lowest 

value of 0.012 and 0.177 respectively when the probability threshold is 90%. The HK score 

increases up to the 40% probability threshold, reaching a maximum value of 0.64, and then 

starts decreasing again. 

 

 

Figure 5-6: Statistical scores for the UM LTI forecasts during DJF of 2013/14.  

 

The POD values are high for all probability thresholds, up to 70%, from where it 

decreases to below 0.6. The POFD values are low, especially for larger probability thresholds. 

This shows that the LTI performs fairly well since it is able to correctly identify the lightning 

events while at the same time also identify the non-events. The FAR is high, which indicates 

that the LTI does somewhat over-forecast lightning occurrence during the DJF season, but is 

lower compared to the FAR values of the SON period. This confirms the result obtained from 

the reliability plot in the previous section where the LTI slightly over-forecasts the occurrence 

of lightning. Since the HK score measures the overall performance of how well the LTI forecast 

can distinguish between the lightning events and non-events, the maximum HK value of 0.64 
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when the probabilities exceed 40%, is a good threshold value for DJF to look for areas where 

lightning is likely to occur. 

 

 

Figure 5-7: Frequency bias for the LTI forecasts during the DJF period. 

 

In the first probability interval of Figure 5-7, the bias is 3.6. This shows considerable 

over-forecasting but can be expected due to the area of probabilities > 0% consisting of the 

entire study domain. From here, the bias decreases, showing that probabilities up to 70% 

over-forecasts, while probabilities exceeding 70% under-forecasts the occurrence of lightning. 

By the time the threshold reaches 40%, where the HK is the highest, the bias is 1.55, indicating 

that the LTI does still slightly over-forecast the lightning occurrence.  

 

5.4 EYEBALL VERIFICATION 

Section 5.2 and 5.3 dealt with the quantitative evaluation of the newly developed LTI 

against the occurrence of lightning in the 2013 SON and 2013/14 DJF seasons. In order to 

evaluate how the newly developed LTI forecast compares with the original Frisbie et al., (2009) 

LPI and the convective rainfall forecast from the UM, a qualitative evaluation was performed 

against lightning occurrence. The new LTI was compared qualitatively with the old LPI, which 

uses the Frisbie et al., (2009) methodology, in order to determine if a superior product was 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

90 
 

developed. Similarly, the UM model produces a convective rainfall product that forecast the 

amount of precipitation from convective storms on the ground, which can be used as a proxy 

for the occurrence of lightning. As a result the new LTI was compared to the convective rainfall 

forecast of the UM to determine whether the LTI improves upon the convective rainfall product. 

Since the output of the original LPI was given by four risk categories ranging from low to 

extreme risk, the output from the new LTI is in probabilities, and the convective rainfall is 

measured in centimetres, a quantitative evaluation between the different forecasts would have 

been difficult to perform. As such, a visual comparison between the three different forecasts 

and the occurrence of lightning are shown. This also provides examples of how the final output 

of the new LTI will look in an operational environment.  

The original LPI, new LTI and convective rainfall forecasts were for the period between 

07:00 and 22:00 UTC and were compared with the sum of observed lightning strokes during 

this period. The six case studies considered were selected randomly as days where the size 

of the daily lightning data file indicated that a fair amount of lightning occurred. One day from 

each month of the evaluation period was selected.  

 

5.4.1 Case 1: 19 January 2013 

On 19 September 2013, a narrow band of lightning activity occurred over South Africa 

(Figure 5-8). The band of lightning activity extends from Botswana in the north-western parts 

of the domain, towards the Eastern Cape and Indian Ocean in the south-eastern parts of the 

domain.  

The UM convective rainfall forecast did identify a band of convective rainfall in the 

general area where the lightning occurred. Areas over Botswana were detected quite well but 

not the areas over the north-eastern parts of the Northern Cape and south-western parts of 

the Free State. Over these regions, the forecast was displaced from where the lightning activity 

occurred. Only light convective rain (0.1-10 cm) were predicted. The lightning activity over the 

Eastern Cape and off the coast was mostly missed by the UM convective rainfall forecast, but 

it did forecast the area over the ocean in the south-eastern most parts of the domain. Over the 

Western Cape and along the west coast of the country large amounts of convective rainfall 

were predicted in association with a cold frontal system. No lightning was observed in this 

area but convective precipitation, which occurs in association with cold fronts over these 

areas, are from shallow convective cloud (cold air cumulus) which seldom produce any 

lightning (Taljaard, 1995).  
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The LPI did forecast lightning for most of the areas where lightning occurred but also 

identified extensive areas where no lightning occurred. Over the central to northern parts of 

the Free State, almost no lightning occurred, but the LPI predicted that there is a high risk of 

lightning activity. Similarly, over most of the North West Province and KwaZulu-Natal, the LPI 

forecasted a high and extreme risk of lightning, yet no lightning occurred.  

