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Abstract

In this paper the two dimensional numerical topology optimization of a high

conductive conduit material, distributed within a heat-generating material,

is investigated with regards to the effect of orthotropic materials. Specif-

ically, materials with orthotropic thermal conductivities (different primary

and secondary principal thermal conductivities).

Two cases are considered in this study, namely the optimal distribution of

an isotropic conduit material within an orthotropic heat generating material ;

and the optimal distribution of an orthotropic conduit material within an

isotropic heat-generating material. A finite volume method (FVM) code,

coupled with the method of moving asymptotes (MMA); the solid isotropic

with material penalization (SIMP) scheme; and the discrete adjoint method,

was used to find the optimal distribution of the high conductive conduit

material within the heat generating material.

For the optimal distribution of an isotropic conduit material within an

orthotropic heat-generating material is was found that a heat-generating ma-

terial angle 10◦ ≤ θ0 ≤ 60◦ is preferred, for a higher thermal performance, and

∗Corresponding author
Email addresses: Logan.Page@up.ac.za (L.G. Page ), Jaco.Dirker@up.ac.za (J.

Dirker )

Preprint submitted to International Journal of Heat and Mass TransferSeptember 29, 2016



a heat-generating material angle θ0 < 10◦ and θ0 > 60◦ should be avoided.

For the optimal distribution of an orthotropic conduit material within an

isotropic heat-generating material is was found that an optimal conduit ma-

terial angle exists giving the best thermal performance (lowest τmax ). It was

found that the optimal conduit material angle remains the same for different

conductivity ratios and different heat-generating material angles. It was also

found that the optimal conduit material angle directly corresponds to the

domain aspect ratio, θ1,opt = tan−1(2H/L) , with a minimum improvement

of 3% and a maximum improvement of 50% of the thermal performance when

using an orthotropic conduit material over that of an isotropic conduit ma-

terial. A 50% improvement of the thermal performance effectively translates

to either double the allowable heat generation or half the peak operating

temperature of the isotropic heat-generating material .

Keywords: Topology optimization, Conduction cooling, Heat-generating

volume, Orthotropic material, Two dimensional

1. Introduction

The strive for higher power densities in electronics has been the driving

force behind many of the miniaturization efforts, augmentations and uncon-

ventional ways of extracting heat from heat-generating volumes. Of interest,

in many such investigations, is the optimization of conductive cooling paths

(formed by a high conductive conduit material) within a heat-generating

material with the condition that only a limited amount of volume be used

as the conduit material. As described by Bejan [7], this volume-to-point or

volume-to-surface type problem is one whereby heat is generated volumet-

rically (in a low conductive volume of given size) which must be channeled

2



Nomenclature

A coefficient matrix Greek symbols

B source term matrix β material orientation angle

C length of isothermal boundary θ material angle

f(φ) objective function λ adjoint vector

g1(φ) inequality constraint τmax non-dimensional thermal performance

H domain height φ design variable

kr thermal conductivity ratio φmax volume ratio limit

k thermal conductivity vector Φ arbitrary field

k1, k2 conductivity components Ω material domain

kx, ky conductivity components

L domain length Subscripts

N increments for the penalization factor 0 heat-generating material

q̇ heat generation rate 1 conduit material

R(Φ) residual opt optimum

s, s0 MMA asymptote factors

T temperature Superscripts

T0 boundary temperature I optimization iteration

Tave average temperature P penalization factor

Tmax maximum temperature T matrix transpose

V volume

Vt total domain volume

x, y Cartesian coordinates
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(through a high conductive conduit material) either to a point or surface on

the boundary of the volume.

The volume-to-point or volume-to-surface type problem thus requires

finding the optimal distribution of a limited amount of conduit material to

augment the transport of heat within a heat-generating volume to predefined

boundary regions. An optimal conduit material architecture leads to either a

reduction in peak operating temperature at a given heat generation rate; or

an increase in allowable heat generation rate and heat flux for a given peak

operating temperature. This, in general, leads to the overall effect of higher

effective power densities within the volume.

The augmentation of the volume-to-point or volume-to-surface type prob-

lem has been approached by a number of different methods, such as: utiliz-

ing constructal theory for various geometrically shaped volumes [1, 4, 7, 8,

13, 27, 31]; and embedding predefined conduit material geometries within a

heat-generating volume [14–16]. The optimization of predefined non-complex

conduit material geometries are effective in augmenting the power densities

with the added benefit of tailoring the conduit material geometry for ease

of manufacturability. Such predefined geometries, however, impose restric-

tions on the conduit material architecture and may be far from the optimum

solution as shown by Boichot et al. [10] and Song and Guo [32].

