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Abstract 

In this paper, we propose a modified side-sensitive (MSS) synthetic  ̅ chart which signals only if 

all the consecutive plotting statistics that lead to an out-of-control event fall on one side of the 

center line; unlike the non-side-sensitive, standard and revised side-sensitive synthetic  ̅ charts that 

also signal even when some of the plotting statistics fall on opposite sides of the center line. 

Moreover, we use the Markov chain imbedding technique to study and compare the zero-state and 

steady-state average run-length (ARL), extra quadratic loss, average ratio of the ARLs and 

performance comparison index of the proposed MSS chart with other Shewhart-type synthetic and 

runs-rules charts. The synthetic  ̅ chart with this MSS feature has a better overall zero-state and 

steady-state performance than the existing synthetic  ̅ charts and hence makes it a strong contender 

in many applications where existing synthetic  ̅ charts are currently used. 

Keywords: Runs-rules, Side-sensitive, Steady-state, Synthetic chart, Zero-state 

 

1. Introduction 

Statistical process control and monitoring (SPCM) is a collection of statistical techniques and tools 

which allows high quality products to be produced. Among the SPCM tools, control charts are 

undeniably the most widely used for identifying changes in processes. Control charts are mainly 

used to distinguish between the chance and the assignable causes of variation. When a process has 

only chance causes of variation present, it is said to be statistically in-control (IC), otherwise, the 

process is said to be out-of-control (OOC). 

 Assume that {     i ≥ 1; j = 1, 2,…, n} is a sequence of samples from iid N(     
 ) 

distribution where    and   
  are the specified IC mean and variance, respectively. Let  ̅  denote the 
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plotting statistic calculated from {   } at sampling point i. A control chart that is usually used to 

monitor  ̅  is called the  ̅ chart and it signals when a single plotting statistic falls above the upper 

control limit (UCL) or below the lower control limit (LCL) which are given by 

UCL =       , CL =   , LCL =       , (1) 

where k is the distance of the control limits from the center line (CL); see Figure 1. A Shewhart  ̅ 

chart is known to be more efficient in detecting large process shifts, however, it is relatively 

insensitive in detecting small and moderate shifts. In order to increase the sensitivity of the  ̅ chart 

for detecting smaller shifts, Wu and Spedding [24] proposed a synthetic  ̅ chart for the mean which 

consists of two sub-charts, one, a basic  ̅ chart and a second, a conforming run-length (CRL) chart. 

For a synthetic chart, an OOC signal is not based on a single plotting statistic falling beyond the 

control limits in Equation (1), instead, when a sample produces a value beyond the control limits in 

Equation (1), that sample is marked as nonconforming and the control procedure moves to the 

second sub-chart and a signal is obtained depending on the outcome of the CRL sub-chart. Note that 

when a sample produces a value falling between LCL and UCL, then that sample is marked as 

conforming. A CRL is defined as the number of conforming samples between two consecutive 

nonconforming samples, inclusive of the nonconforming sample at the end; see Bourke [6]. Note 

that the absence of any conforming samples between two nonconforming samples leads to the 

minimum CRL i.e. CRL = 1. The CRL chart signals when an observed CRL value is less than or 

equal to some threshold, say H (an integer, greater or equal to 1), which is defined to be the 

threshold / control limit of the CRL chart. Note though a more general definition of synthetic charts 

is given by Scariano and Calzada [22], where they stated that a synthetic chart “consists of any 

control charting procedure operating in union with the CRL chart”. To make the run-length analysis 

of the synthetic chart easier, Davis and Woodall [10] showed that a synthetic chart is a special case 

of a runs-rules chart i.e. a 2-of-(H+1) with a head-start (HS) feature. The HS feature implies that we 

assume that (at time 0) the first observation is nonconforming, consequently, we need at least one 
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other nonconforming sample within the next H sampling points, for a 2-of-(H+1) runs-type chart to 

issue a signal. 

 

(a) Non-side-sensitive regions 

 

(b) Standard / revised side-sensitive regions 

 

(c) Modified side-sensitive regions 

 

Figure 1: The control limits and the corresponding regions of the  ̅ sub-chart 
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We can classify the available synthetic charts that are based on the sub-chart limits in Equation (1) 

into three types which are as follows:  

(i) the non-side-sensitive synthetic chart (by Wu and Spedding [24] – denoted by WS) that 

signals when two nonconforming samples out of H+1 successive samples fall outside the 

control limits, irrespective of whether one (or both) of the nonconforming samples fall 

above the UCL and the other (or both) falls below the LCL, which are separated by at most 

H-1 conforming samples that fall between the LCL and the UCL. The control charting 

regions are shown in Figure 1(a). 

(ii)  the standard side-sensitive synthetic chart (by Davis and Woodall [10] – denoted by DW) 

that signals when two nonconforming samples out of H+1 successive samples fall above 

(below) the UCL (LCL) which are separated by at most H-1 samples that fall below (above) 

the UCL (LCL), respectively. The control charting regions are shown in Figure 1(b). 

(iii) the revised side-sensitive synthetic chart (by Machado and Costa [18] – denoted by MC) 

that signals when two nonconforming samples out of H+1 successive samples fall above 

(below) the UCL (LCL) which are separated by at most H-1 conforming samples that fall 

between the LCL and the UCL, respectively. The control charting regions are shown in 

Figure 1(b). 

Before discussing the aim of this paper, we also differentiate between the different types of runs-

rules charts (without the HS feature). For the control limits in Equation (1), there are four types of 

runs-rules that are considered in the literature and these are as follows (where w   2 and    0 are 

specified positive integers): 

(i) the non-side-sensitive w-of-(w+v) (by Derman and Ross [11] – denoted by DR) that signals 

when w nonconforming samples out of w+v successive samples fall outside the control 

limits, no matter whether some (or all) of the w nonconforming samples fall above the UCL 

and the others (or all) fall below the LCL, which are separated by at most v conforming 
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samples that fall between the LCL and the UCL. The control charting regions are shown in 

Figure 1(a). 

(ii) the standard side-sensitive w-of-(w+v) (by Klein [16] – denoted by KL) that signals when w 

nonconforming samples out of w+v successive samples fall above (below) the UCL (LCL) 

which are separated by at most v samples that fall below (above) the UCL (LCL), 

respectively. The control charting regions are shown in Figure 1(b). 

(iii) the revised side-sensitive w-of-(w+v) (adopted from the synthetic chart of Machado and 

Costa [18]) that signals when w nonconforming samples out of w+v successive samples fall 

above (below) the UCL (LCL) which are separated by at most v conforming samples that fall 

between the LCL and the UCL, respectively. The control charting regions are shown in 

Figure 1(b). 

(iv)  the modified side-sensitive (MSS) w-of-(w+v) (by Antzoulakos and Rakitzis [5] – denoted 

by AR) that signals when w nonconforming samples out of w+v successive samples fall 

above (below) the UCL (LCL) which are separated by at most v conforming samples that are 

plotted between the CL and the UCL (LCL), respectively. The control charting regions are 

shown in Figure 1(c).  

Note that unlike the signaling rules proposed by Klein [16] and Machado and Costa [18], the 

signaling rules proposed by Antzoulakos and Rakitzis [5] signifies the importance of a CL because 

the AR scheme signals when all the w+v consecutive samples that lead to an OOC event are on one 

side of the CL. 

Table 1: Types of runs-rules and synthetic  ̅ charts 

Runs-rules charts Synthetic charts 

(i) Non-side-sensitive w-of-(w+v): (DR) 

 Derman and Ross [11]  

(i) Non-side-sensitive 2-of-(H+1): (WS) 

 Wu and Spedding [24] 

(ii) Standard side-sensitive w-of-(w+v): (KL) 

 Klein [16] 

(ii) Standard side-sensitive 2-of-(H+1): (DW) 

 Davis and Woodall [10] 

(iii) Revised side-sensitive w-of-(w+v): (MC1) 

 Adopted from Machado and Costa [18] 

(iii) Revised side-sensitive 2-of-(H+1): (MC2) 

 Machado and Costa [18] 

(iv) Modified side-sensitive w-of-(w+v): (AR) 

 Antzoulakos and Rakitzis [5] 

(iv) Modified side-sensitive 2-of-(H+1): (MSS) 

 Proposed in this paper 
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 The abovementioned four runs-rules charts and three synthetic charts are summarized in 

Table 1. For a fair comparison with synthetic charts, we only consider runs-rules charts with w = 2 

so that v = H-1 and w+v = H+1. To differentiate between the runs-rules and synthetic schemes by 

Machado and Costa [18], we denote these as MC1 and MC2, respectively. The three types of 

synthetic charts in Table 1 (i.e. WS, DW and MC2) have runs-type rules similar to those in DR, KL 

and MC1, respectively. Therefore the aim of this paper is to supplement on the work done by the 

authors listed in Table 1, by proposing a synthetic  ̅ chart that has runs-type rules similar to those in 

Antzoulakos and Rakitzis [5], called the MSS synthetic  ̅ chart. That is, this paper makes a 

contribution to both synthetic and runs-rules charts by: 

 proposing a new Shewhart-type synthetic  ̅ chart; 

 using a Markov chain imbedding technique to study the run-length properties of the 

synthetic charts and we use a design criterion with more emphasis on the overall 

performance to study the effectiveness of the 2-of-(H+1) runs-type charts as H increases i.e. 

H ≤ 20. Note that most studies on runs-rules usually concentrate on H ≤ 3; 

 we give recommendations on what the optimal value of H should be so that the 

corresponding 2-of-(H+1) runs-type chart (i.e. MSS, MC2, DW, WS, AR, MC1, KL, DR) 

each results in the best overall performance; depending on the upper bound on the range of 

shifts (later denoted by     ). 

 To supplement on the zero-state average run-length (ARL) performance of the 2-of-(H+1) 

DR, KL and AR, we study the steady-state ARL performance of these charts. Moreover, we 

evaluate the zero-state performance of MC2 scheme proposed in Machado and Costa [18] 

and then propose its zero-state and steady-state runs-rules version i.e. MC1. 

The goal of this paper is to compare a variety of simple Shewhart synthetic and runs-rules  ̅ 

monitoring schemes with control limits based on Equation (1) to monitor the process mean for 

normally distributed data. Thus, the schemes discussed herein will not outperform the more 

advanced schemes like the basic exponentially weighted moving average (EWMA) / cumulative 
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sum (CUSUM), or the synthetic EWMA / CUSUM, or the runs-rules EWMA / CUSUM schemes. 

