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Abstract

In this paper, we propose a modified side-sensitive (MSS) synthetic X chart which signals only if
all the consecutive plotting statistics that lead to an out-of-control event fall on one side of the
center line; unlike the non-side-sensitive, standard and revised side-sensitive synthetic X charts that
also signal even when some of the plotting statistics fall on opposite sides of the center line.
Moreover, we use the Markov chain imbedding technique to study and compare the zero-state and
steady-state average run-length (ARL), extra quadratic loss, average ratio of the ARLs and
performance comparison index of the proposed MSS chart with other Shewhart-type synthetic and
runs-rules charts. The synthetic X chart with this MSS feature has a better overall zero-state and
steady-state performance than the existing synthetic X charts and hence makes it a strong contender
in many applications where existing synthetic X charts are currently used.
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1. Introduction
Statistical process control and monitoring (SPCM) is a collection of statistical techniques and tools
which allows high quality products to be produced. Among the SPCM tools, control charts are
undeniably the most widely used for identifying changes in processes. Control charts are mainly
used to distinguish between the chance and the assignable causes of variation. When a process has
only chance causes of variation present, it is said to be statistically in-control (IC), otherwise, the
process is said to be out-of-control (OOC).

Assume that {X;;: i > 1; j = 1, 2,..., n} is a sequence of samples from iid N(uo, o¢)

distribution where u, and oZ are the specified IC mean and variance, respectively. Let X; denote the
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plotting statistic calculated from {X;;} at sampling point i. A control chart that is usually used to

monitor X; is called the X chart and it signals when a single plotting statistic falls above the upper
control limit (UCL) or below the lower control limit (LCL) which are given by
UCL = pg + kay, CL = py, LCL = pg — kay, 1)

where k is the distance of the control limits from the center line (CL); see Figure 1. A Shewhart X
chart is known to be more efficient in detecting large process shifts, however, it is relatively
insensitive in detecting small and moderate shifts. In order to increase the sensitivity of the X chart
for detecting smaller shifts, Wu and Spedding [24] proposed a synthetic X chart for the mean which
consists of two sub-charts, one, a basic X chart and a second, a conforming run-length (CRL) chart.
For a synthetic chart, an OOC signal is not based on a single plotting statistic falling beyond the
control limits in Equation (1), instead, when a sample produces a value beyond the control limits in
Equation (1), that sample is marked as nonconforming and the control procedure moves to the
second sub-chart and a signal is obtained depending on the outcome of the CRL sub-chart. Note that
when a sample produces a value falling between LCL and UCL, then that sample is marked as
conforming. A CRL is defined as the number of conforming samples between two consecutive
nonconforming samples, inclusive of the nonconforming sample at the end; see Bourke [6]. Note
that the absence of any conforming samples between two nonconforming samples leads to the
minimum CRL i.e. CRL = 1. The CRL chart signals when an observed CRL value is less than or
equal to some threshold, say H (an integer, greater or equal to 1), which is defined to be the
threshold / control limit of the CRL chart. Note though a more general definition of synthetic charts
is given by Scariano and Calzada [22], where they stated that a synthetic chart “consists of any
control charting procedure operating in union with the CRL chart”. To make the run-length analysis
of the synthetic chart easier, Davis and Woodall [10] showed that a synthetic chart is a special case
of a runs-rules chart i.e. a 2-of-(H+1) with a head-start (HS) feature. The HS feature implies that we

assume that (at time 0) the first observation is nonconforming, consequently, we need at least one



other nonconforming sample within the next H sampling points, for a 2-of-(H+1) runs-type chart to

issue a signal.
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Figure 1: The control limits and the corresponding regions of the X sub-chart



We can classify the available synthetic charts that are based on the sub-chart limits in Equation (1)
into three types which are as follows:

(i) the non-side-sensitive synthetic chart (by Wu and Spedding [24] — denoted by WS) that
signals when two nonconforming samples out of H+1 successive samples fall outside the
control limits, irrespective of whether one (or both) of the nonconforming samples fall
above the UCL and the other (or both) falls below the LCL, which are separated by at most
H-1 conforming samples that fall between the LCL and the UCL. The control charting
regions are shown in Figure 1(a).

(i) the standard side-sensitive synthetic chart (by Davis and Woodall [10] — denoted by DW)
that signals when two nonconforming samples out of H+1 successive samples fall above
(below) the UCL (LCL) which are separated by at most H-1 samples that fall below (above)
the UCL (LCL), respectively. The control charting regions are shown in Figure 1(b).

(iii) the revised side-sensitive synthetic chart (by Machado and Costa [18] — denoted by MC)
that signals when two nonconforming samples out of H+1 successive samples fall above
(below) the UCL (LCL) which are separated by at most H-1 conforming samples that fall
between the LCL and the UCL, respectively. The control charting regions are shown in
Figure 1(b).

Before discussing the aim of this paper, we also differentiate between the different types of runs-
rules charts (without the HS feature). For the control limits in Equation (1), there are four types of
runs-rules that are considered in the literature and these are as follows (where w > 2 and v > 0 are
specified positive integers):

(i) the non-side-sensitive w-of-(w+v) (by Derman and Ross [11] — denoted by DR) that signals
when w nonconforming samples out of w+v successive samples fall outside the control
limits, no matter whether some (or all) of the w nonconforming samples fall above the UCL

and the others (or all) fall below the LCL, which are separated by at most v conforming



samples that fall between the LCL and the UCL. The control charting regions are shown in
Figure 1(a).

(ii) the standard side-sensitive w-of-(w+v) (by Klein [16] — denoted by KL) that signals when w
nonconforming samples out of w+v successive samples fall above (below) the UCL (LCL)
which are separated by at most v samples that fall below (above) the UCL (LCL),
respectively. The control charting regions are shown in Figure 1(b).

(iii) the revised side-sensitive w-of-(w+v) (adopted from the synthetic chart of Machado and
Costa [18]) that signals when w nonconforming samples out of w+v successive samples fall
above (below) the UCL (LCL) which are separated by at most v conforming samples that fall
between the LCL and the UCL, respectively. The control charting regions are shown in
Figure 1(b).

(iv) the modified side-sensitive (MSS) w-of-(w+v) (by Antzoulakos and Rakitzis [5] — denoted
by AR) that signals when w nonconforming samples out of w+v successive samples fall
above (below) the UCL (LCL) which are separated by at most v conforming samples that are
plotted between the CL and the UCL (LCL), respectively. The control charting regions are
shown in Figure 1(c).

Note that unlike the signaling rules proposed by Klein [16] and Machado and Costa [18], the
signaling rules proposed by Antzoulakos and Rakitzis [5] signifies the importance of a CL because

the AR scheme signals when all the w+v consecutive samples that lead to an OOC event are on one

side of the CL.
Table 1: Types of runs-rules and synthetic X charts
Runs-rules charts Synthetic charts
(i) Non-side-sensitive w-of-(w+v): (DR) (i) Non-side-sensitive 2-of-(H+1): (WS)
e Derman and Ross [11] o \Wu and Spedding [24]
(i) Standard side-sensitive w-of-(w+v): (KL) (i) Standard side-sensitive 2-of-(H+1): (DW)
o Kilein [16] e Davis and Woodall [10]

(iii) Revised side-sensitive w-of-(w+v): (MC1) | (iii) Revised side-sensitive 2-of-(H+1): (MC2)
e Adopted from Machado and Costa [18] e Machado and Costa [18]

(iv) Modified side-sensitive w-of-(w+v): (AR) | (iv) Modified side-sensitive 2-of-(H+1): (MSS)
e Antzoulakos and Rakitzis [5] e Proposed in this paper




The abovementioned four runs-rules charts and three synthetic charts are summarized in
Table 1. For a fair comparison with synthetic charts, we only consider runs-rules charts with w = 2
so that v = H-1 and w+v = H+1. To differentiate between the runs-rules and synthetic schemes by
Machado and Costa [18], we denote these as MC1 and MC2, respectively. The three types of
synthetic charts in Table 1 (i.e. WS, DW and MC2) have runs-type rules similar to those in DR, KL
and MC1, respectively. Therefore the aim of this paper is to supplement on the work done by the
authors listed in Table 1, by proposing a synthetic X chart that has runs-type rules similar to those in
Antzoulakos and Rakitzis [5], called the MSS synthetic X chart. That is, this paper makes a
contribution to both synthetic and runs-rules charts by:

e proposing a new Shewhart-type synthetic X chart;

e using a Markov chain imbedding technique to study the run-length properties of the
synthetic charts and we use a design criterion with more emphasis on the overall
performance to study the effectiveness of the 2-of-(H+1) runs-type charts as H increases i.e.
H < 20. Note that most studies on runs-rules usually concentrate on H < 3;

e we give recommendations on what the optimal value of H should be so that the
corresponding 2-of-(H+1) runs-type chart (i.e. MSS, MC2, DW, WS, AR, MC1, KL, DR)
each results in the best overall performance; depending on the upper bound on the range of
shifts (later denoted by &,,,4)-

e To supplement on the zero-state average run-length (ARL) performance of the 2-of-(H+1)
DR, KL and AR, we study the steady-state ARL performance of these charts. Moreover, we
evaluate the zero-state performance of MC2 scheme proposed in Machado and Costa [18]
and then propose its zero-state and steady-state runs-rules version i.e. MC1.

The goal of this paper is to compare a variety of simple Shewhart synthetic and runs-rules X
monitoring schemes with control limits based on Equation (1) to monitor the process mean for
normally distributed data. Thus, the schemes discussed herein will not outperform the more

advanced schemes like the basic exponentially weighted moving average (EWMA) / cumulative



sum (CUSUM), or the synthetic EWMA / CUSUM, or the runs-rules EWMA / CUSUM schemes.
An interested reader may see Khoo et al. [14], Abbas et al. [1], [2], Riaz et al. [21], Scariano and
Calzada [22] and Haq et al. [13]. Thus, this paper must be considered as a framework for quality
practitioners who utilise Shewhart-type synthetic and runs-rules X charts. The rest of the paper is
structured as follows: In Section 2 we present the operation of the MSS, the zero-state and steady-
state Markov chain imbedding technique for the synthetic and runs-rules charts. In Section 3 we
evaluate the OOC performance of the proposed MSS chart and compare its specific shift and overall
performance with the Shewhart-type charts given in Table 1. In Section 4 we give an illustrative
example using real-life data to show how these charts are implemented. Finally, in Section 5 we

give concluding remarks.