Approaches which involve shape and topology optimization have also been

utilized to derive conduit material architectures. Li et al. [24, 25] investi-

gated two-dimensional heat conduction using an evolutionary structural op-

timization method. Gao et al. [18] investigated two-dimensional conduction

problems using a modified bi-directional evolutionary structural optimization

scheme. Boichot et al. [10] investigated cellular automaton with the goal of

effectively cooling a heat-generating surface by arranging the configuration
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of high conductive material links. Cheng et al. [12] and Song and Guo [32]

implemented bionic optimization in the construction of highly effective heat

conduction paths. Xu et al. [35] investigated the volume-to-point problem

using simulated annealing, which proved to perform better than constructal

theory and bionic optimization.

Dirker and Meyer [17], Gersborg-Hansen et al. [19], Marck et al. [26] and

Zhang and Liu [36] investigated the two dimensional topology optimization

of the conduit material within a heat-generating volume for isotropic mate-

rial. Burger et al. [11] extended this approach to a three dimensional study

for a cubic domain with an isothermal boundary. It was found that the op-

timal topologies, obtained for the two- and three-dimensional studies, were

similar to those of natural trees. Alexandersen et al. [2, 3] also considered

the topology optimization of two- and three-dimensional heat sinks cooled

by natural convection, also leading to optimal topologies similar to natural

trees.

In this paper, the method of moving asymptotes (MMA) [34] gradient

based optimization algorithm is utilized, along with the solid isotropic with

material penalization (SIMP) method and discrete adjoint method [20, 33], in

order to determine the optimal conduit material architectures. Specifically,

for materials with orthotropic thermal conductivities (different primary and

secondary principal thermal conductivities).

2. Numerical Model

Figure 1 shows the two dimensional computational domain and boundary

conditions for the topology optimization problem considered in this paper.

The internal volume (Ω0 domain), of length L [m] and heightH [m], generates

heat at a rate of q̇0 [W/m3] and has an orthotropic thermal conductivity of
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k0 = (kx0 , ky0) [W/mK]. A portion of the lower boundary (length C [m])

is isothermal with a temperature of T0 [K], while all other boundaries are

adiabatic.

In order to augment the thermal performance of the system a conduit

material (Ω1 domain) is introduced with a high thermal conductivity of

k1 = (kx1 , ky1) > k0 [W/mK]. The conduit material (Ω1 domain) does

not contribute towards the internal heat generation and thus only serves to

conduct heat out of the system to the isothermal boundary. The volume ratio

of the Ω1 domain to the total volume Vt is however restricted, thus limiting

the amount of conduit material:

1

Vt

∫
Ω1

dV ≤ φmax (1)

where φmax is the volume ratio limit and Vt =
∫

Ω0
dV +

∫
Ω1

dV is the total

volume of the system.

The system is assumed to be two dimensional and steady and the gov-

erning steady-state energy equation (in vector form) is given as:

k∇2T = q̇ (2)

where k = (kx, ky) is the orthotropic thermal conductivity (i.e. different

x and y effective thermal conductivities) and ∇2 = ∂2/∂x2 + ∂2/∂y2. It

is important to note that the internal heat-generation q̇ and the thermal

conductivity k may be spatially non-uniform and thus dependent on the

system of coordinates (x, y), this is discussed further in section 3. The

thermal conductivity k is assumed independent of temperature and k = k0

for the heat-generating material (the Ω0 domain) and k = k1 for the conduit

material (the Ω1 domain).

The thermal conductivity ratio of the conduit material conductivity k1
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to the heat-generating material conductivity k0 is defined as:

kr =
|k1|
|k0|

(3)

where | · | is the Euclidean norm.

Figure 2 shows the material orientation with respects to the system of

coordinates (x, y) defined in Fig. 1, where |k| is the effective thermal conduc-

tivity norm at a material angle θ and β is the material orientation angle. The

material, for example, may be a composite material, layered sub-materials

or a crystalline sub-structure, each with different effective thermal conduc-

tivities in the materials primary and secondary principal directions (denoted

by the system of coordinates (1, 2) defined in Fig. 2).