An interested reader may see Khoo et al. [14], Abbas et al. [1], [2], Riaz et al. [21], Scariano and 

Calzada [22] and Haq et al. [13]. Thus, this paper must be considered as a framework for quality 

practitioners who utilise Shewhart-type synthetic and runs-rules  ̅ charts. The rest of the paper is 

structured as follows: In Section 2 we present the operation of the MSS, the zero-state and steady-

state Markov chain imbedding technique for the synthetic and runs-rules charts. In Section 3 we 

evaluate the OOC performance of the proposed MSS chart and compare its specific shift and overall 

performance with the Shewhart-type charts given in Table 1. In Section 4 we give an illustrative 

example using real-life data to show how these charts are implemented. Finally, in Section 5 we 

give concluding remarks. 

 

2. Operation and design considerations 

 2.1 Operation of the MSS chart 

 The MSS synthetic  ̅ chart signals when two nonconforming samples out of H+1 successive 

samples plot above (below) the UCL (LCL) which are separated by at most by H-1 conforming 

samples plotting between the CL and the UCL (LCL), respectively. This means that the MSS chart 

signals when all the H+1 consecutive samples that lead to an OOC event fall on one side of the CL. 

With the aid of definitions in Machado and Costa [19], to clearly describe the operation of the MSS 

scheme, we need to define two types of CRLs i.e. lower CRL (denoted by CRLL) and upper CRL 

(denoted by CRLU). A CRLL is the number conforming samples (i.e. falling on region C in Figure 

1(c)) that are plotted in between the two consecutive nonconforming samples below the LCL, 

inclusive of the nonconforming sample at the end. However, a CRLU is the number conforming 

samples (i.e. falling on region B in Figure 1(c)) that are plotted in between the two consecutive 

nonconforming samples above the UCL, inclusive of the nonconforming sample at the end. Note 

that the absence of a conforming sample implies that either the CRLU or CRLL equals one. Thus the 

MSS chart operates as follows:  
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Step (i) On the next sampling point, take a sample of size n and compute  ̅ . 

Step (ii) If LCL   ̅   UCL then return to Step (i). 

Step (iii)  However, if  ̅   LCL go to Step (iv), or  ̅   UCL go to Step (v). 

Step (iv)  If CRLL ≤ H go to Step (vi), otherwise return to Step (i). 

Step (v) If CRLU ≤ H go to Step (vi), otherwise return to Step (i). 

Step (vi)  Issue an OOC signal, and then take necessary corrective action to find and remove 

the assignable causes. Then return to Step (i). 

 2.2 Markov chain imbedding techniques for the runs-type charts 

 The transition probability matrix (TPM) of the Markov chain for any general (integer) value 

of    0 is given by 

             (

      

 
       

   
 
 
 
    

      

 
      

 ) (2) 

where        is the essential TPM, the vector        satisfies        with        

           and                  . In order to construct the TPM, we follow the Markov chain 

imbedding technique discussed briefly by Antzoulakos and Rakitzis [4], [5], Low et al. [17] and in 

detail by Fu and Lou [12]. This entails dividing the chart into separate distinct regions (see Figure 

1) i.e. let { ̅ ; i ≥ 1} be a sequence of iid trials taking values in the set    = {O, U},    = {A, O, D} 

and    = {A, B, C, D}. Then, define the probability that a plotting statistic falls in each region: 

(i)    denotes the probability that a point falls above the UCL (region A) i.e.    ̅    ; 

(ii)    denotes the probability that a point falls between the CL and the UCL (region B) i.e. 

   ̅    ; 

(iii)    denotes the probability that a point falls between the LCL and the CL (region C) i.e. 

   ̅    ; 

(iv)    denotes the probability that a point falls below the LCL (region D) i.e.    ̅    ; 

(v)          denotes the probability that a point falls on region O i.e.    ̅    ; 

(vi)          denotes the probability that a point falls on region U i.e.    ̅    . 

8



For some sample size, n, suppose that the values of   ̅ and   ̅
  are known. Thus the probabilities of 

a plotting statistic falling in a specific region are given by 

         ̅          (   √ ) 

            ̅        (   √ )   (  √ ) 

             ̅       (  √ )   (    √ ) 

         ̅        (    √ ) 

             ̅                   

         ̅          ̅                   

(3) 

respectively, where      denotes the cumulative distribution function (cdf) of the standard normal 

distribution and   is the shift parameter expressed in terms of the standard deviation units and we 

let CL = 0.  

 To construct the TPM, we need to define the compound patterns that result in an OOC event 

(which is also known as the waiting time until the first occurrence of an OOC signal). For example, 

the sequence of plotting statistics „AA‟ indicates two consecutive plotting statistics falling in region 

A, whereas „ABA‟ indicates the first plotting statistic falling in region A, the second in region B 

and the third in region A, etc. The symbol „±‟ is used to denote the assumption that (at time 0) the 

first observation lies either above UCL or below LCL (i.e. HS feature), so that „±A‟ indicate the first 

plotting statistic falling either above UCL (region A) or below LCL (region D) and the second in 

region A. Following Fu and Lou [12], we let the sequences of conforming and nonconforming 

samples, say      ABBA, to be the j
th

 simple pattern within a sequence of n four-state trials from 

say, set   . Then, define   as a compound pattern if it is the union of   distinct simple patterns i.e. 

             . Let W denote the waiting time for the first occurrence of  . Then the run-

length distribution of a control chart coincides with the waiting time distribution of W, see 

Antzoulakos and Rakitzis [4], [5]. That is, the run-length distribution of the chart becomes the 

waiting time until the first occurrence of one of the patterns   ,   , …,    and these are the 

absorbing states of the Markov chain, where   denotes the number of patterns (or sequences) of the 
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 ̅  that cause the chart to signal. Then we define the Markov chain with the state space Ω = { ; 

  ,…,   ; OOC} operating on { ̅ ; i ≥ 1} as follows: 

 the transient state – corresponding to the IC region, denoted by  ;  

 the absorbing state – corresponding to the union of    ,…,   ; in order to reduce the 

dimension of the TPM, the   absorbing states which signal the entrance of the MC to each 

of the   distinct simple patterns may be substituted by a single absorbing state, denoted by 

OOC; 

 the sub-patterns – corresponding to the first element(s) of each of the simple pattern   ,…, 

   without the last element. Note that these sub-patterns are non-absorbing and are denoted 

by   ,…,   , where    .  

 

Table 2: Compound patterns of the Markov chain imbedding technique for the 2-of-(H+1) 

synthetic and runs-rules charts when H ≤ 5 

 

 For illustration purpose, in Table 2 we give the compound patterns of H ≤ 5 for the eight 

schemes in Table 1 with charting regions in Figure 1. The compound patterns of KL, MC1 and AR 

schemes exclude those simple patterns that are boldfaced in Table 2 (i.e. those starting with „±‟). 

The aim is to show how to construct the TPM in Equation (2) and more importantly to show the 

difference between TPMs of DR and WS, KL and DW, MC1 and MC2, AR and MSS, respectively, 

that is, by removing the HS feature elements (or simple / sub-patterns) in the construction of the 

TPMs of the DW, MC2 and MSS results in the TPMs of KL, MC1 and AR, respectively. Note that 

the WS chart is non-side-sensitive, thus the initial state at time zero is in the nonconforming region 

H DR / WS KL / DW MC1 / MC2 AR / MSS 

1 UU AA, ±A, DD,  ±D AA, ±A, DD, ±D AA, ±A, DD,  ±D 

2 UOU AOA, ADA, ±OA, DOD, DAD, ±OD  AOA, ±OA, DOD, ±OD  ABA, ±BA, DCD, ±CD 

3 UOOU AOOA, AODA, ADOA, ±OOA,  

DOOD, DOAD, DAOD, ±OOD 

AOOA, ±OOA, 

DOOD, ±OOD 

ABBA, ±BBA,  

DCCD, ±CCD 

4 UOOOU AOOOA, AOODA, AODOA, ADOOA, ±OOOA, 

DOOOD, DOOAD, DOAOD, DAOOD, ±OOOD 

AOOOA, ±OOOA, 

DOOOD, ±OOOD 

ABBBA, ±BBBA, 

DCCCD, ±CCCD 

5 UOOOOU AOOOOA, AOOODA, AOODOA, AODOOA, 

ADOOOA, ±OOOOA, 

DOOOOD, DOOOAD, DOOAOD, DOAOOD, 

DAOOOD, ±OOOOD 

AOOOOA, ±OOOOA, 

DOOOOD, ±OOOOD 

ABBBBA, ±BBBBA,  

DCCCCD, ±CCCCD 
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U. Next, we show how to construct the state space Ω using an example with H = 2. The state spaces 

of the eight different monitoring schemes listed in Table 1 when H=2 are given by: 

 transient state 

DR, KL, MC1, WS, DW, MC2:   = {O};   AR, MSS:   = {B,C}; see Figure 1. 

 absorbing state 

These are the union of the simple patterns listed in Table 2 corresponding to H ≤ 2 as these yield an 

observed CRL ≤ 2 for the WS, DW and MC2 schemes; and CRLL ≤ 2 or CRLU ≤ 2 for the MSS 

scheme. 

DR:   ={UU},   ={UOU}, i.e.   = 2. 

KL:   ={ADA},   ={AOA},   ={AA},   ={DD},   ={DOD},   ={DAD}, i.e.   = 6; 

MC1:   ={AOA},   ={AA},   ={DD},   ={DOD}, i.e.   = 4; 

AR:   ={ABA},   ={AA},   ={DD},   ={DCD}, i.e.   = 4; 

WS:   ={UU},   ={UOU}, i.e.   = 2; 

DW:   ={ADA},   ={AOA},   ={AA},   ={DD},   ={DOD},   ={DAD},   ={±A}, 

  ={±D},   ={±OA},     ={±OD}, i.e.   = 10; 

MC2:   ={AOA},   ={AA},   ={DD},   ={DOD},   ={±A},   ={±D},   ={±OA}, 

  ={±OD}, i.e.   = 8; 

MSS:   ={ABA},   ={AA},   ={DD},   ={DCD},   ={±A},   ={±D},   ={±BA}, 

  ={±CD}, i.e.   = 8; 

 sub-patterns - these are distinct sub-patterns of   ,…,    

DR:   ={U},   ={UO}, i.e.   = 2. 