 

 

Figure 5-8: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 19 September 2013 between 07:00 and 22:00 UTC. 

 

A visual comparison between the LTI and the lightning occurrence show a good 

agreement. In the previous section it was stated that probabilities exceeding 60% is a good 

threshold to use to predict lightning. When the areas with probabilities exceeding 60% are 

considered for the LTI (orange shades on Figure 5-8 – top left), there is good agreement with 

the observed lightning. However, even then the LTI predicted lightning to far east over the 

Northwest and Free State provinces and no lightning was observed over Kwa-Zulu Natal. 

Almost all of the noteworthy areas where lightning occurred can be seen in the areas where 

the probabilities are 70% or more. Not a lot of lightning activity occurred in the areas where 
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the probabilities were lower than 60%, but in the few isolated areas where it did, the LTI was 

able to identify it. Also, as with the UM convective rainfall, the LTI forecasted an area of low 

probabilities over the Western Cape and along the west coast of the country where no lightning 

occurred. From all the forecasts, the new LTI seemed the most able to capture the occurrence 

of lightning on this day. 

 

5.4.2 Case 2: 10 October 2013 

The 10 October 2013 case, shown in Figure 5-9, is an example of where none of the 

forecast products performed well. This example illustrates that the products derived from the 

UM model can only be as good as the UM prognosis for a specific day. Nevertheless, the 

value of the LTI is illustrated in this case study, as it was capable of identifying areas of 

lightning risk where the convective rainfall predicted no rainfall. On this day lightning occurred 

over the north-eastern parts of the country, extending into Botswana. 

 The UM convective rainfall forecast did not perform well at all on this day. Rainfall of 

less than 1.0 cm was predicted and none of this over South Africa. No rainfall was predicted 

over the extensive area where lightning was observed. 

Most of South Africa, Namibia and Botswana were under moderate to extreme risk of 

lightning according to the LPI. The high and extreme risk areas over the northern parts of the 

North West Province, Gauteng, south-western parts of Limpopo, eastern parts of 

Mpumalanga, and Botswana did at least predict the lightning that occurred over these areas. 

No lightning occurred over the Western Cape, Eastern Cape, central to southern Free State, 

and most of the Northern Cape, yet the LPI predicted moderate and even high and extreme 

risk of lightning in those areas. The area over northern KwaZulu-Natal, where the most 

lightning activity occurred, was not predicted by the LPI. 

Lightning did occur in most of the areas where the LTI probabilities exceeded 60%, 

over South Africa, except for the area in the northern parts of the Northern Cape. The LTI did 

identify the area that received the most lightning activity over the northern parts of KwaZulu-

Natal and this area was not forecasted by the LPI. Areas over the North West Province and 

northern to north-eastern parts of the Free Sate, where lightning did occur, only showed low 

probabilities of 10% and 30% of lightning risk. The LTI performed better than the LPI over the 

Free State and the Northern, Western and Eastern Cape, since the forecasted areas were 

smaller and low probabilities can be seen. The LTI was capable to identify areas of lightning 

risk over the north-eastern parts of the country and outperformed the other two products as a 
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lightning prediction tool. However, one should consider that the convective rainfall forecast of 

the UM endeavours to predict rainfall on the ground and not lightning. It may be that very little 

rainfall was observed on the ground in the north-eastern parts of South Africa.  

 

 

Figure 5-9: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 10 October 2013 between 07:00 and 22:00 UTC. 

 

5.4.3 Case 3: 7 November 2013 

On this day, the LPI and the LTI predicted similar areas of lightning over the northern 

provinces of South Africa and KwaZulu-Natal (Figure 5-10). Lightning was observed in a 

similar area although slightly west of the predicted areas. In this case, the LTI again 

outperformed the UM convective rainfall forecast.  

The UM convective rainfall forecast, predicted rainfall over southern Mpumalanga and 

KwaZulu-Natal. Lightning did occur over these areas, but the forecast completely missed the 

lightning over the Limpopo Province, Gauteng, north-eastern parts of the North West Province, 

Free State, eastern parts of KwaZulu-Natal and Lesotho. 
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Figure 5-10: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 7 November 2013 between 07:00 and 22:00 UTC. 

 

Most of the areas where the LPI predicted a moderate to extreme risk of lightning 

matched up with the observed lightning. The LPI failed to identify the lightning over the south-

western parts of the Free State and along the coast of KwaZulu-Natal. It also somewhat 

struggled to predict the lightning over the North West Province. In general, it predicted the 

lightning further east than the actual occurrence.  

The LTI produced a similar forecast compared to the LPI, where the areas of lightning 

probability exceeding 60% were similar to the high and extreme risk areas of the LPI, and 

probabilities greater than 40% matching up with the moderate risk areas. The LTI forecasted 

the lightning along the coast and off the shore of KwaZulu-Natal better than the LPI, while 

areas of observed lightning over the North West Province were also captured more accurately 

by the LTI.  