The effective conductivity components kx, ky, k1 and k2 can be calculated

as:

kx = |k| cos(θ)

ky = |k| sin(θ)

k1 = |k| cos(θ − β)

k2 = |k| sin(θ − β)

(4)

The matrial orientation angle β is included for completeness to indicate

the relationship between the materials system of coordinates (1, 2) and the

system of coordinates (x, y) used in this study. In this study it is assumed

that the materials primary and secondary directions (1, 2) are aligned with

the system of coordinates (x, y), i.e. β = 0, kx = k1 and ky = k2 and the

effective thermal conductivity k = (kx, ky) will be reported as a norm |k|
and a material angle θ.
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3. Numerical Methods

A design variable field φ along with a variation of the solid isotropic with

material penalization (SIMP) method was implemented in order to represent

the heat generation q̇ for the Ω0 and Ω1 domains:

q̇ = q̇0 (1− φP ) (5)

where φ = 0 corresponds to the heat-generating material q̇ = q̇0 (the Ω0

domain); φ = 1 corresponds to the conduit material q̇ = 0 (the Ω1 domain);

and 0 < φ < 1 corresponds to a composite material having both heat-

generating and conductive cooling functions. The penalization factor P is

introduced in order to encourage the optimization algorithm to favour design

variables of either φ = 0 or φ = 1 and reduce the amount of composite

material.

Similarly, the thermal conductivity k for the Ω0 and Ω1 domains is given

as:

k = φP (k1 − k0) + k0 (6)

There are two methods for controlling this penalization factor, namely

keeping the penalization factor constant throughout the MMA optimization

routine or gradually increasing the penalization factor from a starting value

of Pstart to a final value of Pend over the first N iterations of the optimization

routine [9].

The purpose of the topology optimization is to find the optimal material

distribution of the conduit material (shape of Ω1) in order to achieve the

best possible thermal performance, subject to one or more constraints. The

average temperature of the system was used as the objective function to
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describe the thermal performance, given as:

Tave =
1

Vt

∫
Ω0+Ω1

T dV (7)

Other functions may also be used to describe the thermal performance

of the system, for example the peak temperature Tmax or the cost func-

tion proposed by Gersborg-Hansen et al. [19], however in the previous work

by Dirker and Meyer [17] it was shown that using the average temperature as

the objective function was also suitable for reducing the peak temperature.

The multiobjective cost function investigated by Marck et al. [26] may also

be used to find an acceptable trade-off between the variance and average

temperatures.

The constrained optimization problem can formally be written as:

minimise:
w.r.t. φ

f(φ) = Tave, 0 ≤ φ ≤ 1

such that:

g1(φ) =
1

Vt

∫
Ω0+Ω1

φ dV ≤ φmax

(8)

Since φ = 0 corresponds to the heat-generating material and φ = 1

corresponds to the conduit material, the volume ratio given in Eq 1 can be

formally written in terms of φ to give the inequality constraint g1(φ) in Eq 8.

Equation 8 was solved using the MMA (method of moving asymptotes)

optimization algorithm by Svanberg [34] with the asymptote factors s0 = 0.1

and s = 0.7. The ’dual objective function’ (as described in the MMA) was

solved using the Scipy [21] fmin slsqp algorithm based on the sequential

least squares programming algorithm implemented by Kraft [22]. The reader

is referred to the original texts for further information.
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The gradient information of the objective function (required by the MMA

algorithm) was computed using the discrete adjoint method [20, 33]:

d

dφ
f(φ) = −λT ·

(
∂A
∂φ
· T − ∂B

∂φ

)
(9)

where A is the coefficient matrix and B is the source term array from the

finite volume method (FVM) with the discretization of Eq. 2 (i.e. AT = B).

The adjoint vector λ was computed from:

ATλ =

[
∂

∂T
f(φ)

]T
(10)

where AT = A for a symmetric matrix and ∂f(φ)/∂T is presumed specified

analytically.

The governing energy equation (Eq. 2) and the adjoint equation (Eq. 9)

was solved using an in-house FVM (finite volume method) code written in

Python [30] and Cython [6]. This code utilized structured hexahedron ele-

ments; a harmonic interpolation scheme; and an un-corrected surface normal

gradient scheme. The adjoint vector λ (Eq. 10) and the discretized form

of the governing energy equation (Eq. 2) was solved using the Scipy [21]

bicgstab algorithm based on the bi-conjugate gradient stabilized iterative

method with preconditioning [5].