KL:   ={AD},   ={AO},   ={A},   ={D},   ={DO},   ={DA}, i.e.   = 6; 

MC1:   ={AO},   ={A},   ={D},   ={DO}, i.e.   = 4; 

AR:   ={AB},   ={A},   ={D},   ={DC}, i.e.   = 4; 

WS:   ={U},   ={UO}, i.e.   = 2; 

DW:   ={AD},   ={AO},   ={A},   ={D},   ={DO},   ={DA},   ={±},   ={±O}, i.e.   = 8; 
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MC2:   ={AO},   ={A},   ={D},   ={DO},   ={±},   ={±O}, i.e.   = 6; 

MSS:   ={AB},   ={A},   ={D},   ={DC},   ={±},   ={±B},   ={±C}, i.e.   = 7. 

Thus, when H=2 the TPM of the WS, DW, MC2 and MSS schemes are given by  

 

         OOC 

          0 0 

   0 0    1-   

      0 0 1-   

OOC 0 0 0 1 
 

(4) 

 

 

                           OOC 

   0 0 0 0 0    0 0 0       

   0 0 0       0 0 0 0    

         0 0 0 0 0 0 0    

  0 0          0 0 0 0 0 

   0 0 0 0 0       0 0    

   0 0       0 0 0 0 0    

   0    0 0 0 0 0 0 0       

   0 0 0 0 0 0 0 0          

   0 0 0    0 0 0 0 0       
OOC 0 0 0 0 0 0 0 0 0 1 

 

(5) 

 

                     OOC 

   0 0       0 0 0    

      0 0    0 0 0    

  0          0 0 0 0 

   0    0 0    0 0    

   0       0 0 0 0    

   0 0 0 0 0 0          

   0 0    0 0 0 0       
OOC 0 0 0 0 0 0 0 1 

 

(6) 

and  

                        OOC 

   0 0          0 0 0 0    

      0       0 0 0 0    

  0             0 0 0 0 0 

   0       0    0 0 0    

   0          0 0 0 0 0    

   0 0 0 0 0 0             

   0 0          0 0 0 0    

   0          0 0 0 0 0    
OOC 0 0 0 0 0 0 0 0 1 

 

(7) 
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respectively. Moreover, the TPM of the DR scheme is the same as that of WS. However, the TPM 

of the KL, MC1 and AR are obtained from those of DW, MC2 and MSS schemes by removing the 

elements with the HS feature (i.e.    and    for DW scheme;    and    for MC2 scheme;   ,    

and    for MSS scheme) in Equations (5), (6) and (7), respectively; note that this relation holds for 

every H > 0. The construction of the Markov chain TPMs follows in a similar manner for other 

values of H. Finally, for any H > 0, the dimension (i.e. M+1) of the TPM in Equation (2) for the 

runs-rules and synthetic charts are given by 

DR: (H+1)+1,   KL: (H
2
+H+1)+1,  MC1: (2H+1)+1,  AR: (2H+1)+1 (8a) 

and 

WS: (H+1)+1,   DW: [(H
2
+H+1)+H]+1,   MC2: [(2H+1)+H]+1,   MSS: [(2H+1)+(2H-1)]+1, (8b) 

respectively. 

 2.3 Design considerations  

The performance of a control chart at some specific shift is usually measured by ARL given by  

                     (9) 

where   is the initial probability vector (depending on whether a zero-state or a steady-state analysis 

is being considered), see Fu and Lou [12]. Zero-state and steady-state analysis are used to 

characterize short and long term run-length properties of a control chart, respectively. That is, the 

zero-state run-length is the number of sampling points at which the chart first signals given it begins 

in some initial state, however, the steady-state run-length is the number of sampling points at which 

the chart first signals given that the process begins and stays IC for a very long time, then at some 

random time, an OOC signal is observed, see Champ [8] and Machado and Costa [18], [19]. Note 

that        is the row vector of initial probabilities associated with the zero-state mode i.e. 

          (0 0  …1 … 0) (10) 

so that the initial state element on the TPM corresponds to the value of 1 in Equation (10). That is, it 

has a one in the component associated with the state in which the chart begins and each of the other 
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components is zero. For the MSS, MC2 and DW charts, the initial state corresponds to the element 

of the TPM equal to „±‟, whereas for WS, it corresponds to the element with „U‟. However, for AR 

it corresponds to „B,C‟ and for MC1, KL and DR, it corresponds to „O‟, that is, for runs-rules 

without HS, the initial state is given by „ ‟. In steady-state, the vector   is replaced by a vector  ,  

i.e. the steady-state initial probability vector given by  

                      (11) 

where the sum of the elements in Equation (11) sum to unity. Champ [8] showed that when    is 

obtained from      (i.e.   = 0) after diving each element by its corresponding row sum, then        

is a vector such that         subject to ∑   
 
     1. The ARL (in Equation (9)) based on 

Equation (10) is denoted by ZSARL, whereas that based on Equation (11) is denoted by SSARL. 

 Since the ARL only measures the performance of a control chart at some specific shifts, a 

number of authors have suggested the use of additional indices to measure the overall performance 

of the charts, see for example Wu et al. [25], Abujiya et al. [3] and Machado and Costa [19]. Since 

it is usually unknown what specific shift value(s) a control chart should be optimized for, Wu et al. 

[25] stated that it is more efficient to design a chart such that it has a better overall performance 

than its competitors. Thus, when the aim is to measure the overall performance of the chart over a 

range of shifts (i.e. 0 < δ ≤ δmax, where δmax is the upper bound of the mean shift that is of interest by 

the user), the objective function must be defined in terms of the extra quadratic loss (EQL) i.e.  

    
 

    
∫          

    

 

            (12) 

Since it is generally assumed that all mean shifts within the range 0 < δ ≤ δmax occur with equal 

probability, a uniform distribution of   is implied, see Wu et al. [25] and Machado and Costa [19]. 

Hence Equation (12) may equivalently be written as  

    
 

    
∑          

    

 

           (13) 
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Here, we use a step shift ( ) of size 0.1. In addition to the EQL, Wu et al. [25] suggested the 

performance comparison index (PCI) to measure the relative effectiveness of two different charts. 

In this paper, we shall use the MSS chart as the benchmark; hence the PCI is given by  

PCI = 
   

      
 , (14) 

where EQLMSS is EQL of the „benchmark‟ MSS chart. Also, the ratio of the ARLs is usually used to 

measure the overall effectiveness of a benchmark chart against other competitors, see Wu et al. 

[25]. Hence assuming a uniform distribution in  , the average ratio of ARLs is given by 

      
 

    
∑

      

         

    

 

 (15) 

where ARLMSS( ) is the ARL produced by the MSS chart. If the value of PCI or ARARL is larger 

than one, the competing chart will produce larger OOC ARL over a larger shift range and / or to a 

larger degree compared to the benchmark chart and thus, the competing chart is relatively less 

effective. However, if the PCI or ARARL is smaller than one, the competing chart will have higher 

overall effectiveness than the benchmark chart. 

 

3. Discussion 

 In this section, we conduct an empirical study of the MSS scheme and compare its 

performance to the schemes listed in Table 1 for the zero-state and steady-state mode. Firstly, 

though in Table 3, we use Equations (2), (3), (8a), (8b), (9) in conjunction with Equations (10) and 

(11) to determine the optimal values of k in both states when H = 1, 2, … , 20 for ARL0 = 200, 

370.4, 500 and 1000.  

 It is very interesting to notice that as H increases, the optimal values of k also increases for 

all the charts considered in Table 3, however, the newly proposed MSS scheme (and its runs-rules 

counterpart AR) produces values of k that converges to some specific value regardless of how large 

H is, for both zero-state and steady-state mode. In this section, we investigate what implications 

does this convergence has on the overall performance, as H increases. Firstly though, we conduct an 
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Table 3: The values of k for the zero-state and steady-state 2-of-(H+1) synthetic and runs-rules  ̅ charts when H = 1, 2, … , 20 and ARL0 = 200, 370.4, 500, 1000 

 
(a) ARL0 = 200 (b) ARL0 = 370.4 

 Zero-state Steady-state Zero-state Steady-state 

H DR KL MC1 AR WS DW MC2 MSS 
DR&

WS 

KL& 

DW 

MC1&

MC2 

AR&

MSS 
DR KL MC1 AR WS DW MC2 MSS 

DR&

WS 

KL& 

DW 

MC1&

MC2 

AR&

MSS 

1 1.7912 1.6327 1.6327 1.6327 1.8073 1.6569 1.6569 1.6569 1.7923 1.6339 1.6339 1.6339 1.9323 1.7814 1.7814 1.7814 1.9435 1.7982 1.7982 1.7982 1.9328 1.7820 1.7820 1.7820 

2 1.9330 1.7870 1.7828 1.7203 1.9545 1.8186 1.8151 1.7489 1.9345 1.7888 1.7845 1.7219 2.0698 1.9293 1.9265 1.8664 2.0848 1.9515 1.9489 1.8862 2.0706 1.9303 1.9274 1.8671 
3 2.0110 1.8718 1.8654 1.7514 2.0366 1.9088 1.9035 1.7819 2.0130 1.8740 1.8675 1.7532 2.1461 2.0113 2.0069 1.8969 2.1640 2.0374 2.0335 1.9181 2.1472 2.0125 2.0080 1.8978 

4 2.0643 1.9296 1.9216 1.7644 2.0932 1.9711 1.9646 1.7958 2.0667 1.9323 1.9242 1.7663 2.1985 2.0676 2.0619 1.9099 2.2188 2.0968 2.0920 1.9318 2.1997 2.0689 2.0633 1.9109 

5 2.1043 1.9731 1.9638 1.7702 2.1361 2.0185 2.0111 1.8020 2.1071 1.9762 1.9668 1.7722 2.2380 2.1101 2.1035 1.9158 2.2604 2.1421 2.1366 1.9380 2.2395 2.1117 2.1051 1.9169 

6 2.1361 2.0078 1.9973 1.7728 2.1705 2.0566 2.0485 1.8049 2.1393 2.0113 2.0008 1.7749 2.2697 2.1441 2.1367 1.9186 2.2939 2.1787 2.1726 1.9409 2.2714 2.1459 2.1385 1.9197 

7 2.1624 2.0395 2.0250 1.7740 2.1992 2.0908 2.0797 1.8062 2.1661 2.0435 2.0290 1.7762 2.2959 2.1746 2.1642 1.9199 2.3218 2.2111 2.2026 1.9422 2.2978 2.1767 2.1663 1.9210 

8 2.1848 2.0609 2.0486 1.7746 2.2238 2.1157 2.1065 1.8068 2.1888 2.0652 2.0530 1.7767 2.3183 2.1964 2.1877 1.9205 2.3458 2.2354 2.2283 1.9429 2.3204 2.1987 2.1900 1.9216 