On 7 November 2013, the convective rainfall forecast missed most of the observed 

lightning, while the LPI and LTI were very similar. The moderate to extreme risk areas of the 
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LPI forecast, and LTI probabilities exceeding 40% predicted the occurrence of lightning fairly 

well. Some areas were missed by both the LPI and LTI, but the LTI performed slightly better 

than the LPI. 

 

5.4.4 Case 4: 20 December 2013 

On 20 December 2013, lightning occurred over the southern to north-western parts of 

South Africa (Figure 5-11). Most lightning occurred over the Northern Cape, north-western 

parts of the Western Cape, the Eastern Cape, and southern Namibia. A few isolated storms 

can be seen over the North West Province, Free Sate, Lesotho, KwaZulu-Natal, Gauteng, 

Limpopo and Mpumalanga. 

The UM convective rainfall forecast did not perform at all, where only small areas over 

the Northern Cape, Eastern Cape and Namibia predicted convective activity. The areas over 

Botswana, Zimbabwe, Swaziland, Limpopo Province and Western Cape did not match up with 

lightning occurrence. Most of the areas where lightning occurred were missed by the 

convective rainfall forecast. 

The LPI performed well on this day. Areas of high to extreme risk compared well with 

the observed lightning. There was some over-forecasting over the Free State, while the 

lightning off the coast of the Eastern Cape and over the North West Province fell in the 

moderate risk category. The isolated storms over Limpopo, Mpumalanga, Gauteng and 

western parts of the North West Province were not forecasted by the LPI. 

Like the LPI, the LTI also performed well. Most of the lightning activity occurred in the 

areas where the LTI probabilities exceeded 60%. The remaining lightning activity was 

captured by the lower probabilities. As with the LPI, the LTI over-forecasted the lightning over 

the Free State, but was able to forecast the lightning off the coast of the Eastern Cape and 

also the isolated storms over Limpopo, Mpumalanga, Gauteng and western parts of the North 

West Province. Both the LPI and LTI outperformed the convective rainfall as a lightning 

prediction tool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

96 
 

 

Figure 5-11: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 20 December 2013 between 07:00 and 22:00 UTC. 

 

Figure 5-12 shows a comparison between the LTI and convective rainfall forecast on the actual 

UM resolution against the LTI and convective rainfall forecast on the 0.5° X 0.5° resolution 

utilised in this study. Due to the extensive computational time, the amount of computing 

resources available and the long periods considered, the coarser grid had to be implemented 

in this study. If the model grid resolution was utilised in this study, there would have been a 

22 times increase in computation time of all the parameter extractions, calculations and the 

regression analysis. It was thus decided that utilising the model grid would have been 

unfeasible. This comparison shows that the increase in resolution provides much more detail 

in the forecasts, but the general patterns of the forecasts are similar. The similarities between 

the higher and lower resolution forecasts also demonstrate that the equations developed from 

the coarser resolution can be directly applied to a higher resolution model. As such, the 

coarser grid was used only for the development of the LTI, and the equations can still be 

applied to a higher resolution model when the product becomes operationally available. 
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Figure 5-12: LTI on UM 12 km resolution (top left), LTI on 0.5° X 0.5° resolution (top right), UM 
convective rainfall in cm on UM 12 km resolution (bottom left), and UM convective rainfall on  
0.5° X 0.5° resolution (bottom right) for 20 December 2013 between 07:00 and 22:00 UTC. 

 

5.4.5 Case 5: 15 January 2014 

Figure 5-13 shows that on the 15th of January 2014, lightning occurred over the central 

parts of the country, extending into Namibia. The UM convective rainfall forecast failed to 

predict any of the lightning that occurred over the country. 

The LPI did not perform too well on this day. Lightning risk were in the high and extreme 

risk categories over the northern parts of the Eastern Cape, the Free State, Northern Cape 

and Namibia however, certain parts were over-forecasted. The lightning over the northern 

parts of the Free State, Gauteng, eastern Mpumalanga, and the North West Province were 

predicted as being at moderate risk of lightning. Areas over the northern parts of the North 

West Province, Limpopo Province and Northern Cape were not predicted by the LPI. 

The LTI performed really well on this day. When comparing the area of lightning activity 

with the forecast area of the LTI, one can see that there is an excellent agreement between 

the two patterns. Most of the lightning activity was observed in the areas where the 
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probabilities ≥ 60%. The remaining lightning activity occurred in areas with lower probabilities, 

especially when the probabilities were ≥ 40%. Some areas over Mpumalanga and KwaZulu-

Natal were over-forecasted, while the small isolated storms over the southern parts of the 

Northern Cape were missed. 

 

 

Figure 5-13: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 15 January 2014 between 07:00 and 22:00 UTC. 