The temperature and adjoint vector fields were initialized to zero and

the design variable field were initialized to φmax (i,e. T = 0, λ = 0, and

φ = φmax). The convergence criteria used for solving the temperature and

adjoint vector fields was:

R(T ) ≤ 1e− 9, R(λ) ≤ 1e− 9 (11)

where R(Φ) = AΦ − B is the residual for an arbitrary field Φ. The conver-

gence criteria used to terminate the optimization algorithm was:∣∣f(φ)I − f(φ)I−1
∣∣ ≤ 1e− 8 (12)
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where I is the optimization iteration.

An increasing penalization scheme, with Pstart = 1; Pend = 3; and N =

40 incremental steps was used in this paper. Pend was selected based on

the suggestions by Bendsoe and Sigmund [9] and the work by Dirker and

Meyer [17]. N was selected based on observation, where it was seen that at

around 35 iterations the topology had become well established. The overall

computational routine can be summarized and explained as follows:

Step 1: Initialize T = 0, λ = 0, φ = φmax, P = 1, and I = 0

Step 2: Compute the heat generation q̇ and conductivity k from Eq. 5 and

Eq. 6 respectively

Step 3: Compute T from the governing energy equation (Eq. 2)

Step 4: Compute the adjoint vector λ and gradient information d f(φ)/dφ

from Eq. 10 and Eq. 9 respectively.

Step 5: Compute the next design variable φI+1 from the MMA algorithm (as

described by Svanberg [34]). The MMA algorithm requires and makes

use of:

• the computated average temperature f(φ) = Tave (Eq. 7) and

• the gradient information d f(φ)/dφ (Eq. 9) from Step 4

Step 6: Set I = I + 1 and P = min(Pend, 1 + I∆P ) where ∆P = (Pend −
Pstart)/N

Step 7: If I < N repeat Steps 2 through 7, else continue to Step 8

Step 8: If f(φ) has converged (Eq. 12) then stop, else repeat Steps 2 through

8
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4. Validation and Mesh Independence

Table 1 shows the mesh refinement study and optimized architectures for

various mesh sizes. The topologies can be seen as tree-like structures with

primary ”V-shape” branches (extending from the isothermal boundary to

the upper corners of the domain) and smaller secondary branches extended

from the primary branches. These topologies are similar to those obtained

in the works by Alexandersen et al. [2], Burger et al. [11], Dirker and Meyer

[17], Gersborg-Hansen et al. [19], Marck et al. [26] and Zhang and Liu [36],

for isotropic material conductivities.

At a mesh size of 100×100 the main ”V-shape” branches have been es-

tablished and further mesh refinement yields changes only in the secondary

branches. The objective function (Tave) is seen to be insensitive (varies by

∼ 1%) to further mesh refinement when 120 elements are used in both the x

and y directions.

The thermal performance of the system can also be described by a non-di-

mensional temperature measure, as shown in other investigations [11, 17, 23, 37],

given as:

τmax =
(Tmax − T0) |k0|

q̇0LH
(13)

where lower τmax values indicate a better thermal performance of the system

while higher τmax values represent a poorer thermal performance.

Consider Table 2a where the isothermal boundary temperature T0 is var-

ied, while the other parameters q̇0; LH; and |k0| are kept constant, resulting

in the same non-dimensional thermal performance of the system and the same

optimized architectures. Similarly, in Tables 2b to 2d, the respective param-

eters q̇0; LH; and |k0| and |k1| (for the same kr) are varied independently,

again resulting in the same non-dimensional thermal performance and the
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same optimized architectures.

Table 2 thus shows the results of validating the in-house FVM code

against Eq. 13 by showing that the non-dimensional thermal performance

is independent of T0 (Table 2a); directly proportional to the heat genera-

tion rate q̇ (Table 2b) and the domain sizes L and H (Table 2c); and inversely

proportional to the thermal conductive |k0| (Table 2d).

The in-house FVM code was also validated against OpenFOAM [28, 29],

a well established open source FVM package, for various other case studies.

For these case studies a maximum error of less than 1e − 6 was obtained

when comparing the results obtained from the in-house code to the results

obtained from OpenFOAM.