9 2.2041 2.0820 2.0689 1.7748 2.2452 2.1395 2.1299 1.8071 2.2085 2.0868 2.0737 1.7770 2.3377 2.2174 2.2081 1.9208 2.3667 2.2583 2.2509 1.9432 2.3401 2.2199 2.2106 1.9219 

10 2.2211 2.1006 2.0868 1.7750 2.2641 2.1607 2.1506 1.8072 2.2259 2.1058 2.0921 1.7771 2.3549 2.2359 2.2261 1.9209 2.3852 2.2786 2.2709 1.9433 2.3575 2.2386 2.2288 1.9220 
11 2.2363 2.1173 2.1027 1.7750 2.2811 2.1796 2.1693 1.8073 2.2415 2.1229 2.1084 1.7772 2.3702 2.2524 2.2422 1.9210 2.4018 2.2969 2.2889 1.9434 2.3730 2.2554 2.2451 1.9221 

12 2.2499 2.1322 2.1171 1.7751 2.2965 2.1968 2.1862 1.8073 2.2555 2.1382 2.1231 1.7772 2.3841 2.2674 2.2566 1.9210 2.4169 2.3135 2.3052 1.9435 2.3870 2.2706 2.2599 1.9221 

13 2.2623 2.1458 2.1300 1.7751 2.3105 2.2126 2.2016 1.8073 2.2682 2.1522 2.1365 1.7772 2.3966 2.2810 2.2698 1.9210 2.4307 2.3286 2.3201 1.9435 2.3998 2.2844 2.2733 1.9221 

14 2.2736 2.1582 2.1419 1.7751 2.3234 2.2270 2.2158 1.8073 2.2799 2.1650 2.1488 1.7772 2.4082 2.2935 2.2819 1.9210 2.4433 2.3426 2.3338 1.9435 2.4116 2.2971 2.2856 1.9221 

15 2.2840 2.1697 2.1528 1.7751 2.3353 2.2404 2.2290 1.8073 2.2906 2.1768 2.1601 1.7772 2.4188 2.3050 2.2930 1.9210 2.4551 2.3556 2.3466 1.9435 2.4224 2.3088 2.2969 1.9221 

16 2.2936 2.1802 2.1628 1.7751 2.3464 2.2529 2.2412 1.8073 2.3006 2.1878 2.1706 1.7772 2.4287 2.3157 2.3034 1.9210 2.4660 2.3676 2.3584 1.9435 2.4324 2.3197 2.3074 1.9221 

17 2.3025 2.1901 2.1722 1.7751 2.3567 2.2645 2.2527 1.8073 2.3099 2.1980 2.1803 1.7772 2.4378 2.3257 2.3130 1.9210 2.4762 2.3789 2.3695 1.9435 2.4418 2.3299 2.3173 1.9221 
18 2.3108 2.1992 2.1809 1.7751 2.3664 2.2755 2.2634 1.8073 2.3185 2.2076 2.1894 1.7772 2.4464 2.3350 2.3219 1.9210 2.4857 2.3895 2.3799 1.9435 2.4506 2.3394 2.3264 1.9221 

19 2.3186 2.2078 2.1890 1.7751 2.3755 2.2858 2.2735 1.8073 2.3267 2.2166 2.1979 1.7772 2.4545 2.3437 2.3303 1.9210 2.4947 2.3995 2.3898 1.9435 2.4588 2.3437 2.3351 1.9221 

20 2.3259 2.2159 2.1966 1.7751 2.3841 2.2955 2.2831 1.8073 2.3343 2.2250 2.2060 1.7772 2.4620 2.3520 2.3382 1.9210 2.5032 2.4089 2.3990 1.9435 2.4666 2.3568 2.3432 1.9221 

 (c) ARL0 = 500 (d) ARL0 = 1000 

 Zero-state Steady-state Zero-state Steady-state 

H DR KL MC1 AR WS DW MC2 MSS 
DR&

WS 

KL& 

DW 

MC1&

MC2 

AR&

MSS 
DR KL MC1 AR WS DW MC2 MSS 

DR&

WS 

KL& 

DW 

MC1&

MC2 

AR&

MSS 

1 1.9979 1.8504 1.8504 1.8504 2.0073 1.8645 1.8645 1.8645 1.9983 1.8509 1.8509 1.8509 2.1428 2.0026 2.0026 2.0026 2.1491 2.0120 2.0120 2.0120 2.1430 2.0028 2.0028 2.0028 

2 2.1333 1.9954 1.9930 1.9340 2.1459 2.0140 2.0119 1.9507 2.1339 1.9961 1.9937 1.9346 2.2735 2.1412 2.1396 2.0830 2.2820 2.1537 2.1522 2.0942 2.2738 2.1415 2.1399 2.0833 

3 2.2087 2.0760 2.0723 1.9642 2.2238 2.0980 2.0947 1.9821 2.2095 2.0769 2.0731 1.9649 2.3467 2.2188 2.2163 2.1125 2.3569 2.2336 2.2313 2.1244 2.3471 2.2192 2.2167 2.1128 

4 2.2606 2.1315 2.1267 1.9772 2.2777 2.1562 2.1520 1.9956 2.2615 2.1325 2.1277 1.9780 2.3973 2.2723 2.2691 2.1252 2.4089 2.2891 2.2862 2.1375 2.3977 2.2728 2.2696 2.1256 

5 2.2998 2.1734 2.1679 1.9832 2.3187 2.2005 2.1958 2.0018 2.3009 2.1746 2.1690 1.9839 2.4357 2.3130 2.3093 2.1311 2.4485 2.3314 2.3281 2.1436 2.4362 2.3136 2.3098 2.1315 

6 2.3313 2.2070 2.2008 1.9859 2.3517 2.2363 2.2310 2.0046 2.3325 2.2084 2.2022 1.9867 2.4666 2.3457 2.3415 2.1339 2.4804 2.3656 2.3619 2.1465 2.4672 2.3463 2.3421 2.1343 

7 2.3574 2.2370 2.2282 1.9872 2.3793 2.2680 2.2605 2.0060 2.3588 2.2386 2.2297 1.9880 2.4923 2.3744 2.3683 2.1353 2.5071 2.3955 2.3902 2.1479 2.4930 2.3751 2.3691 2.1356 
8 2.3797 2.2589 2.2516 1.9878 2.4029 2.2919 2.2858 2.0067 2.3813 2.2606 2.2532 1.9887 2.5143 2.3963 2.3913 2.1359 2.5300 2.4188 2.4144 2.1485 2.5151 2.3971 2.3921 2.1363 

9 2.3991 2.2797 2.2719 1.9881 2.4235 2.3144 2.3079 2.0070 2.4008 2.2816 2.2737 1.9890 2.5335 2.4167 2.4113 2.1362 2.5501 2.4403 2.4357 2.1488 2.5344 2.4175 2.4122 2.1366 

10 2.4163 2.2981 2.2898 1.9883 2.4419 2.3343 2.3276 2.0071 2.4181 2.3001 2.2919 1.9891 2.5505 2.4347 2.4291 2.1364 2.5679 2.4595 2.4546 2.1490 2.5514 2.4357 2.4300 2.1368 

11 2.4316 2.3146 2.3059 1.9884 2.4583 2.3523 2.3453 2.0072 2.4336 2.3168 2.3081 1.9892 2.5658 2.4509 2.4450 2.1364 2.5839 2.4767 2.4716 2.1491 2.5668 2.4519 2.4460 2.1368 

12 2.4455 2.3295 2.3204 1.9884 2.4732 2.3686 2.3613 2.0072 2.4476 2.3318 2.3227 1.9892 2.5796 2.4656 2.4594 2.1365 2.5984 2.4923 2.4870 2.1491 2.5806 2.4667 2.4605 2.1369 

13 2.4581 2.3431 2.3336 1.9884 2.4868 2.3835 2.3760 2.0073 2.4604 2.3455 2.3361 1.9892 2.5922 2.4789 2.4725 2.1365 2.6117 2.5066 2.5012 2.1491 2.5933 2.4801 2.4737 2.1369 

14 2.4697 2.3555 2.3457 1.9884 2.4994 2.3972 2.3895 2.0073 2.4722 2.3582 2.3484 1.9892 2.6037 2.4912 2.4845 2.1365 2.6239 2.5198 2.5142 2.1491 2.6050 2.4925 2.4858 2.1369 

15 2.4804 2.3670 2.3569 1.9884 2.5110 2.4100 2.4020 2.0073 2.4830 2.3698 2.3597 1.9892 2.6144 2.5026 2.4957 2.1365 2.6353 2.5321 2.5263 2.1491 2.6157 2.5040 2.4971 2.1369 
16 2.4903 2.3777 2.3672 1.9884 2.5218 2.4218 2.4137 2.0073 2.4931 2.3807 2.3702 1.9892 2.6244 2.5132 2.5061 2.1365 2.6458 2.5435 2.5375 2.1491 2.6258 2.5147 2.5075 2.1369 

17 2.4995 2.3877 2.3769 1.9884 2.5319 2.4329 2.4246 2.0073 2.5024 2.3908 2.3801 1.9892 2.6337 2.5231 2.5157 2.1365 2.6557 2.5542 2.5481 2.1491 2.6351 2.5246 2.5173 2.1369 

18 2.5082 2.3970 2.3859 1.9884 2.5414 2.4434 2.4349 2.0073 2.5112 2.4003 2.3892 1.9892 2.6424 2.5324 2.5248 2.1365 2.6650 2.5642 2.5580 2.1491 2.6439 2.5340 2.5264 2.1369 

19 2.5163 2.4058 2.3944 1.9884 2.5503 2.4532 2.4446 2.0073 2.5195 2.4092 2.3979 1.9892 2.6506 2.5411 2.5333 2.1365 2.6737 2.5737 2.5673 2.1491 2.6521 2.5428 2.5350 2.1369 

20 2.5239 2.4140 2.4024 1.9884 2.5588 2.4625 2.4537 2.0073 2.5273 2.4176 2.4060 1.9892 2.6583 2.5493 2.5413 2.1365 2.6820 2.5826 2.5761 2.1491 2.6599 2.5511 2.5431 2.1369 
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OOC ARL comparison when H = 1, 5 and 10 with δmax = 5. For each    0, either in zero-state or 

steady-state, the charting scheme performing best is indicated in bold in the subsequent tables. If 

two or more values are boldfaced, then the charts perform similarly. 