 

5.4.6 Case 6: 6 February 2014 

The last case study considered, 6 February 2014, is shown in Figure 5-14. During this 

day, lightning occurred over the northern parts of South Africa and Botswana. The UM 

convective rainfall forecast expected rainfall along the Western Cape coast, southern Free 

State and northern parts of the Eastern Cape, as well as over the Indian Ocean. No lightning 

was however recorded in these areas. Rainfall was forecasted over parts of Gauteng, 

Mpumalanga, North West Province, Limpopo Province and Botswana, where lightning did 
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occur. Most of the lightning over the Limpopo and Mpumalanga provinces were not identified 

by the convective rainfall forecast. 

 

 

Figure 5-14: LPI (top left), LTI (top right), UM convective rainfall in cm (bottom left), and 
occurrence of lightning (bottom right) for 6 February 2014 between 07:00 and 22:00 UTC. 

 

The LPI under forecasted the occurrence of lightning. Only a small area of high and 

extreme risk was seen over eastern Botswana, the northern parts of the North West Province 

and western parts of the Limpopo province. The LPI did not perform well with predicting the 

lightning over Mpumalanga, Gauteng, and some parts of Botswana. It also failed to predict the 

lightning over the Free State and some parts of the North West Province. 

The LTI performed well. Most lightning activity were seen when the probabilities 

exceeded 60%, while some lightning also occurred at lower probabilities. Some over-

forecasting by the LPI occurred, especially over southern Botswana where there were gaps 

between the storms. The LTI forecast however outperformed the LPI and convective rainfall 

forecast on this day. 
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5.5 SUMMARY 

The evaluation of the newly developed LTI was presented in this chapter. A quantitative 

evaluation was performed over an entire SON and DJF season, which was independent from 

the two seasons utilised in the development of the LTI. Both probabilistic as well as 

dichotomous evaluation techniques were utilised to perform the quantitative evaluation of the 

LTI. The new LTI, together with the LPI and UM convective rainfall forecast, were compared 

with lightning observations by means of six case studies. 

A probabilistic evaluation showed that the LTI forecasts have a high sensitivity and 

specificity for both the SON and DJF seasons. The LTI is not as reliable during the SON 

season, since it over-forecasts the occurrence of lightning. During the DJF season, the LTI 

forecast is reliable, only slightly over-forecasting the lightning. Lastly, the results also show 

that the LTI produces sharp forecasts during both the SON and DJF seasons. 

The evaluation statistics from the dichotomous verification show that for both the SON 

and DJF seasons the LTI can successfully identify the lightning events while at the same time 

also identify the non-events. This is seen in the high POD values for all probability thresholds 

while the POFD values are low. The FAR is high, which indicates that the LTI does over-

forecast lightning occurrence, especially during the SON season. This was confirmed by the 

results from the frequency bias. HK scores show that LTI probabilities exceeding 60% for the 

SON period, and 40% for the DJF period, can be good threshold values to anticipate lightning 

activity.  

Six case studies were presented, where the new LTI, original LPI and UM convective 

rainfall forecasts were compared to observations of lightning. From all three of the products, 

the LTI provided the most accurate forecast for all six of the days. The convective rainfall 

forecast performed poorly as a lightning prediction tool, while the LPI did reasonably well. The 

LTI provided an accurate forecast in five of the cases, while the LPI did well in three of them. 

All three of the products underperformed on the day when the LTI did not perform too well, 

and shows that there will be cases when the forecasts will struggle. This is due to the NWP 

model data used as input to the forecasts not being able to provide an accurate representation 

of reality on particular days. On the three days when the LPI performed well, the forecasts 

from the LPI and LTI were similar, but the LTI provided the superior forecast on these days.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

6.1 INTRODUCTION 

Lightning is a phenomenon that can cause injury or death to humans and animals 

(Blumenthal et al., 2012), damage to infrastructures (Lynn and Yair, 2010), and can be a 

hazard to various sectors like the aviation and forestry industries (Price, 2013). South Africa 

is a country that experiences large amounts of lightning every year that results in numerous 

deaths, injuries and damages. In order to reduce the risk there is a need for products that can 

provide operational weather forecasters and the public with lightning forecasts. Methods exist 

to aid in the forecasting of thunderstorms and the associated lightning (Kohn et al. 2011, 

McCaul et al. 2009, Lynn & Yair, 2010), but accurate forecasts remains a challenge. To the 

author’s knowledge, no product currently exists in South Africa that attempts to directly 

forecast the potential lightning threat. 

Past studies have shown many NWP model parameters to be related to lightning 

formation and have been utilised internationally to produce lightning forecasts. The work done 

by Frisbie et al., (2009), that motivated this study, is an example of such a lightning forecast. 