2. Operation and design considerations

2.1 Operation of the MSS chart

The MSS synthetic X chart signals when two nonconforming samples out of H+1 successive
samples plot above (below) the UCL (LCL) which are separated by at most by H-1 conforming
samples plotting between the CL and the UCL (LCL), respectively. This means that the MSS chart
signals when all the H+1 consecutive samples that lead to an OOC event fall on one side of the CL.
With the aid of definitions in Machado and Costa [19], to clearly describe the operation of the MSS
scheme, we need to define two types of CRLs i.e. lower CRL (denoted by CRL,) and upper CRL
(denoted by CRLy). A CRL_ is the number conforming samples (i.e. falling on region C in Figure
1(c)) that are plotted in between the two consecutive nonconforming samples below the LCL,
inclusive of the nonconforming sample at the end. However, a CRLy is the number conforming
samples (i.e. falling on region B in Figure 1(c)) that are plotted in between the two consecutive
nonconforming samples above the UCL, inclusive of the nonconforming sample at the end. Note
that the absence of a conforming sample implies that either the CRLy or CRL, equals one. Thus the

MSS chart operates as follows:



Step (i)  On the next sampling point, take a sample of size n and compute X;.

Step (ii) If LCL < X; < UCL then return to Step (i).

Step (iii) However, if X; < LCL go to Step (iv), or X; = UCL go to Step (V).

Step (iv) If CRL. < H go to Step (vi), otherwise return to Step (i).

Step (v) If CRLy < H go to Step (vi), otherwise return to Step (i).

Step (vi) Issue an OOC signal, and then take necessary corrective action to find and remove
the assignable causes. Then return to Step (i).
2.2 Markov chain imbedding techniques for the runs-type charts
The transition probability matrix (TPM) of the Markov chain for any general (integer) value

of M > 0 is given by

Quixmy | Twxn)
- - = (2)

P(M+1)><(M+1) =
‘wan | Laxy

where Quxmy is the essential TPM, the vector rgyy,) satisfies r=1—Q1 with 14y =
(11 .. )T and O(yxq) = (00 ... 0)7. In order to construct the TPM, we follow the Markov chain
imbedding technique discussed briefly by Antzoulakos and Rakitzis [4], [5], Low et al. [17] and in
detail by Fu and Lou [12]. This entails dividing the chart into separate distinct regions (see Figure
1) i.e. let {X;; i > 1} be a sequence of iid trials taking values in the set {; = {O, U}, {, = {A, O, D}
and {3 = {A, B, C, D}. Then, define the probability that a plotting statistic falls in each region:

(i) 6, denotes the probability that a point falls above the UCL (region A) i.e. P(X; € A);

(i1) 85 denotes the probability that a point falls between the CL and the UCL (region B) i.e.

P(X; € B);

(iii) 6 denotes the probability that a point falls between the LCL and the CL (region C) i.e.

P(X; € C);

(iv) 8, denotes the probability that a point falls below the LCL (region D) i.e. P(X; € D);

(V) 8, = 85 + 6. denotes the probability that a point falls on region O i.e. P(X; € 0);

(vi) 8, = 8, + 6, denotes the probability that a point falls on region U i.e. P(X; € U).



For some sample size, n, suppose that the values of uz and o§ are known. Thus the probabilities of
a plotting statistic falling in a specific region are given by
04(8) =P(X =UCL) =1—®(k — 6Vn)
05(8) = P(CL < X < UCL) = ®(k — 6vn) — ®(—5vVn)
6:(8) = P(LCL < X < CL) = ®(—8vVn) — &(—k — 6v/n) 3)
05(8) = P(X < LCL) = ®(—k — 5vn)
00(8) = P(LCL < X < UCL) = 05(5) + 6.(5)
0,(8) = P(X = UCL) + P(X < LCL) = 6,(5) + 6,(5)

respectively, where ®(-) denotes the cumulative distribution function (cdf) of the standard normal
distribution and ¢ is the shift parameter expressed in terms of the standard deviation units and we
letCL=0.

To construct the TPM, we need to define the compound patterns that result in an OOC event
(which is also known as the waiting time until the first occurrence of an OOC signal). For example,
the sequence of plotting statistics ‘AA’ indicates two consecutive plotting statistics falling in region
A, whereas ‘ABA’ indicates the first plotting statistic falling in region A, the second in region B
and the third in region A, etc. The symbol ‘+’ is used to denote the assumption that (at time 0) the
first observation lies either above UCL or below LCL (i.e. HS feature), so that ‘+A’ indicate the first
plotting statistic falling either above UCL (region A) or below LCL (region D) and the second in
region A. Following Fu and Lou [12], we let the sequences of conforming and nonconforming
samples, say A; = ABBA, to be the j™ simple pattern within a sequence of n four-state trials from
say, set {5. Then, define A as a compound pattern if it is the union of w distinct simple patterns i.e.
A= A UA,U..UA,. Let W denote the waiting time for the first occurrence of A. Then the run-
length distribution of a control chart coincides with the waiting time distribution of W, see
Antzoulakos and Rakitzis [4], [5]. That is, the run-length distribution of the chart becomes the
waiting time until the first occurrence of one of the patterns A4, A,, ..., A, and these are the

absorbing states of the Markov chain, where w denotes the number of patterns (or sequences) of the



X; that cause the chart to signal. Then we define the Markov chain with the state space Q = {¢;
N1,..., Ny, OOC} operating on {X;; i > 1} as follows:

e the transient state — corresponding to the IC region, denoted by ¢;

e the absorbing state — corresponding to the union of A,,..., A,; in order to reduce the
dimension of the TPM, the w absorbing states which signal the entrance of the MC to each
of the w distinct simple patterns may be substituted by a single absorbing state, denoted by
00C;

e the sub-patterns — corresponding to the first element(s) of each of the simple pattern A,,...,
A, without the last element. Note that these sub-patterns are non-absorbing and are denoted

by 14,..., N, Where 7 < w.

Table 2: Compound patterns of the Markov chain imbedding technique for the 2-of-(H+1)
synthetic and runs-rules charts when H <5

H | DR/WS KL / DW MC1/MC2 AR/ MSS

1 |UU AA, A, DD, =D AA, A, DD, +D AA, A, DD, =D

2 | Uou AOA, ADA, +OA, DOD, DAD, +OD AOA, +OA, DOD, +OD | ABA, =BA, DCD, +CD

3 | UOOU AOOA, AODA, ADOA, +O0A, AOOA, +O0A, ABBA, +BBA,
DOOD, DOAD, DAOD, +O0OD DOOD, +O0D DCCD, +CCD

4 | UOOOU AOOOA, AOODA, ACDOA, ADOOA, +O00A, AOOOA, +O00A, ABBBA, +BBBA,
DOOOD, DOOAD, DOAOD, DAOOD, +O00D DOOOD, +O00D DCCCD, +CCCD

5 | UOOOOU | AOOOOA, AOOODA, AOODOA, AODOOA, AOOOOA, +O00O0A, ABBBBA, +BBBBA,
ADOOOA, +O00O0A, DOOOOD, +0000D DCCCCD, +CCCCD
DOOOOD, DOOOAD, DOOAOD, DOAOOD,
DAOOOD, +0000D

For illustration purpose, in Table 2 we give the compound patterns of H < 5 for the eight
schemes in Table 1 with charting regions in Figure 1. The compound patterns of KL, MC1 and AR
schemes exclude those simple patterns that are boldfaced in Table 2 (i.e. those starting with ‘+).
The aim is to show how to construct the TPM in Equation (2) and more importantly to show the
difference between TPMs of DR and WS, KL and DW, MC1 and MC2, AR and MSS, respectively,
that is, by removing the HS feature elements (or simple / sub-patterns) in the construction of the
TPMs of the DW, MC2 and MSS results in the TPMs of KL, MC1 and AR, respectively. Note that

the WS chart is non-side-sensitive, thus the initial state at time zero is in the nonconforming region
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U. Next, we show how to construct the state space Q using an example with H = 2. The state spaces
of the eight different monitoring schemes listed in Table 1 when H=2 are given by:
e transient state
DR, KL, MC1, WS, DW, MC2: ¢ ={0}; AR, MSS: ¢ ={B,C}; see Figure 1.
e absorbing state
These are the union of the simple patterns listed in Table 2 corresponding to H < 2 as these yield an
observed CRL < 2 for the WS, DW and MC2 schemes; and CRL_ < 2 or CRLy < 2 for the MSS
scheme.
DR: A;={UU}, A,={UOU}, i.e. w = 2.
KL: A,={ADA}, A,={AOA}, A;={AA}, A,={DD}, A:={DOD}, A;,={DAD}, i.e. w = 6;
MC1: A,={AOA}, A,={AA}, A;={DD}, A,={DOD}, i.e. w = 4;
AR: A,={ABA}, A,={AA}, A;={DD}, A,={DCD}, i.e. w = 4;
WS: A;={UU}, A,={UOU}, i.e. w =2;
DW: A,={ADA}, A,={AOA}, A;={AA}, A,={DD}, A.={DOD}, A.={DAD}, A,={+A},
Ag={£D}, Ag={x0A}, A,,={x0D}, i.e. w = 10;
MC2: A,={AOA}, A,={AA}, A,={DD}, A,={DOD}, A ={+A}, A.={+D}, A,={+OA},
Ag={tOD}, i.e. w =8;
MSS: A={ABA}, A,={AA}, A;={DD}, A,={DCD}, As={xA}, A={zD}, A,={tBA},
Ag={zxCD}, i.e. w =8;
e sub-patterns - these are distinct sub-patterns of A4,..., A,
DR: n,={U}, n,={UO}, i.e. 7= 2.
KL: n,={AD}, n,={AC}, n3={A}, n,={D}, ns={DO}, ns={DA}, i.e. T =6;
MC1: n,={AO}, n,={A}, n3={D}, n,={D0O}, i.e. T = 4;
AR:1,={AB}, n,={A}, n;={D}, n,={DC}, i.e. 1= 4
WS: n,={U}, n,={UQC}, i.e. Tt =2;

DW: 771={AD}: 772={AO}' 773:{'6‘}! 774-={D}! nSz{DO}’ 776:{DA}! 777={i}’ n8={io}! ie. 7= 8!
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MC2: 771={AO}' 772={A}’ 773={D}! 774-:{DO}! 775={i}, n6:{io}! Ie T= 6!