Table 4: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-

rules  ̅ charts when H = 1, δmax = 5 and ARL0 = 370.4 

 
  (a) (b) (c) 

  Zero-state Steady-state 
 ̅ 

  
DR KL, MC1, AR WS DW, MC2, MSS DR, WS KL, MC1, AR, DW, MC2, MSS 

 
k 1.9323 1.7814 1.9435 1.7982 1.9328 1.7820 3.0000 

δ 

0 370.5 370.4 370.5 370.4 370.3 370.3 370.4 

0.1 354.83 342.00 354.27 341.14 354.70 341.92 352.93 
0.2 313.44 276.65 311.50 274.02 313.25 276.51 308.43 

0.3 258.94 207.12 255.41 203.06 258.69 206.93 253.14 

0.4 203.68 150.24 198.90 145.44 203.39 150.04 200.08 
0.5 155.29 108.45 149.77 103.42 154.98 108.24 155.22 

0.6 116.48 78.91 110.70 73.96 116.17 78.71 119.67 

0.7 86.93 58.21 81.24 53.51 86.63 58.02 92.32 
0.8 65.06 43.63 59.67 39.26 64.78 43.46 71.55 

0.9 49.09 33.25 44.10 29.23 48.83 33.10 55.83 

1 37.46 25.78 32.90 22.10 37.23 25.64 43.89 
1.1 28.97 20.32 24.84 16.96 28.76 20.19 34.80 

1.2 22.74 16.28 19.00 13.21 22.55 16.16 27.82 

1.3 18.11 13.24 14.73 10.45 17.94 13.14 22.43 
1.4 14.64 10.94 11.58 8.38 14.49 10.84 18.25 

1.5 12.02 9.17 9.24 6.82 11.88 9.08 14.97 

1.6 10.01 7.79 7.47 5.63 9.88 7.71 12.38 
1.7 8.45 6.71 6.13 4.71 8.33 6.64 10.33 

1.8 7.23 5.85 5.09 3.99 7.12 5.78 8.69 

1.9 6.27 5.17 4.29 3.42 6.17 5.10 7.37 
2 5.50 4.61 3.66 2.97 5.41 4.55 6.30 

2.1 4.88 4.16 3.16 2.61 4.79 4.10 5.43 

2.2 4.38 3.79 2.77 2.32 4.30 3.73 4.72 
2.3 3.97 3.49 2.45 2.09 3.89 3.43 4.13 

2.4 3.63 3.23 2.19 1.90 3.56 3.18 3.65 

2.5 3.36 3.02 1.98 1.74 3.29 2.97 3.24 
2.6 3.13 2.85 1.81 1.61 3.06 2.80 2.90 

2.7 2.93 2.70 1.66 1.50 2.87 2.66 2.62 

2.8 2.77 2.58 1.55 1.41 2.71 2.54 2.38 
2.9 2.64 2.48 1.45 1.34 2.58 2.43 2.17 

3 2.53 2.39 1.37 1.28 2.47 2.35 2.00 

3.1 2.43 2.32 1.30 1.23 2.38 2.28 1.85 
3.2 2.36 2.26 1.25 1.18 2.30 2.22 1.73 

3.3 2.29 2.21 1.20 1.15 2.24 2.17 1.62 
3.4 2.24 2.17 1.16 1.12 2.18 2.13 1.53 

3.5 2.19 2.14 1.13 1.10 2.14 2.10 1.45 

3.6 2.15 2.11 1.11 1.08 2.10 2.07 1.38 
3.7 2.12 2.09 1.08 1.06 2.07 2.05 1.32 

3.8 2.10 2.07 1.07 1.05 2.04 2.03 1.27 

3.9 2.08 2.05 1.05 1.04 2.02 2.01 1.23 
4 2.06 2.04 1.04 1.03 2.01 2.00 1.19 

4.1 2.05 2.03 1.03 1.02 1.99 1.99 1.16 

4.2 2.04 2.02 1.02 1.02 1.98 1.98 1.13 
4.3 2.03 2.02 1.02 1.01 1.98 1.98 1.11 

4.4 2.02 2.01 1.01 1.01 1.97 1.97 1.09 

4.5 2.02 2.01 1.01 1.01 1.96 1.97 1.07 
4.6 2.01 2.01 1.01 1.01 1.96 1.97 1.06 

4.7 2.01 2.01 1.01 1.00 1.96 1.97 1.05 

4.8 2.01 2.00 1.00 1.00 1.96 1.97 1.04 
4.9 2.00 2.00 1.00 1.00 1.95 1.96 1.03 

5 2.00 2.00 1.00 1.00 1.95 1.96 1.02 

EQL 299.43 262.45 196.66 163.75 294.23 258.63 253.99 

ARARL 1.8330 1.6257 1.1790 1.0000 1.1558 1.0000  

PCI 1.8286 1.6027 1.2010 1.0000 1.1377 1.0000  
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Table 5: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-

rules  ̅ charts when H = 5, δmax = 5 and ARL0 = 370.4 

 
  (a) (b) (c) 
  Zero-state Steady-state 

 ̅ 
  DR KL MC1 AR WS DW MC2 MSS 

DR, 
WS 

KL, 
DW 

MC1, 
MC2 

AR, 
MSS 

 k 2.2380 2.1101 2.1035 1.9158 2.2604 2.1421 2.1366 1.9380 2.2395 2.1117 2.1051 1.9169 3.0000 

  

0 370.3 370.5 370.4 370.3 370.4 370.3 370.4 370.4 370.4 370.5 370.4 370.4 370.4 

0.1 351.30 337.22 336.50 331.84 349.97 334.92 334.30 330.07 351.24 337.11 336.40 331.83 352.93 

0.2 302.35 263.92 262.24 250.55 297.68 257.71 256.14 245.49 302.07 263.64 261.96 250.37 308.43 

0.3 241.02 190.77 188.78 174.04 232.91 181.83 179.98 166.80 240.52 190.36 188.37 173.75 253.14 

0.4 182.56 134.44 132.64 118.30 172.08 124.40 122.77 110.23 181.90 133.97 132.19 117.96 200.08 

0.5 134.48 95.00 93.57 81.07 122.99 84.95 83.69 73.04 133.74 94.53 93.11 80.73 155.22 

0.6 98.09 68.14 67.06 56.70 86.65 58.65 57.72 49.14 97.35 67.69 66.62 56.38 119.67 

0.7 71.73 49.85 49.05 40.66 60.96 41.16 40.50 33.76 71.02 49.43 48.64 40.37 92.32 

0.8 53.00 37.25 36.66 29.94 43.21 29.43 28.96 23.73 52.35 36.87 36.29 29.67 71.55 

0.9 39.75 28.42 27.99 22.63 31.02 21.46 21.13 17.09 39.16 28.08 27.65 22.39 55.83 

1 30.33 22.14 21.82 17.54 22.63 15.97 15.74 12.61 29.81 21.83 21.51 17.32 43.89 

1.1 23.57 17.59 17.35 13.92 16.82 12.13 11.96 9.54 23.11 17.31 17.07 13.72 34.80 

1.2 18.66 14.23 14.05 11.29 12.74 9.40 9.28 7.39 18.25 13.98 13.80 11.12 27.82 

1.3 15.05 11.72 11.58 9.35 9.84 7.44 7.35 5.86 14.67 11.49 11.36 9.19 22.43 

1.4 12.34 9.81 9.71 7.89 7.75 6.00 5.93 4.76 12.00 9.60 9.50 7.75 18.25 

1.5 10.29 8.34 8.26 6.77 6.23 4.93 4.88 3.95 9.99 8.15 8.07 6.64 14.97 

1.6 8.71 7.19 7.13 5.90 5.10 4.13 4.09 3.34 8.44 7.02 6.95 5.78 12.38 

1.7 7.48 6.28 6.23 5.21 4.26 3.51 3.49 2.88 7.23 6.12 6.07 5.11 10.33 

1.8 6.52 5.56 5.52 4.67 3.61 3.04 3.02 2.52 6.28 5.41 5.37 4.57 8.69 

1.9 5.75 4.97 4.94 4.22 3.12 2.67 2.66 2.25 5.53 4.83 4.80 4.13 7.37 

2 5.12 4.49 4.47 3.86 2.73 2.38 2.37 2.03 4.92 4.36 4.33 3.78 6.30 

2.1 4.62 4.10 4.08 3.57 2.43 2.15 2.14 1.85 4.43 3.97 3.95 3.48 5.43 

2.2 4.20 3.77 3.75 3.32 2.19 1.96 1.95 1.71 4.03 3.65 3.64 3.24 4.72 

2.3 3.86 3.50 3.48 3.11 1.99 1.81 1.80 1.59 3.69 3.39 3.37 3.04 4.13 

2.4 3.57 3.27 3.26 2.94 1.83 1.68 1.67 1.50 3.41 3.16 3.15 2.87 3.65 

2.5 3.33 3.08 3.07 2.79 1.70 1.57 1.57 1.42 3.18 2.97 2.96 2.72 3.24 

2.6 3.13 2.91 2.90 2.67 1.59 1.48 1.48 1.35 2.98 2.81 2.80 2.60 2.90 

2.7 2.96 2.77 2.76 2.56 1.50 1.41 1.40 1.29 2.81 2.67 2.66 2.50 2.62 

2.8 2.81 2.65 2.64 2.47 1.42 1.34 1.34 1.25 2.67 2.55 2.55 2.41 2.38 

2.9 2.68 2.55 2.54 2.39 1.36 1.29 1.29 1.20 2.55 2.45 2.45 2.33 2.17 

3 2.57 2.46 2.45 2.33 1.30 1.24 1.24 1.17 2.45 2.37 2.36 2.27 2.00 

3.1 2.48 2.38 2.38 2.27 1.25 1.20 1.20 1.14 2.36 2.29 2.29 2.21 1.85 

3.2 2.40 2.32 2.32 2.22 1.21 1.17 1.17 1.12 2.28 2.23 2.23 2.17 1.73 

3.3 2.34 2.27 2.26 2.18 1.18 1.14 1.14 1.10 2.22 2.18 2.18 2.13 1.62 

3.4 2.28 2.22 2.22 2.15 1.15 1.12 1.12 1.08 2.16 2.13 2.13 2.09 1.53 

3.5 2.23 2.18 2.18 2.12 1.12 1.10 1.09 1.06 2.12 2.09 2.09 2.07 1.45 

3.6 2.19 2.15 2.14 2.10 1.10 1.08 1.08 1.05 2.08 2.06 2.06 2.04 1.38 

3.7 2.15 2.12 2.12 2.08 1.08 1.06 1.06 1.04 2.04 2.04 2.04 2.02 1.32 

3.8 2.13 2.10 2.09 2.06 1.07 1.05 1.05 1.03 2.01 2.01 2.01 2.01 1.27 

3.9 2.10 2.08 2.08 2.05 1.05 1.04 1.04 1.03 1.99 1.99 1.99 2.00 1.23 

4 2.08 2.06 2.06 2.04 1.04 1.03 1.03 1.02 1.97 1.98 1.98 1.99 1.19 

4.1 2.06 2.05 2.05 2.03 1.03 1.03 1.03 1.02 1.96 1.97 1.97 1.98 1.16 

4.2 2.05 2.04 2.04 2.02 1.03 1.02 1.02 1.01 1.94 1.96 1.96 1.97 1.13 

4.3 2.04 2.03 2.03 2.02 1.02 1.02 1.02 1.01 1.93 1.95 1.95 1.97 1.11 

4.4 2.03 2.02 2.02 2.01 1.02 1.01 1.01 1.01 1.92 1.94 1.94 1.96 1.09 

4.5 2.02 2.02 2.02 2.01 1.01 1.01 1.01 1.01 1.92 1.94 1.94 1.96 1.07 

4.6 2.02 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.91 1.93 1.93 1.96 1.06 