The parameters and methodology utilised by Frisbie et al. (2009) for Colorado in the USA was 

tested over South Africa and showed promising results to assess the lightning risk over the 

country. However, atmospheric conditions in South Africa are different from those in the USA, 

and as a result, the parameters utilised to produce the lightning forecast will be different. The 

NWP model utilised in Colorado also differ from the one used at the South African Weather 

Service and therefore the LPI is not ideal for South African conditions and NWP models.  

 

6.2 SUMMARY 

This section of the chapter provides a summary of all the objectives in this study and 

highlights the main results. 
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6.2.1 Objective 1: Identification of candidate NWP model predictors 

Frisbie et al. (2009) developed a Lightning Potential Index for the State of Colorado in 

the USA. In their index, a form of Convective Available Potential Energy (CAPE), Lifted Index 

(LI), Precipitable Water (PW), Equivalent Potential Temperature (Ɵe), Relative Humidity (RH) 

and air temperature was used. The CAPE, LI and Ɵe, which are measures of conditional, 

latent, and potential instability respectively, provides useful insights into the buoyancy of air 

parcels in the atmosphere (Peppler, 1988; Kunz, 2007; Dyson et al., 2015). They are also 

linked to potential updrafts that supply thunderclouds with the hydrometeors necessary for 

electrification, as well as to distribute these charged particles in a thundercloud (Kuo, 1966; 

Smith et al., 2000; Bright et al., 2005; Murugavel et al., 2014; Singh and O’Gormon, 2015). In 

order for thunderstorms to develop and to ensure that sufficient amounts of hydrometeors are 

present for the electrification of a thundercloud, the availability of moisture is vital (Colson, 

1960; Berdeklis and List, 2001; Burrows et al., 2005; Xiong et al., 2006). PW and RH are 

useful parameters to monitor the amount of moisture available and how close to saturation the 

atmosphere is. Solar heating plays an important role in the distribution of lightning across the 

globe since air temperature is related to water vapour concentrations as well the instabilities 

that drive thunderstorm and lightning development (Bharatdwaj, 2006; Price, 2013; Laliberté 

et al., 2015). 

The first aim of this study was to select the most appropriate NWP parameters capable 

of predicting the occurrence of lightning over South Africa. Since the six parameters mentioned 

above are closely related to the processes necessary for the development and electrification 

of thunderclouds, it seemed reasonable to consider these parameters as possible predictors 

of lightning over South Africa. Many different forms of these parameters exist that are 

calculated between different levels in the atmosphere. Frisbie et al. (2009) utilised a specific 

form of CAPE, RH, LI, PW, Ɵe, and air temperature in their LPI that was found useful for the 

prediction of lightning in Colorado, USA. The atmospheric conditions in South Africa differ from 

those in the USA, and as a result, it was necessary to identify parameters suitable for local 

conditions. In this study, different variations of the six parameters were selected from the 

literature. The selected parameters were found useful in other studies to predict lightning or 

thunderstorms. 

In total, 25 parameters were selected from literature. This include four different CAPE 

parameters, two LI parameters, seven types of Ɵe, three PW parameters, five RH’s, and four 

different temperature parameters. These parameters are listed in Table 3-1 of Chapter 3. 

Among them are the six parameters utilised by Frisbie et al. (2009).  
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6.2.2 Objective 2: Selection of the most appropriate NWP model parameters for 

lightning prediction. 

In total 25 NWP model parameters were selected as potential predictors of lightning. It 

is likely that not all of these parameters will perform equally when predicting the occurrence of 

lightning. Utilising all 25 parameters to develop an index to provide a lightning forecast is also 

not desirable. As such, the goal was to identify the most appropriate parameters capable of 

predicting the occurrence of lightning over South Africa. There were six groups of parameters: 

CAPE, PW, RH, LI, Ɵe, and temperature. In each group, there are different variations of the 

parameters. These variations of the parameters in every group provide similar information, but 

are calculated between different levels in the atmosphere. Only one parameter out of each 

group had to be selected that best describes the conditions favourable for the electrification of 

a thunderstorm.  

In order to select the best parameters to predict lightning, SAS statistical software was 

used to perform a full (backwards and forwards) stepwise logistic regression by using Firth’s 

Penalised Likelihood method. The parameters from each of the 6 main groups were added in 

turn to the stepwise regression models. The most appropriate parameter was selected by 

making use of the chi-square value from the score chi-square statistic. A stepwise regression 

with R-software was also performed to confirm the results from the SAS analysis. Once again, 

the parameters from each of the 6 main groups were added in turn to the stepwise regression 

models, but instead the most appropriate parameter was selected by making use of the AIC. 

These regression procedures were performed separately for SON and DJF, since the weather 

patterns differ between the two seasons, which resulted in the selection of different 

parameters.  

The results from the stepwise regression with SAS and R software yielded the same results. 