MSS: nlz{AB}v UZZ{A}’ 773:{D}1 774:{DC}’ 775:{1}, n6:{iB}’ 777:{10}, le.t="7.

Thus, when H=2 the TPM of the WS, DW, MC2 and MSS schemes are given by

¢ M n, 00C
o |60 1-6, O 0O
M 0 0 6o 1-6p
n. | 6o 0 0 16,
ooc| o0 0 0 1
N M2 M3 @ Na 1s N 717 1s  O0C
m |0 o o o 06 O O O 6,+6,
n o o 0 6 6, 0 0 0 O 6,
ns |6, 60 0 0 0 0 0O 0 O 6,
¢ |0 0 6, 60 60 0 0 0 O 0
n. o o o o 06 6 0 O 6
ns o 0o 6, 6 0 0 0 0 O 6
n |0 60 0 0 0 0 0 0 0 6,+6,
n, 0 0 0 0 0 0 0 0 6, 6,+6,
ne |0 0 06 0 0 0 0 0 6,+6,
ooclo 0 0 0 0 0 0 0 0 1
N1 M2 ¢ 13 ns ns ne  O0C
n |0 0 6 6, 0 0 O 04
n, |60 0 0 6, 0 0 0O 6,
o |0 6, 60 60 0 0 O 0
ns |0 6, 0 0 6, 0 0 6
n. |0 6, 66 0 0 0 O 6
ns |0 0 0 0 0 0 6, 6,+06,
e |0 0 6, 0 0 0 0 6,+6,
ooclo 0 0 0O 0O 0 O 1
and
N2 ¢ 3 Ma_Ns N 1Ny 0O0C
m |0 0 6;+6, 60 0 0 0 O 6,
n, |6 0O 6 6, 0O 0 0 0 6,
o |0 6, 6;+6, 60 0 0 0 O 0
s | 0 6, 05 0 6 0 0 0 6
. | 0 6 6;+6, 0 0 0 0 O 6
ns | 0 0 0 0 0 0 6 6; 6,+6,
e | 0 0 6z+6, 6p 0O 0 0 O 6,
n, | 0 6, 646, 0 0 0 0 0 6
oocl o o0 0 0 0 0 0 O 1
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respectively. Moreover, the TPM of the DR scheme is the same as that of WS. However, the TPM
of the KL, MC1 and AR are obtained from those of DW, MC2 and MSS schemes by removing the
elements with the HS feature (i.e. n, and ng for DW scheme; ns and n, for MC2 scheme; ns, 1,
and n, for MSS scheme) in Equations (5), (6) and (7), respectively; note that this relation holds for
every H > 0. The construction of the Markov chain TPMs follows in a similar manner for other
values of H. Finally, for any H > 0, the dimension (i.e. M+1) of the TPM in Equation (2) for the
runs-rules and synthetic charts are given by
DR: (H+1)+1, KL: (H*+H+1)+1, MC1: (2H+1)+1, AR: (2H+1)+1 (8)
and
WS: (H+1)+1, DW: [(H?+H+1)+H]+1, MC2: [(2H+1)+H]+1, MSS: [(2H+1)+(2H-1)]+1, (8b)
respectively.
2.3 Design considerations
The performance of a control chart at some specific shift is usually measured by ARL given by
ARL(8) =§(I-Q(8)~'1 9)
where € is the initial probability vector (depending on whether a zero-state or a steady-state analysis
is being considered), see Fu and Lou [12]. Zero-state and steady-state analysis are used to
characterize short and long term run-length properties of a control chart, respectively. That is, the
zero-state run-length is the number of sampling points at which the chart first signals given it begins
in some initial state, however, the steady-state run-length is the number of sampling points at which
the chart first signals given that the process begins and stays IC for a very long time, then at some
random time, an OOC signal is observed, see Champ [8] and Machado and Costa [18], [19]. Note

that q1xuy is the row vector of initial probabilities associated with the zero-state mode i.e.

so that the initial state element on the TPM corresponds to the value of 1 in Equation (10). That is, it

has a one in the component associated with the state in which the chart begins and each of the other
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components is zero. For the MSS, MC2 and DW charts, the initial state corresponds to the element
of the TPM equal to ‘+’, whereas for WS, it corresponds to the element with ‘U’. However, for AR
it corresponds to ‘B,C’ and for MC1, KL and DR, it corresponds to ‘O’, that is, for runs-rules
without HS, the initial state is given by ‘¢’. In steady-state, the vector q is replaced by a vector s,
i.e. the steady-state initial probability vector given by

§=Saxm) = (5152 Su) (11)
where the sum of the elements in Equation (11) sum to unity. Champ [8] showed that when Q, is

obtained from Q(0) (i.e. & = 0) after diving each element by its corresponding row sum, then s,

is a vector such that s =s-Q, subject to XM s, =1. The ARL (in Equation (9)) based on
Equation (10) is denoted by ZSARL, whereas that based on Equation (11) is denoted by SSARL.
Since the ARL only measures the performance of a control chart at some specific shifts, a
number of authors have suggested the use of additional indices to measure the overall performance
of the charts, see for example Wu et al. [25], Abujiya et al. [3] and Machado and Costa [19]. Since
it is usually unknown what specific shift value(s) a control chart should be optimized for, Wu et al.
[25] stated that it is more efficient to design a chart such that it has a better overall performance
than its competitors. Thus, when the aim is to measure the overall performance of the chart over a
range of shifts (i.e. 0 <& < dmax, Where dmax IS the upper bound of the mean shift that is of interest by

the user), the objective function must be defined in terms of the extra quadratic loss (EQL) i.e.

6max

1
EQL = f 82 X ARL(8) d§ = minimum. (12)
0

5max

Since it is generally assumed that all mean shifts within the range 0 < & < dmax OCcur with equal
probability, a uniform distribution of & is implied, see Wu et al. [25] and Machado and Costa [19].

Hence Equation (12) may equivalently be written as

smax

1
Z 8% X ARL(8) = minimum. (13)
0

EQL =

5max
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Here, we use a step shift (§) of size 0.1. In addition to the EQL, Wu et al. [25] suggested the
performance comparison index (PCI) to measure the relative effectiveness of two different charts.

In this paper, we shall use the MSS chart as the benchmark; hence the PCI is given by

EQL
EQLyss '

PCl =

(14)
where EQLyss is EQL of the ‘benchmark” MSS chart. Also, the ratio of the ARLSs is usually used to

measure the overall effectiveness of a benchmark chart against other competitors, see Wu et al.

[25]. Hence assuming a uniform distribution in &, the average ratio of ARLs is given by

5max

1 ARL(S)
6max 0 ARLMSS(6)

ARARL = (15)

where ARLwmss(6) is the ARL produced by the MSS chart. If the value of PCI or ARARL is larger
than one, the competing chart will produce larger OOC ARL over a larger shift range and / or to a
larger degree compared to the benchmark chart and thus, the competing chart is relatively less
effective. However, if the PCI or ARARL is smaller than one, the competing chart will have higher

overall effectiveness than the benchmark chart.

3. Discussion

In this section, we conduct an empirical study of the MSS scheme and compare its
performance to the schemes listed in Table 1 for the zero-state and steady-state mode. Firstly,
though in Table 3, we use Equations (2), (3), (8a), (8b), (9) in conjunction with Equations (10) and
(11) to determine the optimal values of k in both states when H =1, 2, ... , 20 for ARLy = 200,
370.4, 500 and 1000.

It is very interesting to notice that as H increases, the optimal values of k also increases for
all the charts considered in Table 3, however, the newly proposed MSS scheme (and its runs-rules
counterpart AR) produces values of k that converges to some specific value regardless of how large
H is, for both zero-state and steady-state mode. In this section, we investigate what implications

does this convergence has on the overall performance, as H increases. Firstly though, we conduct an
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Table 3: The values of k for the zero-state and steady-state 2-of-(H+1) synthetic and runs-rules X chartswhen H=1, 2, ...

, 20 and ARL, = 200, 370.4, 500, 1000

(a) ARL, = 200

(b) ARLo= 3704

Zero-state Steady-state Zero-state Steady-state
DR& KL& MC1& AR& DR& KL& MC1& AR&