4.7 2.01 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.91 1.93 1.93 1.95 1.05 

4.8 2.01 2.01 2.01 2.00 1.01 1.00 1.00 1.00 1.90 1.93 1.93 1.95 1.04 

4.9 2.01 2.01 2.01 2.00 1.00 1.00 1.00 1.00 1.90 1.93 1.93 1.95 1.03 

5 2.01 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.90 1.92 1.93 1.95 1.02 

EQL 283.33 255.24 254.11 236.98 167.15 145.42 144.64 133.26 272.11 247.23 246.23 231.82 253.99 

ARARL 2.1696 1.9342 1.9245 1.7669 1.2812 1.1078 1.1014 1.0000 1.2421 1.0945 1.0885 1.0000  

PCI 2.1262 1.9154 1.9069 1.7784 1.2543 1.0913 1.0854 1.0000 1.1738 1.0665 1.0622 1.0000  
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Table 6: The zero-state and steady-state OOC ARL values of the 2-of-(H+1) synthetic and runs-

rules  ̅ charts when H = 10, δmax = 5 and ARL0 = 370.4 

 
  (a) (b) (c) 
  Zero-state Steady-state 

 ̅ 
  DR KL MC1 AR WS DW MC2 MSS 

DR, 
WS 

KL, 
DW 

MC1, 
MC2 

AR, 
MSS 

 k 2.3549 2.2359 2.2261 1.9209 2.3852 2.2786 2.2709 1.9433 2.3575 2.2386 2.2288 1.9220 3.0000 

  

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.3 370.5 370.4 370.3 370.4 370.4 

0.1 350.34 336.18 335.09 330.33 348.30 333.10 332.07 328.25 350.26 335.96 334.84 330.20 352.93 

0.2 299.25 261.57 258.97 246.61 292.52 253.02 250.56 241.03 298.78 261.03 258.42 246.32 308.43 

0.3 236.38 188.24 185.21 169.06 224.97 176.08 173.29 161.21 235.51 187.50 184.47 168.67 253.14 

0.4 177.65 132.51 129.82 113.46 163.27 119.07 116.69 104.81 176.51 131.70 129.02 113.04 200.08 

0.5 130.26 93.85 91.73 76.88 114.83 80.60 78.79 68.34 129.01 93.04 90.94 76.46 155.22 

0.6 94.94 67.66 66.06 53.28 79.87 55.31 54.01 45.30 93.70 66.90 65.32 52.89 119.67 

0.7 69.63 49.85 48.68 37.96 55.70 38.70 37.79 30.72 68.46 49.15 48.00 37.61 92.32 

0.8 51.76 37.57 36.71 27.85 39.30 27.67 27.04 21.38 50.69 36.94 36.10 27.55 71.55 

0.9 39.15 28.95 28.32 21.05 28.20 20.25 19.80 15.30 38.19 28.38 27.76 20.77 55.83 

1 30.18 22.78 22.31 16.35 20.64 15.16 14.85 11.27 29.33 22.27 21.81 16.11 43.89 

1.1 23.72 18.29 17.93 13.04 15.45 11.62 11.40 8.55 22.96 17.83 17.49 12.83 34.80 

1.2 19.00 14.95 14.68 10.65 11.83 9.12 8.96 6.66 18.32 14.54 14.28 10.46 27.82 

1.3 15.50 12.43 12.23 8.89 9.27 7.32 7.20 5.34 14.89 12.06 11.86 8.72 22.43 

1.4 12.85 10.50 10.34 7.56 7.42 6.00 5.91 4.38 12.31 10.16 10.01 7.41 18.25 

1.5 10.83 9.00 8.87 6.55 6.07 5.01 4.95 3.68 10.34 8.69 8.57 6.41 14.97 

1.6 9.26 7.81 7.71 5.75 5.07 4.26 4.21 3.16 8.81 7.52 7.43 5.62 12.38 

1.7 8.02 6.86 6.78 5.12 4.31 3.69 3.65 2.76 7.61 6.59 6.52 5.00 10.33 

1.8 7.03 6.09 6.02 4.60 3.72 3.24 3.20 2.44 6.65 5.84 5.78 4.50 8.69 

1.9 6.22 5.46 5.40 4.19 3.26 2.87 2.85 2.20 5.87 5.23 5.18 4.09 7.37 

2 5.57 4.93 4.88 3.84 2.90 2.58 2.56 2.00 5.24 4.72 4.67 3.75 6.30 

2.1 5.02 4.49 4.45 3.56 2.60 2.34 2.32 1.84 4.72 4.29 4.26 3.47 5.43 

2.2 4.57 4.12 4.09 3.32 2.35 2.14 2.12 1.70 4.29 3.93 3.90 3.24 4.72 

2.3 4.19 3.81 3.78 3.11 2.15 1.97 1.96 1.59 3.92 3.63 3.60 3.04 4.13 

2.4 3.86 3.54 3.52 2.94 1.98 1.82 1.81 1.50 3.61 3.37 3.35 2.87 3.65 

2.5 3.59 3.31 3.29 2.79 1.83 1.70 1.69 1.42 3.35 3.15 3.13 2.73 3.24 

2.6 3.35 3.11 3.10 2.67 1.71 1.60 1.59 1.35 3.13 2.96 2.95 2.60 2.90 

2.7 3.15 2.95 2.93 2.56 1.60 1.51 1.50 1.30 2.94 2.80 2.79 2.50 2.62 

2.8 2.98 2.80 2.79 2.47 1.51 1.43 1.43 1.25 2.77 2.66 2.65 2.41 2.38 

2.9 2.83 2.68 2.67 2.39 1.44 1.36 1.36 1.21 2.63 2.54 2.53 2.33 2.17 

3 2.70 2.57 2.56 2.33 1.37 1.31 1.30 1.17 2.51 2.44 2.43 2.27 2.00 

3.1 2.59 2.48 2.47 2.27 1.31 1.26 1.26 1.14 2.41 2.35 2.35 2.21 1.85 

3.2 2.50 2.40 2.40 2.22 1.26 1.22 1.21 1.12 2.32 2.28 2.27 2.17 1.73 

3.3 2.42 2.34 2.33 2.18 1.22 1.18 1.18 1.10 2.25 2.21 2.21 2.13 1.62 

3.4 2.35 2.28 2.27 2.15 1.18 1.15 1.15 1.08 2.18 2.16 2.16 2.09 1.53 

3.5 2.29 2.23 2.23 2.12 1.15 1.12 1.12 1.06 2.13 2.11 2.11 2.07 1.45 

3.6 2.24 2.19 2.19 2.10 1.13 1.10 1.10 1.05 2.08 2.07 2.07 2.04 1.38 

3.7 2.20 2.15 2.15 2.08 1.10 1.08 1.08 1.04 2.04 2.04 2.04 2.02 1.32 

3.8 2.16 2.13 2.12 2.06 1.09 1.07 1.07 1.03 2.01 2.01 2.01 2.01 1.27 

3.9 2.13 2.10 2.10 2.05 1.07 1.06 1.05 1.03 1.98 1.99 1.99 2.00 1.23 

4 2.11 2.08 2.08 2.04 1.06 1.04 1.04 1.02 1.95 1.97 1.97 1.99 1.19 

4.1 2.08 2.06 2.06 2.03 1.05 1.04 1.03 1.02 1.93 1.95 1.95 1.98 1.16 

4.2 2.07 2.05 2.05 2.02 1.04 1.03 1.03 1.01 1.92 1.94 1.94 1.97 1.13 

4.3 2.05 2.04 2.04 2.02 1.03 1.02 1.02 1.01 1.91 1.93 1.93 1.97 1.11 

4.4 2.04 2.03 2.03 2.01 1.02 1.02 1.02 1.01 1.89 1.92 1.92 1.96 1.09 

4.5 2.03 2.02 2.02 2.01 1.02 1.01 1.01 1.01 1.89 1.91 1.92 1.96 1.07 

4.6 2.03 2.02 2.02 2.01 1.01 1.01 1.01 1.00 1.88 1.91 1.91 1.96 1.06 

4.7 2.02 2.01 2.01 2.01 1.01 1.01 1.01 1.00 1.87 1.91 1.91 1.95 1.05 

4.8 2.01 2.01 2.01 2.00 1.01 1.01 1.01 1.00 1.87 1.90 1.90 1.95 1.04 

4.9 2.01 2.01 2.01 2.00 1.01 1.00 1.00 1.00 1.87 1.90 1.90 1.95 1.03 

5 2.01 2.01 2.01 2.00 1.00 1.00 1.00 1.00 1.86 1.90 1.90 1.95 1.02 

EQL 289.24 262.44 260.68 234.30 165.73 146.59 145.49 130.12 273.03 250.94 249.47 228.99 253.99 

ARARL 2.2997 2.0592 2.0431 1.7827 1.3217 1.1588 1.1493 1.0000 1.2818 1.1423 1.1329 1.0000  

PCI 2.2229 2.0169 2.0034 1.8007 1.2737 1.1266 1.1182 1.0000 1.1923 1.0959 1.0895 1.0000  
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Remark 1. Since the MSS, MC2 and DW schemes are all side-sensitive, the only difference is the 

manner in which the CRL values are computed, see Sections 1 and 2.1. When H=1 there are (H–1=) 

zero conforming samples in between the two consecutive nonconforming samples which implies 

that the CRL is equal to 1 (i.e. the nonconforming sample at the end) for the three schemes. Thus, it 

follows that when H=1, in zero-state, the OOC performance of the DW, MC2 and MSS charts are 

equivalent i.e. MSS≡MC2≡DW and also in steady-state, MSS≡MC2≡DW; see also their state 

spaces in Table 2 for further proof. Similarly, using the same argument, it follows that when H=1, 

AR≡MC1≡KL. Furthermore, in Section 2.2 we showed that when we remove the elements with a 

HS feature on the TPMs of MSS, MC2 and DW, these reduce to the TPMs of the AR, MC1 and 

KL, respectively, see Equations (5) to (7); hence in steady-state, MSS≡AR, MC2≡MC1 and 

DW≡KL for all H > 0. Moreover, Davis and Woodall [10] showed that in steady-state, WS≡DR for 

all H > 0 (we also showed that the TPMs of WS and DR are the same, see Equation (4)). Therefore 

based on this, we conclude that when H=1, MSS≡MC2≡DW and AR≡MC1≡KL in zero-state, 

whereas MSS≡MC2≡DW≡AR≡MC1≡KL and WS≡DR in steady-state. 