For SON the following six parameters were selected: 

 Most unstable Convective Available Potential Energy in the 1-6 km above ground level 

range  

 Surface Lifted Index 

 Mean Precipitable Water in the 850 to 300 hPa layer 

 Minimum Relative Humidity in the 3-6 km above ground level layer 

 Equivalent Potential Temperature lapse rate between 700 and 500 hPa 
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 Mean Temperature in the 850-700 hPa layer 

 

Four out of the six selected parameters for SON were the same for DJF, where only the RH 

and Ɵe parameters differed. The parameters selected for DJF is: 

 Most unstable Convective Available Potential Energy in the 1-6 km above ground level 

range  

 Surface Lifted Index 

 Mean Precipitable Water in the 850 to 300 hPa layer 

 Average Relative Humidity in the 3-6 km above ground level layer 

 Equivalent Potential Temperature lapse rate between 850 and 400 hPa 

 Mean Temperature in the 850-700 hPa layer 

 

The above-mentioned parameters were found to describe the processes involved in 

the formation of lightning over South Africa the best, since they were able to distinguish 

between the events and non-events of lightning occurrence. The selection of these parameters 

leads to the following conclusions: 

1. CAPE is strongly related to the updraft velocities in thunderstorms and plays an 

important role in the distribution of hydrometeors responsible for lightning formation 

(Murugavel et al., 2014; Singh and O’Gormon, 2015). Sufficient values of CAPE are 

required in the 0°C to -20°C level of a thunderstorm to ensure that the updraft provides 

the hydrometeors necessary for electrification to occur (Bright et al., 2005). The 0°C to 

-20°C level in a South African thundercloud is found at about 3-6 km above ground 

level. Since CAPE is closely related to updraft velocities in thunderclouds, sufficient 

CAPE is required as low as 1-3 km AGL to feed the charge separation zone of the 

storm (3-6 km AGL) with hydrometeors for electrification to occur. Updrafts are also 

important inside the separation zone to transport the positively charged ice particles to 

the top of the cloud. This can explain why the most unstable convective available 

potential energy in the 1 - 6 km above ground level range parameter performed the 

best since strong updrafts are required below and inside the charge separation zone 

of a thundercloud. 
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2. As with CAPE, the surface lifted index is a good indicator of updraft strength and 

indicates the availability of the hydrometeors responsible for electrification to occur in 

a thundercloud (Singh and O’Gormon, 2015). The surface lifted index provides the 

difference between the actual temperature of the environment at 500 hPa and the 

temperature a parcel will have when it was lifted adiabatically from the surface to the 

500 hPa level (Haklander and Van Delden, 2003). This 500 hPa level corresponds with 

the charge separation zone in a thundercloud, where sufficient hydrometeors are 

required for electrification to occur. 

3. Moisture is one of the requirements for lightning formation (or thunderstorm formation) 

and precipitable water is used to estimate the amount of moisture available in the 

atmosphere (Burrows et al., 2005; Duplika and Reuter, 2006). The mean precipitable 

water in the 850 to 300 hPa layer corresponds well with the charging zone in a 

thundercloud and shows that sufficient moisture is required between the 850 hPa and 

300 hPa levels in the atmosphere for electrification to occur in storm. 

4. RH provides information on how close to saturation the atmosphere is and this 

influences lightning formation. Studies by Berdeklis and List (2001) have shown that 

there is a good correlation between RH and the charge transfer in the electrification 

zone of a thundercloud. Xiong et al. (2006) found that lightning corresponds well with 

RH in longitudinal belts where RH values are greater than 74% and negatively with RH 

in longitudinal belts where the RH is less than 72%. They also found a similar result for 

latitudinal belts. This means that higher RH values in dry regions causes more lightning 

activity, while high RH values in wet regions lowers the levels of lightning activity. This 

same study also showed that when the RH is too high (greater than 72%) in wet 

regions, lightning can be supressed. When considering the typical charge structure of 

a thundercloud, 3-6 km above the ground corresponds well with the charge separation 

zone of the cloud. The output from the regression analysis shows that the minimum 

RH in the 3 - 6 km above ground level layer is the most appropriate RH parameter 

during SON and the average RH in the 3 - 6 km above ground level layer is the most 

appropriate for DJF to predict the occurrence of lightning. 

5. The lapse rate of Ɵe is useful to assess instabilities necessary for thunderstorms 

development, can be useful to assess changes in air masses, and can be used to 

estimate updraft velocities (Madhulatha et al., 2013; Dyson et al., 2015; Houstan and 

Wilhelmson, 2012; Cummings, 2013; Huntrieser et al., 2007; Kuo, 1966). This means 

that ƟeΓ is useful to describe the potential updrafts in thunderstorms, which supplies 

hydrometeors for charge separation in a thunderstorm. The differences in the 
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parameters selected for SON and DJF can be due to the atmospheric conditions in 

South Africa being different between the seasons. In early summer, the atmospheric 

circulation is generally extra-tropical with a conditionally unstable atmosphere over SA, 

while in late summer the circulation is tropical with a convectively unstable atmosphere 

(Dyson et al., 2015). ƟeΓ measures the convective instability of a layer in the 

atmosphere. ƟeΓ between 850 and 400 hPa fairs well in both seasons but from these 

results, a thinner layer of convective instability in SON (between 700 and 500 hPa) is 

better associated with lightning. 