H DR KL MC1 AR WS DW MC2 MSS WS DW MC2 MSS DR KL MC1 AR WS DW MC2 MSS WS DW MC2 MSS

1 17912 16327 1.6327 1.6327 1.8073 1.6569 1.6569 1.6569 | 1.7923 1.6339 1.6339 1.6339 | 1.9323 1.7814 1.7814 1.7814 19435 1.7982 17982 17982 | 19328 1.7820 1.7820  1.7820
2 19330 1.7870 1.7828 1.7203 1.9545 1.8186 1.8151 1.7489 | 19345 17888 1.7845 1.7219 | 2.0698 1.9293 1.9265 1.8664 2.0848 19515 19489 1.8862 | 2.0706 1.9303 1.9274 1.8671
3 | 20110 1.8718 1.8654 1.7514 20366 1.9088 19035 1.7819 | 2.0130 1.8740 1.8675 1.7532 | 2.1461 2.0113 20069 1.8969 21640 2.0374 2.0335 1.9181 | 2.1472 2.0125 2.0080 1.8978
4 | 20643 19296 19216 1.7644 20932 19711 19646 1.7958 | 2.0667 1.9323 1.9242 1.7663 | 2.1985 2.0676 2.0619 1.9099 22188 2.0968 2.0920 1.9318 | 2.1997 2.0689 2.0633  1.9109
5 | 21043 19731 19638 1.7702 21361 20185 2.0111 1.8020 | 2.1071 1.9762 1.9668 1.7722 | 22380 2.1101 2.1035 19158 2.2604 21421 21366 1.9380 | 2.2395 2.1117 2.1051 1.9169
6 | 21361 2.0078 1.9973 1.7728 21705 2.0566 2.0485 1.8049 | 2.1393 2.0113 2.0008 1.7749 | 2.2697 2.1441 21367 19186 22939 21787 21726 19409 | 2.2714 21459 2.1385 1.9197
7 21624 2.0395 2.0250 1.7740 21992 2.0908 2.0797 1.8062 | 2.1661 2.0435 2.0290 1.7762 | 2.2959 21746 21642 19199 23218 2.2111 22026 1.9422 | 2.2978 2.1767 2.1663  1.9210
8 | 21848 2.0609 2.0486 1.7746 22238 21157 21065 1.8068 | 2.1888 2.0652 2.0530 1.7767 | 2.3183 2.1964 2.1877 19205 23458 22354 2.2283 19429 | 2.3204 2.1987 2.1900 1.9216
9 22041 2.0820 2.0689 1.7748 2.2452 21395 21299 1.8071 | 2.2085 2.0868 2.0737 1.7770 | 2.3377 22174 22081 1.9208 2.3667 2.2583 2.2509  1.9432 | 2.3401 22199 22106 1.9219
10 | 22211 21006 2.0868 1.7750 2.2641 2.1607 2.1506 1.8072 | 2.2259 2.1058 2.0921 1.7771 | 2.3549 22359 22261 19209 23852 22786 2.2709 19433 | 2.3575 2.2386  2.2288  1.9220
11 | 22363 21173 21027 17750 22811 21796 21693 1.8073 | 2.2415 21229 21084 1.7772 | 23702 22524 22422 19210 24018 22969 2.2889 1.9434 | 23730 2.2554 22451 1.9221
12 | 22499 21322 21171 17751 22965 21968 21862 1.8073 | 2.2555 2.1382 21231 1.7772 | 23841 22674 22566 19210 24169 23135 23052 1.9435 | 2.3870 2.2706 2.2599 1.9221
13 | 2.2623 21458 21300 1.7751 23105 22126 22016 1.8073 | 2.2682 2.1522 21365 1.7772 | 23966 2.2810 22698 1.9210 24307 23286 2.3201 1.9435 | 2.3998 2.2844 22733 1.9221
14 | 22736 21582 21419 1.7751 23234 22270 22158 1.8073 | 2.2799 2.1650 2.1488 1.7772 | 24082 22935 22819 19210 24433 23426 23338 19435 | 24116 22971 2.2856 1.9221
15 | 2.2840 21697 21528 1.7751 23353 22404 22290 1.8073 | 2.2906 2.1768 2.1601 1.7772 | 24188 23050 22930 1.9210 24551 23556 2.3466 1.9435 | 2.4224 23088 2.2969 1.9221
16 | 2.2936 2.1802 2.1628 1.7751 23464 22529 22412 18073 | 2.3006 2.1878 21706 1.7772 | 24287 23157 23034 19210 24660 23676 2.3584 1.9435 | 2.4324 23197 23074 1.9221
17 | 23025 21901 21722 17751 23567 22645 22527 1.8073 | 2.3099 2.1980 2.1803 1.7772 | 24378 23257 23130 19210 24762 23789 23695 1.9435 | 24418 23299 23173 1.9221
18 | 23108 2.1992 21809 1.7751 2.3664 22755 22634 18073 | 2.3185 2.2076 21894  1.7772 | 24464 23350 23219 19210 24857 23895 2.3799 1.9435 | 24506 2.3394 23264 1.9221
19 | 23186 2.2078 21890 1.7751 23755 22858 22735 1.8073 | 2.3267 2.2166 21979 1.7772 | 24545 23437 23303 19210 24947 23995 2.3898 1.9435 | 2.4588 2.3437 23351 1.9221
20 | 2.3259 2.2159 21966 17751 23841 2.2955 22831 1.8073 | 2.3343 22250 2.2060 1.7772 || 2.4620 2.3520 2.3382 1.9210 2.5032 24089 2.3990 19435 | 2.4666 2.3568 2.3432  1.9221

(c) ARLo = 500 (d) ARL, = 1000
Zero-state Steady-state Zero-state Steady-state
DR& KL& MC1& AR& DR& KL& MC1& AR&

H DR KL MC1 AR WS DW MC2 MSS WS DW MC2 MSS DR KL MC1 AR WS DW MC2 MSS WS DW MC2 MSS

1 1.9979 1.8504 1.8504 1.8504 2.0073 1.8645 1.8645 1.8645 | 1.9983 1.8509 1.8509 1.8509 | 2.1428 2.0026 2.0026 2.0026 2.1491 2.0120 2.0120 2.0120 | 2.1430 2.0028 2.0028  2.0028
2 21333 19954 19930 1.9340 2.1459 2.0140 2.0119 1.9507 | 2.1339 1.9961 1.9937 19346 | 22735 21412 21396 2.0830 2.2820 2.1537 2.1522 2.0942 | 22738 21415 21399 2.0833
3 | 22087 20760 20723 19642 22238 2.0980 2.0947 19821 | 2.2095 2.0769 2.0731 1.9649 || 2.3467 22188 22163 21125 23569 22336 2.2313 2.1244 | 23471 22192 22167 2.1128
4 | 22606 21315 21267 19772 22777 21562 21520 1.9956 | 2.2615 2.1325 21277 1.9780 | 2.3973 22723 22691 21252 24089 22891 2.2862 2.1375 | 2.3977 22728 2.2696 2.1256
5 | 22998 21734 21679 19832 23187 22005 21958 2.0018 | 2.3009 2.1746 2.1690 1.9839 || 2.4357 23130 23093 21311 24485 23314 23281 21436 | 24362 23136 23098 2.1315
6 | 23313 22070 22008 19859 23517 22363 2.2310 2.0046 | 2.3325 2.2084 2.2022 1.9867 | 2.4666 2.3457 23415 21339 24804 23656 2.3619 2.1465 | 2.4672 23463 23421 2.1343
7 23574 22370 22282 19872 23793 2.2680 2.2605 2.0060 | 2.3588 22386 22297 19880 | 2.4923 23744 23683 21353 25071 2.3955 23902 2.1479 | 24930 23751 23691 2.1356
8 | 23797 22589 22516 19878 24029 22919 2.2858 2.0067 | 2.3813 2.2606 2.2532 1.9887 | 25143 23963 2.3913 21359 25300 24188 2.4144 21485 | 25151 23971 23921 2.1363
9 23991 22797 22719 19881 24235 23144 23079 2.0070 | 24008 22816 22737 19890 | 25335 24167 24113 21362 25501 24403 24357 2.1488 | 2.5344 24175 24122 2.1366
10 | 24163 22981 2.2898 1.9883 24419 23343 23276 2.0071 | 2.4181 23001 2.2919 1.9891 | 25505 24347 24291 21364 25679 24595 24546 21490 | 2.5514 2.4357 24300 2.1368
11 | 24316 23146 23059 1.9884 24583 23523 23453 2.0072 | 2.4336 2.3168 23081 1.9892 | 2.5658 2.4509 24450 21364 25839 24767 24716 2.1491 | 25668 2.4519 24460 2.1368
12 | 24455 23295 23204 1.9884 24732 23686 23613 2.0072 | 2.4476 23318 23227 1.9892 | 25796 24656 24594 21365 25984 24923 24870 2.1491 | 2.5806 2.4667 2.4605 2.1369
13 | 24581 23431 23336 1.9884 24868 23835 23760 2.0073 | 2.4604 2.3455 23361 1.9892 | 25922 24789 24725 21365 26117 25066 2.5012 2.1491 | 2.5933 2.4801 2.4737 2.1369
14 | 24697 23555 23457 1.9884 24994 23972 23895 2.0073 | 2.4722 23582 2.3484 1.9892 | 2.6037 24912 24845 21365 2.6239 25198 25142 21491 | 2.6050 2.4925 2.4858 2.1369
15 | 24804 23670 23569 1.9884 25110 24100 24020 2.0073 | 2.4830 2.3698 2.3597 1.9892 | 2.6144 25026 24957 21365 2.6353 25321 25263 2.1491 | 2.6157 25040 2.4971 2.1369
16 | 24903 23777 23672 19884 25218 24218 24137 2.0073 | 2.4931 2.3807 2.3702 1.9892 | 2.6244 25132 25061 21365 2.6458 25435 25375 2.1491 | 2.6258 2.5147 25075 2.1369
17 | 24995 23877 23769 1.9884 25319 24329 24246 2.0073 | 25024 2.3908 2.3801 1.9892 | 2.6337 25231 25157 21365 2.6557 25542 25481 2.1491 | 2.6351 25246 25173 2.1369
18 | 25082 2.3970 2.3859 1.9884 25414 24434 24349 20073 | 25112 2.4003 2.3892 1.9892 | 2.6424 25324 25248 21365 2.6650 25642 25580 2.1491 | 2.6439 25340 2.5264 2.1369
19 | 25163 24058 2.3944 1.9884 25503 24532 24446 2.0073 | 25195 2.4092 23979 1.9892 | 2.6506 25411 25333 21365 26737 25737 25673 2.1491 | 2.6521 25428 25350 2.1369
20 | 25239 24140 24024 19884 25588 24625 24537 20073 | 25273 24176 24060 19892 | 2.6583 25493 25413 21365 2.6820 25826 25761 21491 | 2.6599 25511 2.5431 2.1369
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OOC ARL comparison when H = 1, 5 and 10 with 6. = 5. For each § # 0, either in zero-state or

steady-state, the charting scheme performing best is indicated in bold in the subsequent tables. If

two or more values are boldfaced, then the charts perform similarly.