Remark 2. In zero-state, the OOC ARLs of the DR, KL, MC1, AR schemes converges to 2 whereas 

those of the WS, DW, MC2 and MSS converge to 1; see Panel (a) of Tables 4 to 6. This 

convergence is to be expected because the main drawback of the DR, KL, MC1 and AR schemes 

(in both zero-state and steady-state) is the lack of being able to immediately detect a large process 

shift; that is, it requires at least two plotting statistics to issue a signal. This drawback only occurs in 

steady-state for the WS, DW, MC2 and MSS schemes; thus in Panel (b) of Tables 4 to 6, the OOC 

ARLs converge to approximately 2, whereas in Panel (a) the OOC ARLs converge to 1 because of 

the HS feature assumption. 

 In Panel (a) of Table 4, the ZSARL of the MSS, MC2 and DW are uniformly better than all 

the schemes in Table 1 and hence have the lowest EQL. In Panel (b) the six schemes (MSS, MC2, 

DW, AR, MC1, KL) have uniformly better SSARL than DR and WS when δ ≤ 4.4, however, when δ 

> 4.4 the DR and WS outperform the other six schemes. Moreover, the  ̅ chart has better OOC ARL 
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performance than DR, KL, AR (in zero-state) and all schemes in steady-state when δ ≥ 2.7, hence 

for these schemes the  ̅ chart has the smallest EQL. Note that in Table 5 and 6, Remark 1 does not 

hold anymore, so that only the MSS scheme has a uniformly better ZSARL than all the schemes. 

The results in these three tables are further discussed below in Figures 2 to 4. In Panel (c) of Tables 

4 to 6 we added the OOC ARL of the  ̅ chart and computed the EQL as 253.99. Note that for δmax = 

5 the EQL values of the  ̅ chart are equal to 196.31, 292.43 and 420.35 when ARL0 = 200, 500 and 

1000, respectively. Similarly, for δmax = 3 the EQL values are equal to 199.50, 289.09, 349.33 and 

551.79 and finally, for δmax = 2 these are equal to 216.28, 331.87, 410.94 and 681.57 when ARL0 = 

200, 370.4, 500 and 1000, respectively. These EQL values for the  ̅ chart are overlaid as reference 

values in Figures 2 to 4 to make overall performance comparison with the charts listed in Table 1. 

Table 7: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules  ̅ 

charts when H = 1, 2, … , 20 for δmax = 5 and ARL0 = 370.4 

 

 
Zero-state Steady-state 

H DR KL MC1 AR WS DW MC2 MSS DR & WS KL & DW MC1 & MC2 AR & MSS 

1 299.43 262.45 262.45 262.45 196.66 163.75 163.75 163.75 294.23 258.63 258.63 258.63 

2 285.98 254.13 253.65 247.37 178.03 151.18 150.77 145.85 278.96 249.05 248.60 242.86 

3 283.09 253.25 252.50 241.72 171.71 147.44 146.86 138.97 274.52 247.08 246.38 236.86 

4 282.77 254.00 253.02 238.74 168.74 145.96 145.27 135.36 272.77 246.83 245.98 233.68 

5 283.33 255.24 254.11 236.98 167.15 145.42 144.64 133.26 272.11 247.23 246.23 231.82 

6 284.32 256.66 255.38 235.90 166.29 145.34 144.47 131.97 271.96 247.85 246.73 230.67 

7 285.46 258.53 256.71 235.21 165.83 145.75 144.55 131.16 272.04 248.88 247.38 229.94 

8 286.71 259.59 258.06 234.77 165.66 145.78 144.77 130.66 272.29 249.37 248.07 229.47 

9 287.96 261.04 259.39 234.49 165.64 146.16 145.11 130.33 272.63 250.17 248.77 229.18 

10 289.24 262.44 260.68 234.30 165.73 146.59 145.49 130.12 273.03 250.94 249.47 228.99 

11 290.47 263.78 261.93 234.19 165.90 147.07 145.92 129.99 273.42 251.72 250.17 228.87 

12 291.72 265.10 263.12 234.11 166.15 147.57 146.37 129.91 273.83 252.47 250.87 228.79 

13 292.89 266.36 264.29 234.06 166.44 148.07 146.84 129.85 274.26 253.19 251.53 228.74 

14 294.08 267.58 265.42 234.03 166.74 148.59 147.31 129.82 274.71 253.90 252.18 228.71 

15 295.21 268.76 266.50 234.01 167.09 149.12 147.80 129.79 275.12 254.57 252.79 228.68 

16 296.33 269.90 267.57 234.00 167.44 149.63 148.28 129.78 275.53 255.23 253.39 228.67 

17 297.38 271.01 268.58 233.99 167.81 150.15 148.76 129.77 275.95 255.87 253.99 228.66 

18 298.44 272.07 269.55 233.98 168.17 150.67 149.24 129.76 276.36 256.49 254.54 228.66 

19 299.47 273.10 270.50 233.98 168.55 151.19 149.74 129.76 276.74 257.19 255.11 228.65 

20 300.44 274.12 271.42 233.98 168.94 151.69 150.20 129.75 277.14 257.66 255.63 228.65 

 

 In Table 7, we use Equation (13) to compute the zero-state and steady-state EQL values 

when the mean shifts from 0 to 5 in step size of 0.1 and ARL0 = 370.4. We see that in zero-state, the 

MSS chart results in a uniformly better overall performance (except when H=1, see Remark 1) 

compared to the other competing schemes as H varies from 1 to 20. Similarly, in steady-state, the 

MSS (and AR) have a uniformly better overall performance than the competing charts (except when  
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Zero-state (a) ARL0 = 200 Steady-state 

  
Zero-state (b) ARL0 = 370.4 Steady-state 

  
Zero-state (c) ARL0 = 500 Steady-state 

  
Zero-state (d) ARL0 = 1000 Steady-state 

 

Figure 2: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules  ̅ 

charts when H = 1, 2, … , 20 for δmax = 5 and ARL0 = 200, 370.4, 500, 1000 
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Zero-state (a) ARL0 = 200 Steady-state 

  
Zero-state (b) ARL0 = 370.4 Steady-state 

  
Zero-state (c) ARL0 = 500 Steady-state 

  
Zero-state (d) ARL0 = 1000 Steady-state 

 

Figure 3: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules  ̅ 

charts when H = 1, 2, … , 20 for δmax = 3 and ARL0 = 200, 370.4, 500, 1000 
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Zero-state (a) ARL0 = 200 Steady-state 

  
Zero-state (b) ARL0 = 370.4 Steady-state 

  
Zero-state (c) ARL0 = 500 Steady-state 

  
Zero-state (d) ARL0 = 1000 Steady-state 

 

Figure 4: The zero-state and steady-state EQL values of the 2-of-(H+1) synthetic and runs-rules  ̅ 

charts when H = 1, 2, … , 20 for δmax = 2 and ARL0 = 200, 370.4, 500, 1000 
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H=1, see Remark 1). To better illustrate the behavior of the EQL values in Table 7, these are shown 

in Figure 2, Panel (b). In addition, we graphically illustrate the EQL values for other values of ARL0 

(i.e. 200, 370.4, 500, 1000) in Figures 2, 3 and 4 where δmax = 5, 3 and 2, respectively. 

 

In Figures 2 to 4, we see that for a variety of ARL0, δmax and H values, the MSS chart has a 

uniformly lower EQL values than the other schemes listed in Table 1 for the zero-state and steady-

state, respectively. Except in two instances in steady-state (see Figures 2(a) and when H = 1 in 

Figure 2(b)), the MSS chart always has a much larger improvement on the  ̅ chart than the other 

schemes. We see that the DW and MC2, as well as KL and MC1, have an approximately equal 

overall performance, however, the MC2 and MC1 schemes have a relatively lower EQL values. 

Moreover, as δmax (for each ARL0) decrease, the synthetic and runs-rules charts tend to have a better 

performance than the  ̅ chart; also the runs-rules schemes become more competitive and in some 

cases perform better than synthetic chart, see for instance Figure 4(d). As ARL0 (for each δmax) 

increase, the synthetic and runs-rules charts tend to have a better performance than the  ̅ chart and 

the AR scheme becomes more competitive in zero-state. The convergence in the optimal values of k 

shown in Table 3, leads to convergence in the overall performance of the MSS and AR schemes. 

However, the overall performance of DR, KL, MC1, WS, DW and MC2 seem to decrease and then 

at some specific value of H, the EQL increases; this phenomenon is more evident in the steady-state 

mode. Thus, in Table 8, we recommend the values of H where the EQL is the smallest (i.e. the 

minimum of the curves in Figures 2 to 4), as the „optimal‟ H (denoted by H
*
) to use in the 2-of-

(H+1) charts, respectively. Consider Table 7, we see that the EQL values of the MSS scheme 

converge to approximately 129, but, at a slow rate. Hence, for the MSS and AR schemes, we 

recommend the values of H
*
 such that |

             

       
|   0.01; this means that the percentage 

improvement (if any) in EQL value for any value greater or equal to H
*
 is only less than 1% 

compared to the smallest EQL value at H = 20. For example, from Table 7 where ARL0 = 370.4 and 

25



δmax = 5, the value of H
*
 is ≥6 and ≥8 for the AR and MSS schemes in zero-state, respectively; 

whereas in steady-state H
* 
≥ 6, see Table 8. 