6. Surface heating from the sun is responsible for the convective processes, which result 

in atmospheric instabilities (Bharatdwaj, 2006), and therefore plays a big role in the 

development of thunderstorms. Many studies have shown that lightning is closely 

related to the surface temperature. The regression analysis above shows that 

temperatures between the 850 hPa to 700 hPa levels play an important role in lightning 

formation. 

 

6.2.3 Objective 3: Development of a new lightning prediction index 

After the most appropriate parameters, capable of predicting the occurrence of 

lightning, were identified, the development of the new LTI could commence. Since the goal 

was to develop a single index that utilises the different model predictors to forecast the binary 

outcome of lightning occurrence (yes or no), attention was given to binary logistic regression 

techniques.  Logistic regression is often used to predict the probability of an event by means 

of a set of predictors (Kiezun et al., 2009). This technique fits the goal, and will provide a 

probability forecast of lightning occurrence. Initial tests in the development of the LTI by means 

of ordinary logistic regression revealed that probabilities of lightning occurrence are extremely 

low. Upon further investigation it was discovered that a study by King and Zeng (2001) showed 

that ordinary logistic regression often underestimates the probabilities of rare events (Guns 

and Vanacker, 2012). This underestimation is due to the logistic regression favouring the 

larger amount of non-events (0’s) compared to the smaller amount of events (1’s) when 

developing a model. This proved to be true in the development of the LTI, and it was decided 

to make use of an approach developed by King and Zeng (2001) to perform a rare event 

logistic regression. In the development of the LTI the following approach was followed: 

1. Take all the events (1’s or lightning occurrences) in the dataset and select a random 

sample of non-events (0’s or no lightning occurrences) with equal size from the data. 
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2. Run the ‘Zelig’ package in R to perform a rare event logistic regression with the bias 

correction and addition of the correction term to the estimated probabilities. 

3. Repeat the above steps 1000 times by selecting a new sample of random non-events 

(0’s or no lightning occurrences). The random samples of non-events are taken with 

repetition where the non-events of the previous sample are added back to the dataset 

and have the chance to be chosen again. 

 

The 1000 models produced by the procedure above were combined by averaging their 

output. This means that the average of the intercept term and regression coefficients of the 

1000 models was calculated. This process is similar to the bootstrap aggregating technique 

that aims to improve any instability found in the estimation of the regression output (Kotsiantis 

et al., 2006). 

This process was performed on both SON and DJF. Lightning and model data for two 

SON and DJF seasons were used in the development of the LTI. The six parameters selected 

for both seasons in the previous section were utilised in the steps described above. During 

the analysis of the output from the regression procedure, it was discovered that for SON the 

muCAPE1,6km_AGL parameter was not significant since it had a large P-value. The 

muCAPE1,6km_AGL parameter was discarded from the SON list of predictors, and the regression 

analysis was repeated with the remaining five parameters. During DJF all six of the selected 

parameters, including muCAPE1,6km_AGL were used.  

The regression coefficients obtained from the analysis was then used to set up the 

equations for the LTI. The equation of the LTI for SON contains five parameters (Equation 4-

1 in Chapter 4), while the equation for DJF contains six parameters (Equation 4-2 in Chapter 

4). Both equations make use of the selected NWP model parameters to predict the probability 

of lightning occurrence. This new LTI utilises NWP model output early in the morning to 

provide a probability forecast of where lightning is expected to occur during the day between 

07:00 and 21:00 UTC. 

 

6.2.4 Objective 4: Quantitative evaluation of the new lightning prediction index 

A quantitative evaluation of the new LTI was performed over an entire SON and DJF 

season, which was independent from the two seasons utilised in the development of the LTI. 
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Both probabilistic as well as dichotomous evaluation techniques were considered in the 

quantitative evaluation of the LTI.  

A probabilistic evaluation showed that the LTI forecasts have a high sensitivity and 

specificity for both SON and DJF. The LTI is not as reliable during SON as DJF, since it over-

forecasts the occurrence of lightning quite significantly, but during DJF, the LTI forecast is 

reliable, only slightly over-forecasting the lightning activity. Lastly, the results also show that 

the LTI produces sharp forecasts during both SON and DJF. 

The evaluation statistics from the dichotomous verification show that for both SON and 

DJF the LTI can successfully identify the lightning events while at the same time also identify 

the non-events. This is because the POD values are high for all probability thresholds while 

the POFD values are low. The FAR is high, which indicates that the LTI does over-forecast 

lightning occurrence, especially during SON. This was confirmed by the results from the 

frequency bias. HK scores show that LTI probabilities exceeding 60% for SON, and 40% for 

DJF, can be good threshold values to anticipate lightning activity. 