Table 4: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-
rules X charts when H = 1, 8yax = 5 and ARLy = 370.4

@) (b) ©
Zero-state Steady-state 7
DR KL, MC1, AR WS DW, MC2, MSS DR, WS KL, MC1, AR, DW, MC2, MSS
k ] 1.9323 1.7814 1.9435 1.7982 1.9328 1.7820 3.0000
0 3705 370.4 370.5 370.4 370.3 370.3 3704
0.1 354.83 342.00 354.27 341.14 354.70 341.92 352.93
0.2 313.44 276.65 311.50 274.02 313.25 276.51 308.43
0.3 258.94 207.12 255.41 203.06 258.69 206.93 253.14
0.4 203.68 150.24 198.90 145.44 203.39 150.04 200.08
0.5 155.29 108.45 149.77 103.42 154.98 108.24 155.22
0.6 116.48 78.91 110.70 73.96 116.17 78.71 119.67
0.7 86.93 58.21 81.24 53.51 86.63 58.02 92.32
0.8 65.06 43.63 59.67 39.26 64.78 43.46 71.55
0.9 49.09 33.25 44.10 29.23 48.83 33.10 55.83
1 37.46 25.78 32.90 22.10 37.23 25.64 43.89
11 28.97 20.32 24.84 16.96 28.76 20.19 34.80
1.2 22.74 16.28 19.00 13.21 22.55 16.16 27.82
13 18.11 13.24 14.73 10.45 17.94 13.14 22.43
14 14.64 10.94 11.58 8.38 14.49 10.84 18.25
15 12.02 9.17 9.24 6.82 11.88 9.08 14.97
1.6 10.01 7.79 7.47 5.63 9.88 7.71 12.38
17 8.45 6.71 6.13 471 8.33 6.64 10.33
1.8 7.23 5.85 5.09 3.99 7.12 5.78 8.69
1.9 6.27 517 4.29 3.42 6.17 5.10 7.37
2 5.50 461 3.66 297 5.41 4.55 6.30
21 4.88 4.16 3.16 2.61 4.79 4.10 5.43
2.2 4.38 3.79 2.77 2.32 4.30 3.73 4.72
2.3 3.97 3.49 2.45 2.09 3.89 3.43 4.13
2.4 3.63 3.23 219 1.90 3.56 3.18 3.65
325 3.36 3.02 1.98 1.74 3.29 297 3.24
2.6 3.13 2.85 181 1.61 3.06 2.80 2.90
2.7 293 2.70 1.66 1.50 2.87 2.66 2.62
2.8 2.77 2.58 1.55 141 2.71 254 2.38
2.9 2.64 2.48 1.45 1.34 2.58 243 2.17
3 2.53 2.39 1.37 1.28 2.47 2.35 2.00
31 2.43 2.32 1.30 1.23 2.38 2.28 1.85
3.2 2.36 2.26 1.25 1.18 2.30 222 1.73
33 2.29 221 1.20 1.15 224 217 1.62
34 2.24 217 1.16 1.12 2.18 2.13 153
35 2.19 2.14 1.13 1.10 214 2.10 1.45
3.6 2.15 211 111 1.08 2.10 2.07 1.38
3.7 212 2.09 1.08 1.06 2.07 2.05 1.32
3.8 2.10 2.07 1.07 1.05 2.04 2.03 1.27
39 2.08 2.05 1.05 1.04 2.02 2.01 1.23
4 2.06 2.04 1.04 1.03 2.01 2.00 1.19
41 2.05 2.03 1.03 1.02 1.99 1.99 1.16
42 2.04 2.02 1.02 1.02 1.98 1.98 113
43 2.03 2.02 1.02 1.01 1.98 1.98 111
44 2.02 2.01 1.01 1.01 1.97 1.97 1.09
45 2.02 201 1.01 1.01 1.96 1.97 1.07
4.6 201 201 1.01 1.01 1.96 1.97 1.06
4.7 2.01 2.01 1.01 1.00 1.96 1.97 1.05
438 201 2.00 1.00 1.00 1.96 1.97 1.04
49 2.00 2.00 1.00 1.00 1.95 1.96 1.03
5 2.00 2.00 1.00 1.00 1.95 1.96 1.02
EQL 299.43 262.45 196.66 163.75 294.23 258.63 253.99
ARARL | 1.8330 1.6257 1.1790 1.0000 1.1558 1.0000
PCI 1.8286 1.6027 1.2010 1.0000 1.1377 1.0000
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Table 5: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-

rules X charts when H =5, 8max = 5 and ARL, = 370.4

(@ (b) (©)
Zero-state Steady-state
DR, KL, MC1, AR, X
DR KL MC1 AR WS DW MC2 MSS WS DW MG2 MSS
k 22380 21101 21035 19158 2.2604 2.1421 2.1366 1.9380 | 2.2395 2.1117 2.1051 1.9169 | 3.0000
0 370.3 370.5 370.4 370.3 370.4 370.3 370.4 370.4 370.4 370.5 370.4 370.4 370.4
0.1 | 35130 337.22 336,50 331.84 349.97 33492 33430 330.07 | 351.24 337.11 336.40 331.83 | 352.93
0.2 302.35 263.92 262.24 250.55 297.68 257.71 256.14 245.49 302.07 263.64 261.96 250.37 308.43
0.3 241.02 190.77 188.78 174.04 23291 181.83 179.98 166.80 | 240.52 190.36 188.37 173.75 | 253.14
0.4 18256 13444 13264 11830 172.08 124.40 122.77 110.23 181.90 133.97 132.19 117.96 200.08
0.5 134.48 95.00 93.57 81.07 122.99 84.95 83.69 73.04 133.74 94.53 93.11 80.73 155.22
0.6 98.09 68.14 67.06 56.70 86.65 58.65 57.72  49.14 97.35 67.69 66.62 56.38 119.67
0.7 71.73 49.85 49.05 40.66 60.96 41.16 40.50 33.76 71.02 49.43 48.64 40.37 92.32
0.8 53.00 37.25 36.66 29.94 4321 29.43 28.96 23.73 52.35 36.87 36.29 29.67 71.55
0.9 39.75 28.42 27.99 22.63 31.02 21.46 21.13 17.09 39.16 28.08 27.65 22.39 55.83
1 30.33 22.14 21.82 17.54 22.63 15.97 15.74 12.61 29.81 21.83 21.51 17.32 43.89
11 23.57 17.59 17.35 13.92 16.82 12.13 11.96 9.54 23.11 17.31 17.07 13.72 34.80
1.2 18.66 14.23 14.05 11.29 12.74 9.40 9.28 7.39 18.25 13.98 13.80 11.12 27.82
13 15.05 11.72 11.58 9.35 9.84 7.44 7.35 5.86 14.67 11.49 11.36 9.19 22.43
14 12.34 9.81 9.71 7.89 7.75 6.00 5.93 4,76 12.00 9.60 9.50 7.75 18.25
15 10.29 8.34 8.26 6.77 6.23 4,93 4.88 3.95 9.99 8.15 8.07 6.64 14.97
1.6 8.71 7.19 7.13 5.90 5.10 4.13 4.09 3.34 8.44 7.02 6.95 5.78 12.38
17 7.48 6.28 6.23 5.21 4.26 3.51 3.49 2.88 7.23 6.12 6.07 511 10.33
1.8 6.52 5.56 5.52 4.67 3.61 3.04 3.02 2.52 6.28 5.41 5.37 457 8.69
19 5.75 4.97 4.94 4.22 3.12 2.67 2.66 2.25 5.53 4.83 4.80 4.13 7.37
2 5.12 4.49 4.47 3.86 2.73 2.38 2.37 2.03 4.92 4.36 4.33 3.78 6.30
2.1 4.62 4.10 4.08 3.57 243 2.15 2.14 1.85 4.43 3.97 3.95 3.48 5.43
2.2 4.20 3.77 3.75 3.32 2.19 1.96 1.95 1.71 4.03 3.65 3.64 3.24 4,72
2.3 3.86 3.50 3.48 3.11 1.99 1.81 1.80 1.59 3.69 3.39 3.37 3.04 4.13
2.4 3.57 3.27 3.26 2.94 1.83 1.68 1.67 1.50 341 3.16 3.15 2.87 3.65
) 25 3.33 3.08 3.07 2.79 1.70 1.57 1.57 1.42 3.18 2.97 2.96 2.72 3.24
2.6 3.13 291 2.90 2.67 1.59 1.48 148 1.35 2.98 2.81 2.80 2.60 2.90
2.7 2.96 2.77 2.76 2.56 1.50 1.41 1.40 1.29 2.81 2.67 2.66 2.50 2.62
2.8 2.81 2.65 2.64 2.47 1.42 1.34 1.34 1.25 2.67 2.55 2.55 2.41 2.38
2.9 2.68 2.55 2.54 2.39 1.36 1.29 1.29 1.20 2.55 2.45 2.45 2.33 2.17
3 2.57 2.46 2.45 2.33 1.30 1.24 1.24 1.17 2.45 2.37 2.36 2.27 2.00
3.1 2.48 2.38 2.38 2.27 1.25 1.20 1.20 1.14 2.36 2.29 2.29 2.21 1.85
3.2 2.40 2.32 2.32 222 1.21 1.17 1.17 1.12 2.28 2.23 2.23 2.17 1.73
3.3 2.34 2.27 2.26 2.18 1.18 1.14 1.14 1.10 2.22 2.18 2.18 2.13 1.62
3.4 2.28 2.22 2.22 2.15 1.15 112 112 1.08 2.16 2.13 2.13 2.09 1.53
35 2.23 2.18 2.18 212 112 1.10 1.09 1.06 212 2.09 2.09 2.07 1.45
3.6 2.19 2.15 2.14 2.10 1.10 1.08 1.08 1.05 2.08 2.06 2.06 2.04 1.38
3.7 2.15 2.12 212 2.08 1.08 1.06 1.06 1.04 2.04 2.04 2.04 2.02 1.32
3.8 2.13 2.10 2.09 2.06 1.07 1.05 1.05 1.03 2.01 2.01 2.01 2.01 1.27
3.9 2.10 2.08 2.08 2.05 1.05 1.04 1.04 1.03 1.99 1.99 1.99 2.00 1.23
4 2.08 2.06 2.06 2.04 1.04 1.03 1.03 1.02 1.97 1.98 1.98 1.99 1.19
4.1 2.06 2.05 2.05 2.03 1.03 1.03 1.03 1.02 1.96 197 1.97 1.98 1.16
4.2 2.05 2.04 2.04 2.02 1.03 1.02 1.02 1.01 1.94 1.96 1.96 1.97 1.13
43 2.04 2.03 2.03 2.02 1.02 1.02 1.02 1.01 1.93 1.95 1.95 1.97 111
4.4 2.03 2.02 2.02 2.01 1.02 1.01 1.01 1.01 1.92 1.94 1.94 1.96 1.09
4.5 2.02 2.02 2.02 2.01 1.01 1.01 1.01 1.01 1.92 1.94 1.94 1.96 1.07
4.6 2.02 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.91 1.93 1.93 1.96 1.06
4.7 2.01 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.91 1.93 1.93 1.95 1.05
4.8 2.01 2.01 2.01 2.00 1.01 1.00 1.00 1.00 1.90 1.93 1.93 1.95 1.04
4.9 2.01 2.01 2.01 2.00 1.00 1.00 1.00 1.00 1.90 193 1.93 1.95 1.03
5 2.01 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.90 1.92 1.93 1.95 1.02
EQL 283.33 255.24 25411 236.98 167.15 14542 14464 133.26 272.11 247.23 246.23 231.82 253.99
ARARL 21696 19342 19245 1.7669 1.2812 1.1078 1.1014 1.0000 1.2421 1.0945 1.0885 1.0000
PCI 21262 19154 19069 1.7784 12543 1.0913 1.0854 1.0000 1.1738 1.0665 1.0622 1.0000
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Table 6: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-