5. Numerical Results

5.1. Isotropic Conduit Material

The most practical approach of augmenting the thermal performance is

by introducing a high thermal conductive isotropic conduit material (Ω1) to

an orthotropic heat-generating material (Ω0).

Figure 3 shows the non-dimensional thermal performance τmax of the sys-

tem for various heat-generating material angles θ0 at various conductivity

ratios kr. The non-dimensional thermal performance tends to be improved

for heat-generating material angles 10◦ ≤ θ0 ≤ 45◦ and the results tend

to indicate that material angles θ0 < 10◦ and θ0 > 60◦ should be avoided,

although some numerical ”noise” can be seen.

Table 3 shows the corresponding topologies (optimized architectures) to

Fig. 3. The non-dimensional thermal performance τmax is also given for each

topology. Note that a heat-generating material angle θ0 = 45◦ corresponds

to an isotropic material; θ0 < 45◦ to an orthotropic material with higher
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heat transfer in the x direction; and θ0 > 45◦ to an orthotropic material with

higher heat transfer in the y direction. It can be seen that the ”V-shape”

branches (extending from the isothermal boundary into the Ω0 domain) tend

to ”grow” in the direction of highest thermal resistance of the heat-generating

material. It is also worth noting that secondary branches are more prevalent

at higher conductivity ratios and the change in topology of the primary ”V-

shape” branches (with respects to θ0) is less drastic at higher conductivity

ratios kr (consider for example |k1| = 5000 and θ0 ≥ 30◦).

5.2. Orthotropic Conduit Material

For completeness of this study the effect of engineering and introducing

an orthotropic conduit material (Ω1) to an isotropic heat-generating material

(Ω0) is also considered.

Figure 4 shows the non-dimensional thermal performance τmax of the sys-

tem for various conduit material angles θ1 at various heat-generating ma-

terial angles θ0. A conduit material angle θ1 ≈ 65◦ yields an optimal non-

dimensional thermal performance with a 15%, 10%, 6%, and 6% improvement

(for θ0 = 20◦, 40◦, 60◦, and 80◦ respectively) over that of using an isotropic

conduit material ( θ1 = 45◦ ).

Figure 5 shows the non-dimensional thermal performance τmax of the sys-

tem for various conduit material angles θ1 at various conductivity ratios

kr. As before, a conduit material angle θ1 ≈ 65◦ yields an optimal non-

dimensional thermal performance with a 9%, 13%, 24%, and 12% improve-

ment (for the conductivity ratios 100, 200, 300, and 500 respectively) over

that of using an isotropic conduit material ( θ1 = 45◦ ). The augmented non-

dimensional thermal performance, in the region of 30◦ ≤ θ1 ≤ 70◦, is also

less sensitive to θ1 for all conductivity ratios kr .

Table 4 shows the corresponding topologies (optimized architectures) to
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Fig. 5. The non-dimensional thermal performance τmax is also given for each

topology. As before, a conduit material angle θ1 = 45◦ corresponds to an

isotropic material; θ1 < 45◦ to an orthotropic material with higher heat

transfer in the x direction; and θ1 > 45◦ to an orthotropic material with

higher heat transfer in the y direction. It can be seen that the ”V-shape”

branches tend to ”grow” in the direction of lowest thermal resistance of the

conduit material.

Figure 6 show the optimal conduit material angle and non-dimensional

thermal performance for various domain sizes (aspect ratios 2H/L). The as-

pect ratio is taken as H/0.5L because the position of the isothermal boundary

(length C ), in figure 1, resulted in symmetric topologies about the centre.

It can be seen that the optimal conduit material angle θ1 corresponds to

tan−1(2H/L), in other words the optimal conduit material conductivity k1

corresponds to a vector pointing from the center of the isothermal boundary

to the upper right corner of the domain. The non-dimensional thermal per-

formance for the optimal conduit material angles shows a 19%, 3%, 3%, 9%,

18%, 37%, and 50% improvement (for 2H/L = 0.32, 0.72, 1.28, 2.0, 3.125,

5.556, and 12.5 respectively) over that of using an isotropic conduit material

( θ1 = 45◦ ).