 

6.2.5 Objective 5: Qualitative evaluation of the new index against existing 

products 

The new LTI was also evaluated qualitatively by means of six case studies, where the 

forecasts from the LTI, the Frisbie et al. (2009) LPI, and the Unified Model convective 

precipitation forecast, were compared with lightning observations. From all three of the 

products, the LTI provided the most accurate forecast for all six of the days. The convective 

rainfall forecast performed poorly, while the LPI did reasonably well. The LTI provided an 

accurate forecast in five of the cases, while the LPI did well in three of them. All three of the 

products underperformed on the day when the LTI did not perform well, and shows that there 

will be cases when the forecasts will be wrong. This is due to the NWP model data used as 

input to the forecasts not being able to provide an accurate representation of reality on 

particular days. On the three days when the LPI performed well, the forecasts from the LPI 

and LTI were similar, but the LTI provided the superior forecast on these days. 
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6.3 RECOMMENDATIONS  

The following recommendations can be made from this study: 

1. Six types of NWP model parameters were utilised in this study and showed the ability 

to distinguish between lightning events and non-events. Many other types of 

parameters not considered in this study can also be obtained from NWP models. 

These parameters should be investigated and might add additional value to the 

lightning forecast. As an example, vertical velocities from the model might also be 

useful in a lightning forecast since it can provide information on the updrafts that feeds 

a storm with the hydrometeors necessary for lightning formation. 

2. Many of the lightning prediction techniques, including the LTI developed in this study, 

make use of thermodynamic parameters to forecast lightning. These techniques 

perform well to forecast the occurrence of lightning, but have a lower capability to 

forecast the amount of lightning. Many NWP models are capable of forecasting various 

microphysical parameters related to the charge separation in thunderstorms, and has 

proved to be very capable in the prediction of lightning amounts. Studies are needed 

to investigate the plausibility of using cloud microphysical fields from NWP models to 

predict the occurrence of lightning in South Africa. 

3. Due to the extensive computation times involved in this study because of the long 

periods considered, the LTI was developed on a 0.5° X 0.5° grid over South Africa. 

The NWP model utilised in this study produced its output on a higher resolution than 

considered in this study, and was recently upgraded to produce forecasts on an even 

higher resolution. The LTI should be tested on the higher resolution models to 

determine if the forecasts will provide more detail. 

4. This new LTI product should be made available to operational weather forecaster or 

users interested in lightning forecasts, since it can be useful to give guidance early in 

the morning on the areas of interest where lightning can be expected during the day 

and hopefully aid in the warning of end users. Users of the LTI should however be 

aware of the uncertainty associated with any weather forecast and especially when 

using NWP data to generate the forecast. 

5. The LTI forecasts have high sensitivity, specificity and sharpness but are not so 

reliable, especially during SON, since it over-forecasts the occurrence of lightning quite 

significantly. For DJF, the LTI forecast is reliable, only slightly over-forecasting the 
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lightning activity. More research is required to identify the causes of the overestimation 

in order to improve the forecast. 

6. The Unified Model, which is the operational NWP model at the South African Weather 

Service, covers the entire SADC domain, and as such, this product can be extended 

to cover other African countries south of the equator. A lightning forecast over these 

developing countries, where limited technology is available, can add tremendous 

value. 

 

6.4 CONTRIBUTION TO SCIENCE 

In this study several NWP model parameters, calculated from the UM, were identified 

to be useful to predict the occurrence of lightning over South Africa. Not only could these 

model parameters be used in the development of a new LTI for South Africa, but they can also 

be used in future lightning studies since they have been proved to be closely related to the 

conditions that govern the formation of lightning. The LTI developed in this study is the first of 

its kind in South Africa. Although many similar lightning prediction products have been 

developed in other countries, to the author’s knowledge no other products exist in South Africa 

that directly attempts to predict the occurrence of lightning. Many lightning prediction schemes 

exist in other countries that used ordinary logistic regression techniques for the development 

of the products. This study proposes a rare-event logistic regression approach to predict the 

occurrence of lightning, which is an under-utilised technique in the field of lightning prediction. 

The approach followed in this study is not restricted to the prediction of lightning and can be 

applied to similar studies across various disciplines. This work also demonstrates that 

historical lightning data from the sophisticated SALDN operated by SAWS can be utilised in 

many different ways to improve our understanding of thunderstorms and their associated 

lightning. The LTI will be a useful tool to operational weather forecasters or sectors interested 

in lightning forecasts, to provide guidance early in the morning on the areas of interest where 

lightning can be expected during the day, and can ultimately contribute to society by aiding 

with timely warnings of lightning or thunderstorms to protect humans, animals and property. 
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