rules X charts when H = 10, 8max = 5 and ARLy = 370.4

(@ (b) (©)
Zero-state Steady-state
DR, KL, MC1, AR, X
DR KL MC1 AR WS DW MC2 MSS WS DW MG2 MSS
k 2.3549 22359 22261 19209 2.3852 22786 2.2709 1.9433 | 2.3575 2.2386 2.2288 1.9220 | 3.0000
0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.3 370.5 370.4 370.3 370.4 370.4
0.1 | 350.34 336.18 335.09 330.33 348.30 333.10 332.07 328.25 ] 350.26 335.96 334.84 330.20 | 352.93
0.2 299.25 26157 25897 246.61 29252 253.02 250.56 241.03 298.78 261.03 258.42 246.32 308.43
0.3 236.38 188.24 18521 169.06 22497 176.08 17329 161.21 | 23551 187.50 184.47 168.67 | 253.14
0.4 177.65 13251 129.82 11346 163.27 119.07 116.69 104.81 176.51 131.70 129.02 113.04 200.08
0.5 130.26 93.85 91.73 76.88 114.83 80.60 78.79 68.34 129.01 93.04 90.94 76.46 155.22
0.6 94.94 67.66 66.06 53.28 79.87 55.31 54.01  45.30 93.70 66.90 65.32 52.89 119.67
0.7 69.63 49.85 48.68 37.96 55.70 38.70 37.79 30.72 68.46 49.15 48.00 37.61 92.32
0.8 51.76 37.57 36.71 27.85 39.30 27.67 27.04  21.38 50.69 36.94 36.10 27.55 71.55
0.9 39.15 28.95 28.32 21.05 28.20 20.25 19.80 15.30 38.19 28.38 27.76 20.77 55.83
1 30.18 22.78 22.31 16.35 20.64 15.16 14.85 11.27 29.33 22.27 21.81 16.11 43.89
11 23.72 18.29 17.93 13.04 15.45 11.62 11.40 8.55 22.96 17.83 17.49 12.83 34.80
1.2 19.00 14.95 14.68 10.65 11.83 9.12 8.96 6.66 18.32 14.54 14.28 10.46 27.82
1.3 15.50 12.43 12.23 8.89 9.27 7.32 7.20 5.34 14.89 12.06 11.86 8.72 22.43
14 12.85 10.50 10.34 7.56 7.42 6.00 5.91 4.38 12.31 10.16 10.01 7.41 18.25
15 10.83 9.00 8.87 6.55 6.07 5.01 4.95 3.68 10.34 8.69 8.57 6.41 14.97
1.6 9.26 7.81 7.71 5.75 5.07 4.26 421 3.16 8.81 7.52 7.43 5.62 12.38
1.7 8.02 6.86 6.78 5.12 431 3.69 3.65 2.76 7.61 6.59 6.52 5.00 10.33
1.8 7.03 6.09 6.02 4.60 3.72 3.24 3.20 2.44 6.65 5.84 5.78 4,50 8.69
19 6.22 5.46 5.40 4.19 3.26 2.87 2.85 2.20 5.87 5.23 5.18 4.09 7.37
2 5.57 4.93 4.88 3.84 2.90 2.58 2.56 2.00 5.24 4,72 4.67 3.75 6.30
2.1 5.02 4.49 4.45 3.56 2.60 2.34 2.32 1.84 4.72 4.29 4.26 3.47 5.43
2.2 4.57 4.12 4.09 3.32 2.35 2.14 2.12 1.70 4.29 3.93 3.90 3.24 4,72
2.3 4.19 3.81 3.78 3.11 2.15 1.97 1.96 1.59 3.92 3.63 3.60 3.04 4.13
2.4 3.86 3.54 3.52 2.94 1.98 1.82 1.81 1.50 361 3.37 3.35 2.87 3.65
) 25 3.59 3.31 3.29 2.79 1.83 1.70 1.69 1.42 3.35 3.15 3.13 2.73 3.24
2.6 3.35 3.11 3.10 2.67 1.71 1.60 1.59 1.35 3.13 2.96 2.95 2.60 2.90
2.7 3.15 2.95 2.93 2.56 1.60 151 1.50 1.30 2.94 2.80 2.79 2.50 2.62
2.8 2.98 2.80 2.79 2.47 151 1.43 1.43 1.25 2.77 2.66 2.65 2.41 2.38
2.9 2.83 2.68 2.67 2.39 1.44 1.36 1.36 1.21 2.63 2.54 2.53 2.33 2.17
3 2.70 2.57 2.56 2.33 1.37 1.31 1.30 1.17 251 2.44 2.43 2.27 2.00
3.1 2.59 248 2.47 2.27 1.31 1.26 1.26 1.14 2.41 2.35 2.35 2.21 1.85
3.2 2.50 2.40 2.40 222 1.26 1.22 1.21 1.12 2.32 2.28 2.27 2.17 1.73
3.3 2.42 2.34 2.33 2.18 1.22 1.18 1.18 1.10 2.25 2.21 2.21 2.13 1.62
3.4 2.35 2.28 2.27 2.15 1.18 1.15 1.15 1.08 2.18 2.16 2.16 2.09 1.53
35 2.29 2.23 2.23 2.12 1.15 1.12 112 1.06 2.13 211 211 2.07 145
3.6 2.24 2.19 2.19 2.10 1.13 1.10 1.10 1.05 2.08 2.07 2.07 2.04 1.38
3.7 2.20 2.15 2.15 2.08 1.10 1.08 1.08 1.04 2.04 2.04 2.04 2.02 1.32
3.8 2.16 2.13 212 2.06 1.09 1.07 1.07 1.03 2.01 2.01 2.01 2.01 1.27
3.9 2.13 2.10 2.10 2.05 1.07 1.06 1.05 1.03 1.98 1.99 1.99 2.00 1.23
4 211 2.08 2.08 2.04 1.06 1.04 1.04 1.02 1.95 197 1.97 1.99 1.19
4.1 2.08 2.06 2.06 2.03 1.05 1.04 1.03 1.02 1.93 1.95 1.95 1.98 1.16
4.2 2.07 2.05 2.05 2.02 1.04 1.03 1.03 1.01 1.92 1.94 1.94 1.97 1.13
43 2.05 2.04 2.04 2.02 1.03 1.02 1.02 1.01 1.91 1.93 1.93 1.97 111
4.4 2.04 2.03 2.03 2.01 1.02 1.02 1.02 1.01 1.89 1.92 1.92 1.96 1.09
4.5 2.03 2.02 2.02 2.01 1.02 1.01 1.01 1.01 1.89 191 1.92 1.96 1.07
4.6 2.03 2.02 2.02 2.01 1.01 1.01 1.01 1.00 1.88 191 191 1.96 1.06
4.7 2.02 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.87 1.91 1.91 1.95 1.05
4.8 2.01 2.01 2.01 2.00 1.01 1.01 1.01 1.00 1.87 1.90 1.90 1.95 1.04
49 2.01 2.01 2.01 2.00 1.01 1.00 1.00 1.00 1.87 1.90 1.90 1.95 1.03
5 2.01 2.01 2.01 2.00 1.00 1.00 1.00 1.00 1.86 1.90 1.90 1.95 1.02
EQL 289.24 26244 260.68 23430 165.73 146.59 14549 130.12 273.03 250.94 249.47 228.99 253.99
ARARL 22997 2.0592 2.0431 1.7827 13217 1.1588 1.1493 1.0000 1.2818 1.1423 1.1329 1.0000
PCI 22229 2.0169 2.0034 1.8007 1.2737 1.1266 1.1182 1.0000 1.1923 1.0959 1.0895 1.0000
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Remark 1. Since the MSS, MC2 and DW schemes are all side-sensitive, the only difference is the
manner in which the CRL values are computed, see Sections 1 and 2.1. When H=1 there are (H-1=)
zero conforming samples in between the two consecutive nonconforming samples which implies
that the CRL is equal to 1 (i.e. the nonconforming sample at the end) for the three schemes. Thus, it
follows that when H=1, in zero-state, the OOC performance of the DW, MC2 and MSS charts are
equivalent i.e. MSS=MC2=DW and also in steady-state, MSS=MC2=DW, see also their state
spaces in Table 2 for further proof. Similarly, using the same argument, it follows that when H=1,
AR=MCI1=KL. Furthermore, in Section 2.2 we showed that when we remove the elements with a
HS feature on the TPMs of MSS, MC2 and DW, these reduce to the TPMs of the AR, MC1 and
KL, respectively, see Equations (5) to (7); hence in steady-state, MSS=AR, MC2=MC1 and
DW=KL for all H > 0. Moreover, Davis and Woodall [10] showed that in steady-state, WS=DR for
all H > 0 (we also showed that the TPMs of WS and DR are the same, see Equation (4)). Therefore
based on this, we conclude that when H=1, MSS=MC2=DW and AR=MCI1=KL in zero-state,
whereas MSS=MC2=DW=AR=MC1=KL and WS=DR in steady-state.
Remark 2. In zero-state, the OOC ARLs of the DR, KL, MC1, AR schemes converges to 2 whereas
those of the WS, DW, MC2 and MSS converge to 1; see Panel (a) of Tables 4 to 6. This
convergence is to be expected because the main drawback of the DR, KL, MC1 and AR schemes
(in both zero-state and steady-state) is the lack of being able to immediately detect a large process
shift; that is, it requires at least two plotting statistics to issue a signal. This drawback only occurs in
steady-state for the WS, DW, MC2 and MSS schemes; thus in Panel (b) of Tables 4 to 6, the OOC
ARLs converge to approximately 2, whereas in Panel (a) the OOC ARLs converge to 1 because of
the HS feature assumption.