Table 5 shows the corresponding topologies (optimized architectures) to

Fig. 6. The optimal conduit material angle θ1,opt and non-dimensional ther-

mal performance τmax is also given for each topology. It can be seen that the

”V-shape” branches tend to ”grow” in the direction of the vector pointing

from the center of the isothermal boundary to the upper corners of the do-

main. For high aspect ratios 2H/L a central ”trunk” is first formed before

the ”V-shape” branches, branch off towards the upper corners.
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6. Conclusions

For the optimal distribution of an isotropic conduit material within an or-

thotropic heat-generating material the results indicate that a heat generating

material angle 10◦ ≤ θ0 ≤ 60◦ is preferred and a heat-generating material

angle θ0 < 10◦ and θ0 > 60◦ should be avoided. It was also found that the

”V-shape” branches of the conduit material tends to ”grow” in the direction

of highest thermal resistance of the heat-generating material.

For the optimal distribution of an orthotropic conduit material within an

isotropic heat-generating material the results show that an optimal conduit

material angle exists giving the best thermal performance (lowest τmax ).

The optimal conduit material angle remains the same for different conduc-

tivity ratios and different heat-generating material angles, and the optimal

conduit material angle directly corresponds to the domain aspect ratio, that

is θ1,opt = tan−1(2H/L). The use of an orthotropic conduit material over

that of an isotropic conduit material yields a minimum improvement of 3%

and a maximum improvement of 50% of the thermal performance. A 50%

improvement of the thermal performance effectively translates to either dou-

ble the allowable heat generation or half the peak operating temperature of

the isotropic heat-generating material . It was also found that the ”V-shape”

branches of the conduit material tends to ”grow” in the direction of lowest

thermal resistance of the conduit material and the optimal conduit mate-

rial angle corresponds to a vector pointing from the center of the isothermal

boundary to the upper right corner of the domain.
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Figure Captions:

Fig. 1. 2D computational domain and boundary conditions for the topology

optimization problem.

Fig. 2. Material orientation and thermal conductivity.

Fig. 3. Non-dimensional thermal performance for an isotropic conduit mate-

rial and orthotropic heat-generating material (L = 1, H = 1 C = 0.05, T0 =

0, q̇0 = 10, φmax = 0.1, |k0| = 10 and θ1 = 45◦)

Fig. 4. Non-dimensional thermal performance for an orthotropic conduit

material and orthotropic heat-generating material (L = 1, H = 1 C =

0.05, T0 = 0, q̇0 = 10, φmax = 0.1, |k0| = 10 and kr = 100)

Fig. 5. Non-dimensional thermal performance for an orthotropic conduit ma-

terial and isotropic heat-generating material (L = 1, H = 1 C = 0.05, T0 =

0, q̇0 = 10, φmax = 0.1, |k0| = 10 and θ0 = 45◦)

Fig. 6. Optimal orthotropic conduit material angle and non-dimensional

thermal performance for various domain sizes and an isotropic heat-generating

material (C = 0.05, T0 = 0, q̇0 = 10, φmax = 0.1, |k0| = 10, kr =

100, and θ0 = 45◦)
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Figure 1: 2D computational domain and boundary conditions for the topology optimiza-

tion problem.
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− Cartesian coordinates

− Principal material directions

Figure 2: Material orientation and thermal conductivity.
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Figure 3: Non-dimensional thermal performance for an isotropic conduit material and

orthotropic heat-generating material (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10 and θ1 = 45◦)
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Figure 4: Non-dimensional thermal performance for an orthotropic conduit material and

orthotropic heat generating material (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10 and kr = 100)
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Figure 5: Non-dimensional thermal performance for an orthotropic conduit material and

isotropic heat generating material (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10 and θ0 = 45◦)

27



1.0 10.0

2H/L [-]

0

20

40

60

80

100

θ 1
,o
p
t

[o
]

θ1,opt = tan−1(2H/L)

θ1,opt: Numerical
θ1,opt: Correlation

0.0

0.2

0.4

0.6

0.8

1.0

τ m
ax

[-]

τmax: θ1 = θ1,opt

τmax: θ1 = 45o

Figure 6: Optimal orthotropic conduit material angle and non-dimensional thermal perfor-

mance for various domain sizes and an isotropic heat-generating material (C = 0.05, T0 =

0, q̇0 = 10, φmax = 0.1, |k0| = 10, kr = 100, and θ0 = 45◦)
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Table 1: Mesh refinement study (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10, |k1| = 5000, θ0 = 20◦ and θ1 = 45◦)