In Panel (a) of Table 4, the ZSARL of the MSS, MC2 and DW are uniformly better than all
the schemes in Table 1 and hence have the lowest EQL. In Panel (b) the six schemes (MSS, MC2,
DW, AR, MC1, KL) have uniformly better SSARL than DR and WS when 6 < 4.4, however, when

> 4.4 the DR and WS outperform the other six schemes. Moreover, the X chart has better OOC ARL
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performance than DR, KL, AR (in zero-state) and all schemes in steady-state when 6 > 2.7, hence
for these schemes the X chart has the smallest EQL. Note that in Table 5 and 6, Remark 1 does not
hold anymore, so that only the MSS scheme has a uniformly better ZSARL than all the schemes.
The results in these three tables are further discussed below in Figures 2 to 4. In Panel (c) of Tables
4 to 6 we added the OOC ARL of the X chart and computed the EQL as 253.99. Note that for Syax =
5 the EQL values of the X chart are equal to 196.31, 292.43 and 420.35 when ARL, = 200, 500 and
1000, respectively. Similarly, for 6max = 3 the EQL values are equal to 199.50, 289.09, 349.33 and
551.79 and finally, for dmax = 2 these are equal to 216.28, 331.87, 410.94 and 681.57 when ARL, =
200, 370.4, 500 and 1000, respectively. These EQL values for the X chart are overlaid as reference
values in Figures 2 to 4 to make overall performance comparison with the charts listed in Table 1.

Table 7: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules X
chartswhenH=1, 2, ..., 20 for dmax = 5 and ARLq = 370.4

Zero-state Steady-state
H DR KL MC1 AR WS DW MC2 MSS DR&WS KL&DW MC1&MC2 AR&MSS
1 29943 262.45 26245 262.45 196.66 163.75 163.75 163.75 294.23 258.63 258.63 258.63
2 285.98 254.13 253.65 247.37 178.03 151.18 150.77 145.85 278.96 249.05 248.60 242.86
3 283.09 253.25 25250 241.72 171.71 147.44 146.86 138.97 274.52 247.08 246.38 236.86
4 282.77 254.00 253.02 238.74 168.74 14596 145.27 135.36 272.77 246.83 245.98 233.68
5 283.33 255.24 25411 236.98 167.15 145.42 14464 133.26 272.11 247.23 246.23 231.82
6 284.32 256.66 255.38 235.90 166.29 145.34 144.47 131.97 271.96 247.85 246.73 230.67
7 285.46 258.53 256.71 235.21 165.83 145.75 14455 131.16 272.04 248.88 247.38 229.94
8 286.71 259.59 258.06 234.77 165.66 145.78 144.77 130.66 272.29 249.37 248.07 229.47
9 287.96 261.04 259.39 234.49 165.64 146.16 145.11 130.33 272.63 250.17 248.77 229.18
10 | 289.24 262.44 260.68 23430 165.73 146.59 145.49 130.12 273.03 250.94 249.47 228.99
11 J 290.47 263.78 261.93 23419 165.90 147.07 145.92 129.99 273.42 251.72 250.17 228.87
12 | 291.72 265.10 263.12 23411 166.15 14757 146.37 129.91 273.83 252.47 250.87 228.79
13 | 292.89 266.36 264.29 234.06 166.44 148.07 146.84 129.85 274.26 253.19 251.53 228.74
14 | 294.08 267.58 265.42 234.03 166.74 14859 147.31 129.82 274.71 253.90 252.18 228.71
15 | 295.21 268.76 266.50 234.01 167.09 149.12 147.80 129.79 275.12 254.57 252.79 228.68
16 | 296.33 269.90 267.57 234.00 167.44 149.63 148.28 129.78 275.53 255.23 253.39 228.67
17 | 297.38 271.01 268.58 23399 167.81 150.15 148.76 129.77 275.95 255.87 253.99 228.66
18 | 298.44 272.07 269.55 233.98 168.17 150.67 149.24 129.76 276.36 256.49 254.54 228.66
19 J 299.47 273.10 27050 233.98 16855 151.19 149.74 129.76 276.74 257.19 255.11 228.65
20 | 300.44 27412 271.42 23398 168.94 151.69 150.20 129.75 277.14 257.66 255.63 228.65

In Table 7, we use Equation (13) to compute the zero-state and steady-state EQL values
when the mean shifts from 0 to 5 in step size of 0.1 and ARL, = 370.4. We see that in zero-state, the
MSS chart results in a uniformly better overall performance (except when H=1, see Remark 1)
compared to the other competing schemes as H varies from 1 to 20. Similarly, in steady-state, the

MSS (and AR) have a uniformly better overall performance than the competing charts (except when
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Figure 2: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules X
chartswhen H=1, 2, ..., 20 for dmax = 5 and ARLq = 200, 370.4, 500, 1000
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20

chartswhen H=1, 2, ..., 20 for dmax = 3 and ARLq = 200, 370.4, 500, 1000
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Figure 3: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules X
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Figure 4: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules X
chartswhen H=1, 2, ..., 20 for 6max = 2 and ARL, = 200, 370.4, 500, 1000
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H=1, see Remark 1). To better illustrate the behavior of the EQL values in Table 7, these are shown
in Figure 2, Panel (b). In addition, we graphically illustrate the EQL values for other values of ARL,

(i.e. 200, 370.4, 500, 1000) in Figures 2, 3 and 4 where dmax = 5, 3 and 2, respectively.

In Figures 2 to 4, we see that for a variety of ARLy, dmax and H values, the MSS chart has a
uniformly lower EQL values than the other schemes listed in Table 1 for the zero-state and steady-
state, respectively. Except in two instances in steady-state (see Figures 2(a) and when H = 1 in
Figure 2(b)), the MSS chart always has a much larger improvement on the X chart than the other
schemes. We see that the DW and MC2, as well as KL and MC1, have an approximately equal
overall performance, however, the MC2 and MC1 schemes have a relatively lower EQL values.
Moreover, as dmax (for each ARL,) decrease, the synthetic and runs-rules charts tend to have a better
performance than the X chart; also the runs-rules schemes become more competitive and in some
cases perform better than synthetic chart, see for instance Figure 4(d). As ARL, (for each Omax)
increase, the synthetic and runs-rules charts tend to have a better performance than the X chart and
the AR scheme becomes more competitive in zero-state. The convergence in the optimal values of k
shown in Table 3, leads to convergence in the overall performance of the MSS and AR schemes.
However, the overall performance of DR, KL, MC1, WS, DW and MC2 seem to decrease and then
at some specific value of H, the EQL increases; this phenomenon is more evident in the steady-state
mode. Thus, in Table 8, we recommend the values of H where the EQL is the smallest (i.e. the
minimum of the curves in Figures 2 to 4), as the ‘optimal’ H (denoted by H") to use in the 2-of-
(H+1) charts, respectively. Consider Table 7, we see that the EQL values of the MSS scheme

converge to approximately 129, but, at a slow rate. Hence, for the MSS and AR schemes, we

EQLy+—EQLp=20

H=20

recommend the values of H™ such that < 0.01; this means that the percentage

improvement (if any) in EQL value for any value greater or equal to H" is only less than 1%

compared to the smallest EQL value at H = 20. For example, from Table 7 where ARL, = 370.4 and
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Smax = 5, the value of H is >6 and >8 for the AR and MSS schemes in zero-state, respectively;
whereas in steady-state H > 6, see Table 8.

Table 8: The values of H” for the synthetic and runs-rules X charts when 8max = 2, 3, 5 and ARLg =
200, 370.4, 500, 1000 such that EQL is (approximately) minimum

Zero-state Steady-state

DR & KL & MC1 & AR &

ARL, Omax DR KL MC1 AR WS DW MC2 MSS WS DW MC2 MSS
2 5 3 4 >8 10 6 7 >9 6 4 4 >8
200 3 4 3 3 >7 7 5 5 >8 5 3 3 >7
5 3 2 3 >5 6 4 5 >6 7 4 4 >5
2 6 4 5 >9 14 9 10 >10 7 5 5 >9
370.4 3 4 3 3 >8 10 6 7 >9 5 4 4 >8
5 4 3 3 >6 9 6 6 >8 6 4 4 >6

2 7 5 5 >10 16 10 11 >11 8 5 6 >10
500 3 5 4 4 >9 12 8 8 >10 6 4 4 >9
5 4 3 3 >7 10 6 7 >8 6 4 4 >7
2 9 6 7 >11 20 15 16 >12 10 6 7 >11

1000 3 7 5 5 >10 17 11 12 >11 8 5 5 >10
5 6 4 4 >8 14 9 10 >10 7 5 5 >8

Furthermore, in Table 9 it can be seen that the values of the relative effectiveness of the
MSS scheme computed using Equation (14) and the EQL values in Table 7 yield PCI values that are
greater than 1 for all the competing schemes listed in Table 1 (except when H=1, see Remark 1).
For instance, in zero-state, from the overall viewpoint, the MSS scheme yields a performance that is
more than 100% better than that of DR and KL schemes, i.e. as H increases from 1 to 20, the quality
loss in using the DR chart varies from 82.86% to 131.55%, whereas for the KL scheme it varies
from 60.27% to 111.26%. Similarly, the quality loss in using the MC1, AR, WS, DW and MC2
schemes ranges from 60.27%, 60.27%, 20.10%, 0% and 0% to 109.18%, 80.32%, 30.20%, 16.91%
and 15.76%, respectively. However, in steady-state the quality loss improvement is not as
significant as it is in the zero-state. Similar behavior in PCI were observed for ARL, = 200, 500,
1000 and Omax = 2, 3.

Similarly, in Table 10 the ratios of the OOC ARLSs (see Equation (15)) also indicate that the
competing schemes listed in Table 1 yield larger OOC ARLSs to a larger degree or extent compared
to the MSS scheme. For instance, as H varies from 1 to 20, the DR scheme in zero-state is worse-off

by a range of 83.30% to 142.81%, however, in steady-state the DR (and WS) scheme is only worse-
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off by 15.58% to 31.94% i.e. in steady-state the competing schemes do not yield as much large

difference in the OOC ratios of the ARLs in comparison to the MSS (and AR) scheme.

Table 9: The zero-state and steady-state PCI values of the 2-of-(H+1) synthetic and runs-rules X
charts for dmax =5wWhen H=1, 2, ..., 20 and ARLy = 370.4

Zero-state Steady-state
H | DR KL  MCL AR WS DW  MC2 MSS | DR&WS KL&DW MC1&MC2 AR & MSS
1 | 1828 1.6027 16027 16027 12010 1.0000 1.0000 1.0000 | 1.1377 1.0000 1.0000 1.0000
2 ]| 19608 1.7424 17391 1.6960 1.2207 1.0365 1.0338 1.0000 | 1.1486 1.0255 1.0236 1.0000
3 20371 1.8224 18170 17394 12356 1.0609 1.0568 1.0000 | 1.1590 1.0431 1.0402 1.0000
4 | 20889 18764 1.8692 1.7637 1.2466 1.0783 1.0732 1.0000 | 1.1673 1.0563 1.0526 1.0000
5 | 21262 1.9154 19069 1.7784 12543 1.0913 1.0854 1.0000 | 1.1738 1.0665 1.0622 1.0000
6 | 21544 1.9448 19351 1.7875 12600 1.1013 1.0947 1.0000 | 1.1790 1.0745 1.0697 1.0000
7 | 21765 19711 19572 17933 12643 11113 11021 1.0000 | 1.1831 1.0824 1.0758 1.0000
8 | 21944 19868 1.9751 17968 1.2679 1.1157 11080 1.0000 | 1.1866 1.0867 1.0810 1.0000
9 | 22094 20029 1.9902 17992 12709 11215 11134 10000 | 1.1896 1.0916 1.0855 1.0000
10 | 22229 20169 20034 18007 12737 11266 11182 1.0000 | 1.1923 1.0959 1.0895 1.0000
11 | 22346 20293 20151 18016 12763 11314 11226 1.0000 | 1.1946 1.0998 1.0931 1.0000
12 | 22456 20406 20254 1.8021 12790 11359 11267 1.0000 | 1.1969 1.1035 1.0965 1.0000
13 | 22556 2.0512 20353 1.8025 1.2817 11403 11308 1.0000 | 1.1990 1.1069 1.0996 1.0000
14 | 22654 20612 20446 18028 12844 11446 11347 1.0000 | 1.2012 1.1101 1.1026 1.0000
15 | 22745 20706 20533 18029 12874 11489 11387 1.0000 | 1.2031 1.1132 1.1054 1.0000
16 | 22834 20797 20617 18031 12902 11530 11425 1.0000 | 1.2049 1.1161 1.1081 1.0000
17 | 22917 20884 20697 18031 12932 11571 11464 1.0000 | 1.2068 1.1190 1.1108 1.0000
18 | 22999 20967 20773 18032 12960 1.1612 11501 1.0000 | 1.2086 1.1217 1.1132 1.0000
19 | 23080 2.1047 2.0846 1.8032 12990 1.1652 1.1540 1.0000 | 1.2103 1.1248 1.1157 1.0000
20 | 23155 21126 2.0918 1.8032 13020 1.1691 1.1576 1.0000 | 1.2121 1.1269 1.1180 1.0000
Table 10: The zero-state and steady-state ARARL values of the 2-of-(H+1) synthetic and runs-rules
X charts for dymax =5wWhenH=1,2, ..., 20 and ARL, = 370.4
Zero-state Steady-state

H DR KL  MCl AR WS DW  MC2  MSS | DR&WS KL&DW MC1&MC2 AR & MSS
1 | 18330 1.6257 1.6257 1.6257 11790 1.0000 1.0000 1.0000 | 1.1558 1.0000 1.0000 1.0000
2 | 19729 17552 17518 1.7044 12145 1.0385 1.0359 1.0000 | 1.1845 1.0328 1.0304 1.0000
3 ] 20598 18339 18281 17381 1.2432 10677 1.0635 1.0000 | 1.2085 1.0582 1.0543 1.0000
4 | 21225 18908 1.8827 17562 1.2651 1.0902 1.0848 1.0000 | 1.2274 1.0783 1.0733 1.0000
5 | 21696 19342 19245 1.7669 1.2812 11078 1.1014 1.0000 | 1.2421 1.0945 1.0885 1.0000
6 | 22066 19687 19574 1.7735 12933 11219 1.1146 1.0000 | 1.2537 1.1074 1.1006 1.0000
7 | 22360 20004 19842 1.7776 13026 11355 1.1253 1.0000 | 1.2626 1.1200 1.1106 1.0000
8 | 2.2604 20204 20065 17800 1.3100 11428 11341 1.0000 | 1.2701 1.1274 1.1191 1.0000
9 | 22811 20410 20259 1.7816 1.3162 11512 1.1421 1.0000 | 1.2763 1.1353 1.1264 1.0000
10 | 22997 20592 20431 1.7827 13217 1.1588 1.1493 1.0000 | 1.2818 1.1423 1.1329 1.0000
11 | 23160 2.0756 2.0586 1.7834 1.3267 11659 1.1559 1.0000 | 1.2865 1.1487 1.1388 1.0000
12 | 2.3313 20907 2.0725 1783 13315 11725 1.1621 1.0000 | 1.2908 1.1547 1.1444 1.0000
13 | 2.3453 21049 20858 1.7839 1.3364 11788 1.1681 1.0000 | 1.2950 1.1602 1.1495 1.0000
14 | 23588 21183 20984 1.7841 13410 11851 1.1739 1.0000 | 1.2990 1.1654 1.1543 1.0000
15 | 23715 21310 21101 1.7842 13458 1.1913 1.1797 1.0000 | 1.3026 1.1704 1.1588 1.0000
16 | 23838 21432 21216 1.7843 13505 11971 1.1853 1.0000 | 1.3061 1.1751 1.1632 1.0000
17 | 23953 21549 21324 1.7843 13551 1.2030 1.1908 1.0000 | 1.3096 1.1798 1.1675 1.0000
18 | 24067 21660 21426 1.7844 13597 1.2087 1.1962 1.0000 | 1.3130 1.1842 11715 1.0000
19 | 24177 21767 21525 1.7844 13643 12144 12016 1.0000 | 1.3161 1.1889 1.1755 1.0000
20 | 24281 21873 21621 17844 1.3689 12198 1.2068 1.0000 | 1.3194 1.1925 1.1792 1.0000

27




Davis and Woodall [10] stated that «... as H increases, a synthetic X chart behaves more and
more like an X chart” — this might be the case with WS, DW and MC2 schemes. For the newly
proposed MSS synthetic X chart, we see that this statement does not hold because as H increases,
the overall performance statistics decrease in an opposite direction as compared to the basic X chart
and converge to some value, no matter how large H is. However, the overall performance of the
WS, DW and MC2 schemes tend to decrease, at first, and then at some point, increase towards the

overall performance of the basic X chart — this phenomenon is summarized in Table 8.

4. Application example

To illustrate the utility and the application of the proposed chart, we consider a well-known
dataset from Montgomery [20] on the inside diameters of piston rings manufactured by a forging
process. This data set contains twenty-five retrospective or Phase | samples, each of size five, that
were collected when the process was thought to be IC. These data are considered to be the Phase |
reference data for which a goodness of fit test for normality is not rejected. This data set also
contains fifteen prospective (Phase I1) samples each of five observations (n =5). Firstly, though,
when the distribution parameters of a particular process are unknown, it is generally accepted that
there are two phases of application of control charts, namely Phase | and Phase I, see Chakraborti

et al. [7] for further discussion on this.
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Figure 5: The synthetic and runs-rules X charts for the piston ring data

Here we use the piston rings data to illustrate the construction and operation of the MSS,
MC2, DW, WS, AR, MC1, KL and DR schemes in steady-state mode, since Champ [8] stated that a
more realistic mode of analysis is the steady-state. Note though, zero-state analysis follows in a
similar fashion by using the chart design constants (i.e. H and k) in Table 3. Assume that the desired
ARLy is 370.4 and we are interested in a 2-of-3 runs-type chart (i.e. H=2). The sample mean and
sample standard deviation estimated from an IC Phase | data are 74.001 and 0.005, respectively.
Then, using the values of k in Panel (b) of Table 3 for H=2, k=3 for the X chart and Equation (1), it
follows that the control limits for each of these schemes are as given in Figure 5. From Figure 5, it
is clear that the Phase | data are IC, as no OOC signal is detected by each of the 2-of-3 runs-type
schemes or the 1-of-1 for the X chart, for the first 25 observations. However, in Phase 11, the MSS,
MC2, DW, AR, MC1 and KL schemes give an OOC signal at sample number 35, as two out of
three consecutive plotting statistics are above the respective UCLs. Note though, the non-side-

sensitive DR and WS schemes only signal later at sample number 37 — similar to the first OOC
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signal by the X chart. This supports the fact that the side-sensitive charts are more efficient than

their non-side-sensitive counterparts.

5. Conclusion

The literature has witnessed a tremendous growth in synthetic charts in the last few years
since many practitioners prefer waiting until the occurrence of a second nonconforming sample
beyond the control limits before looking for an assignable cause. Hence, in this paper, we
considered the performance of such schemes that take into account two nonconforming samples
falling outside the control limits (i.e. the 2-of-(H+1) runs-rules schemes for H=1, 2, ..., 20 — with
or without a head-start) before issuing an OOC signal. We then proposed a MSS synthetic X chart
that issues a signal when all the consecutive H+1 samples that lead to an OOC event are on one side
of the center line. Using the zero-state and steady-state ARL, EQL, PCI and ARARL as performance
measures, we showed that this new synthetic X chart has either the same or better overall OOC
performance than the other competing Shewhart-type X schemes that take into account two
nonconforming samples falling outside the control limits before issuing an OOC signal. Note
though, the performance of this new synthetic X chart is more pronounced in zero-state and
relatively lower in steady-state, but it is uniformly better than the three classes of synthetic X charts
currently available in the literature. Based on this study, the MSS synthetic X chart warrants being a
strong contender to practical applications where 2-of-(H+1) runs-rules X schemes with or without a
head-start feature are currently used.

The results in this article are based on the assumptions of iid normally distributed
observations; hence if the assumptions do not hold, the above results may have to be re-examined.
A synthetic X chart with warning limits (in addition to control limits in Equation (1)) similar to the
runs-rules scheme in Antzoulakos and Rakitzis [4] has been investigated and reported in Shongwe
and Graham [23]. For future research purposes, we will investigate the double sampling MSS chart

and compare its performance to the double sampling schemes in Khoo et al. [15] (for WS scheme)
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and Costa and Machado [9] (for MC2 scheme). In addition, the effect of parameter estimation may
be conducted for both fixed and double sampling schemes, similar to that done in Zhang et al. [27]

and You et al. [26], respectively.
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