Size 20×20 40×40 60×60 80×80 100×100 120×120 140×140

Tave 0.03992 0.02666 0.02287 0.02063 0.01878 0.01867 0.01837

T iave − T i−1
ave

T i−1
ave

– 0.33215 0.14241 0.09782 0.08962 0.00609 0.01588

Architecture
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Table 2: Validation study for L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10, |k1| = 5000, θ0 = 20◦ and θ1 = 45◦

(a) Varying T0

T0 0 5 10 50 100

τmax 0.03965 0.03965 0.03965 0.03965 0.03965

(b) Varying q̇0

q̇0 1 5 10 50 100

τmax 0.03968 0.03965 0.03965 0.03965 0.03965

(c) Varying L and H

L,H 0.1, 0.1 0.5, 0.5 1, 1 5, 5 10, 10

τmax 0.03928 0.03965 0.03965 0.03965 0.03965

(d) Varying |k0| and |k1| for kr = 500

|k0| 0.1 1 5 10 50

|k1| 50 500 2500 5000 25000

τmax 0.03965 0.03965 0.03965 0.03965 0.03965
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Table 3: Topologies for an isotropic conduit material and orthotropic heat-generating ma-

terial (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax = 0.1, |k0| = 10 and θ1 = 45◦)

kr = 100 θ0 = 10 θ0 = 20 θ0 = 30 θ0 = 40 θ0 = 50 θ0 = 60 θ0 = 70 θ0 = 80

τmax 0.11748 0.12725 0.13130 0.13509 0.13695 0.13834 0.15464 0.17173

Architecture

kr = 200 θ0 = 10 θ0 = 20 θ0 = 30 θ0 = 40 θ0 = 50 θ0 = 60 θ0 = 70 θ0 = 80

τmax 0.07626 0.07431 0.07788 0.08176 0.08884 0.07903 0.08360 0.09336

Architecture

kr = 300 θ0 = 10 θ0 = 20 θ0 = 30 θ0 = 40 θ0 = 50 θ0 = 60 θ0 = 70 θ0 = 80

τmax 0.05841 0.05276 0.05241 0.05721 0.06173 0.05864 0.05937 0.06493

Architecture

kr = 500 θ0 = 10 θ0 = 20 θ0 = 30 θ0 = 40 θ0 = 50 θ0 = 60 θ0 = 70 θ0 = 80

τmax 0.03668 0.03965 0.03566 0.03621 0.03741 0.04473 0.04569 0.04475

Architecture
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Table 4: Topologies for an orthotropic conduit material and isotropic heat-generating ma-

terial (L = 1, H = 1 C = 0.05, T0 = 0, q̇0 = 10, φmax = 0.1, |k0| = 10 and θ0 = 45◦)

kr = 100 θ1 = 10 θ1 = 20 θ1 = 30 θ1 = 40 θ1 = 50 θ1 = 60 θ1 = 70 θ1 = 80

τmax 0.31779 0.21842 0.17244 0.14506 0.13012 0.12338 0.12594 0.14283

Architecture

kr = 200 θ1 = 10 θ1 = 20 θ1 = 30 θ1 = 40 θ1 = 50 θ1 = 60 θ1 = 70 θ1 = 80

τmax 0.21394 0.13635 0.10363 0.08456 0.07253 0.07274 0.07249 0.10164

Architecture

kr = 300 θ1 = 10 θ1 = 20 θ1 = 30 θ1 = 40 θ1 = 50 θ1 = 60 θ1 = 70 θ1 = 80

τmax 0.16438 0.10664 0.07735 0.06304 0.06017 0.05144 0.05229 0.07916

Architecture

kr = 500 θ1 = 10 θ1 = 20 θ1 = 30 θ1 = 40 θ1 = 50 θ1 = 60 θ1 = 70 θ1 = 80

τmax 0.11328 0.07147 0.05449 0.04580 0.03873 0.03374 0.03574 0.04951

Architecture
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Table 5: Topologies for the optimal orthotropic conduit material angles for various domain

sizes and an isotropic heat-generating material (C = 0.05, T0 = 0, q̇0 = 10, φmax =

0.1, |k0| = 10, kr = 100, and θ0 = 45◦)

2H/L 0.320 0.720 1.280 2.000 3.125 5.556 12.500

θ1,opt 15 35 50 60 70 80 90

τmax 0.14507 0.11104 0.11016 0.12338 0.14822 0.19311 0.41151

Architecture
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