Table 8: The values of H
*
 for the synthetic and runs-rules  ̅ charts when δmax = 2, 3, 5 and ARL0 = 

200, 370.4, 500, 1000 such that EQL is (approximately) minimum 

 
 

 
Zero-state Steady-state 

ARL0 δmax DR KL MC1 AR WS DW MC2 MSS 
DR & 

WS 

KL & 

DW 

MC1 & 

MC2 

AR & 

MSS 

200 

2 5 3 4 ≥8 10 6 7 ≥9 6 4 4 ≥8 

3 4 3 3 ≥7 7 5 5 ≥8 5 3 3 ≥7 

5 3 2 3 ≥5 6 4 5 ≥6 7 4 4 ≥5 

370.4 

2 6 4 5 ≥9 14 9 10 ≥10 7 5 5 ≥9 

3 4 3 3 ≥8 10 6 7 ≥9 5 4 4 ≥8 

5 4 3 3 ≥6 9 6 6 ≥8 6 4 4 ≥6 

500 

2 7 5 5 ≥10 16 10 11 ≥11 8 5 6 ≥10 

3 5 4 4 ≥9 12 8 8 ≥10 6 4 4 ≥9 

5 4 3 3 ≥7 10 6 7 ≥8 6 4 4 ≥7 

1000 

2 9 6 7 ≥11 20 15 16 ≥12 10 6 7 ≥11 

3 7 5 5 ≥10 17 11 12 ≥11 8 5 5 ≥10 

5 6 4 4 ≥8 14 9 10 ≥10 7 5 5 ≥8 

  

Furthermore, in Table 9 it can be seen that the values of the relative effectiveness of the 

MSS scheme computed using Equation (14) and the EQL values in Table 7 yield PCI values that are 

greater than 1 for all the competing schemes listed in Table 1 (except when H=1, see Remark 1). 

For instance, in zero-state, from the overall viewpoint, the MSS scheme yields a performance that is 

more than 100% better than that of DR and KL schemes, i.e. as H increases from 1 to 20, the quality 

loss in using the DR chart varies from 82.86% to 131.55%, whereas for the KL scheme it varies 

from 60.27% to 111.26%. Similarly, the quality loss in using the MC1, AR, WS, DW and MC2 

schemes ranges from 60.27%, 60.27%, 20.10%, 0% and 0% to 109.18%, 80.32%, 30.20%, 16.91% 

and 15.76%, respectively. However, in steady-state the quality loss improvement is not as 

significant as it is in the zero-state. Similar behavior in PCI were observed for ARL0 = 200, 500, 

1000 and δmax = 2, 3. 

 Similarly, in Table 10 the ratios of the OOC ARLs (see Equation (15)) also indicate that the 

competing schemes listed in Table 1 yield larger OOC ARLs to a larger degree or extent compared 

to the MSS scheme. For instance, as H varies from 1 to 20, the DR scheme in zero-state is worse-off 

by a range of 83.30% to 142.81%, however, in steady-state the DR (and WS) scheme is only worse-

26



off by 15.58% to 31.94% i.e. in steady-state the competing schemes do not yield as much large 

difference in the OOC ratios of the ARLs in comparison to the MSS (and AR) scheme. 

 

Table 9: The zero-state and steady-state PCI values of the 2-of-(H+1) synthetic and runs-rules  ̅ 

charts for δmax = 5 when H = 1, 2, … , 20 and ARL0 = 370.4 

 

 
Zero-state Steady-state 

H DR KL MC1 AR WS DW MC2 MSS DR & WS KL & DW MC1 & MC2 AR & MSS 

1 1.8286 1.6027 1.6027 1.6027 1.2010 1.0000 1.0000 1.0000 1.1377 1.0000 1.0000 1.0000 

2 1.9608 1.7424 1.7391 1.6960 1.2207 1.0365 1.0338 1.0000 1.1486 1.0255 1.0236 1.0000 

3 2.0371 1.8224 1.8170 1.7394 1.2356 1.0609 1.0568 1.0000 1.1590 1.0431 1.0402 1.0000 

4 2.0889 1.8764 1.8692 1.7637 1.2466 1.0783 1.0732 1.0000 1.1673 1.0563 1.0526 1.0000 

5 2.1262 1.9154 1.9069 1.7784 1.2543 1.0913 1.0854 1.0000 1.1738 1.0665 1.0622 1.0000 

6 2.1544 1.9448 1.9351 1.7875 1.2600 1.1013 1.0947 1.0000 1.1790 1.0745 1.0697 1.0000 

7 2.1765 1.9711 1.9572 1.7933 1.2643 1.1113 1.1021 1.0000 1.1831 1.0824 1.0758 1.0000 

8 2.1944 1.9868 1.9751 1.7968 1.2679 1.1157 1.1080 1.0000 1.1866 1.0867 1.0810 1.0000 

9 2.2094 2.0029 1.9902 1.7992 1.2709 1.1215 1.1134 1.0000 1.1896 1.0916 1.0855 1.0000 

10 2.2229 2.0169 2.0034 1.8007 1.2737 1.1266 1.1182 1.0000 1.1923 1.0959 1.0895 1.0000 

11 2.2346 2.0293 2.0151 1.8016 1.2763 1.1314 1.1226 1.0000 1.1946 1.0998 1.0931 1.0000 

12 2.2456 2.0406 2.0254 1.8021 1.2790 1.1359 1.1267 1.0000 1.1969 1.1035 1.0965 1.0000 

13 2.2556 2.0512 2.0353 1.8025 1.2817 1.1403 1.1308 1.0000 1.1990 1.1069 1.0996 1.0000 

14 2.2654 2.0612 2.0446 1.8028 1.2844 1.1446 1.1347 1.0000 1.2012 1.1101 1.1026 1.0000 

15 2.2745 2.0706 2.0533 1.8029 1.2874 1.1489 1.1387 1.0000 1.2031 1.1132 1.1054 1.0000 

16 2.2834 2.0797 2.0617 1.8031 1.2902 1.1530 1.1425 1.0000 1.2049 1.1161 1.1081 1.0000 

17 2.2917 2.0884 2.0697 1.8031 1.2932 1.1571 1.1464 1.0000 1.2068 1.1190 1.1108 1.0000 

18 2.2999 2.0967 2.0773 1.8032 1.2960 1.1612 1.1501 1.0000 1.2086 1.1217 1.1132 1.0000 

19 2.3080 2.1047 2.0846 1.8032 1.2990 1.1652 1.1540 1.0000 1.2103 1.1248 1.1157 1.0000 

20 2.3155 2.1126 2.0918 1.8032 1.3020 1.1691 1.1576 1.0000 1.2121 1.1269 1.1180 1.0000 

 

Table 10: The zero-state and steady-state ARARL values of the 2-of-(H+1) synthetic and runs-rules 

 ̅ charts for δmax = 5 when H = 1, 2, … , 20 and ARL0 = 370.4 

 

 
Zero-state Steady-state 

H DR KL MC1 AR WS DW MC2 MSS DR & WS KL & DW MC1 & MC2 AR & MSS 

1 1.8330 1.6257 1.6257 1.6257 1.1790 1.0000 1.0000 1.0000 1.1558 1.0000 1.0000 1.0000 

2 1.9729 1.7552 1.7518 1.7044 1.2145 1.0385 1.0359 1.0000 1.1845 1.0328 1.0304 1.0000 

3 2.0598 1.8339 1.8281 1.7381 1.2432 1.0677 1.0635 1.0000 1.2085 1.0582 1.0543 1.0000 

4 2.1225 1.8908 1.8827 1.7562 1.2651 1.0902 1.0848 1.0000 1.2274 1.0783 1.0733 1.0000 

5 2.1696 1.9342 1.9245 1.7669 1.2812 1.1078 1.1014 1.0000 1.2421 1.0945 1.0885 1.0000 

6 2.2066 1.9687 1.9574 1.7735 1.2933 1.1219 1.1146 1.0000 1.2537 1.1074 1.1006 1.0000 

7 2.2360 2.0004 1.9842 1.7776 1.3026 1.1355 1.1253 1.0000 1.2626 1.1200 1.1106 1.0000 

8 2.2604 2.0204 2.0065 1.7800 1.3100 1.1428 1.1341 1.0000 1.2701 1.1274 1.1191 1.0000 

9 2.2811 2.0410 2.0259 1.7816 1.3162 1.1512 1.1421 1.0000 1.2763 1.1353 1.1264 1.0000 

10 2.2997 2.0592 2.0431 1.7827 1.3217 1.1588 1.1493 1.0000 1.2818 1.1423 1.1329 1.0000 

11 2.3160 2.0756 2.0586 1.7834 1.3267 1.1659 1.1559 1.0000 1.2865 1.1487 1.1388 1.0000 

12 2.3313 2.0907 2.0725 1.7836 1.3315 1.1725 1.1621 1.0000 1.2908 1.1547 1.1444 1.0000 

13 2.3453 2.1049 2.0858 1.7839 1.3364 1.1788 1.1681 1.0000 1.2950 1.1602 1.1495 1.0000 

14 2.3588 2.1183 2.0984 1.7841 1.3410 1.1851 1.1739 1.0000 1.2990 1.1654 1.1543 1.0000 

15 2.3715 2.1310 2.1101 1.7842 1.3458 1.1913 1.1797 1.0000 1.3026 1.1704 1.1588 1.0000 

16 2.3838 2.1432 2.1216 1.7843 1.3505 1.1971 1.1853 1.0000 1.3061 1.1751 1.1632 1.0000 

17 2.3953 2.1549 2.1324 1.7843 1.3551 1.2030 1.1908 1.0000 1.3096 1.1798 1.1675 1.0000 

18 2.4067 2.1660 2.1426 1.7844 1.3597 1.2087 1.1962 1.0000 1.3130 1.1842 1.1715 1.0000 

19 2.4177 2.1767 2.1525 1.7844 1.3643 1.2144 1.2016 1.0000 1.3161 1.1889 1.1755 1.0000 

20 2.4281 2.1873 2.1621 1.7844 1.3689 1.2198 1.2068 1.0000 1.3194 1.1925 1.1792 1.0000 
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Davis and Woodall [10] stated that “… as H increases, a synthetic  ̅ chart behaves more and 

more like an  ̅ chart” – this might be the case with WS, DW and MC2 schemes. For the newly 

proposed MSS synthetic  ̅ chart, we see that this statement does not hold because as H increases, 

the overall performance statistics decrease in an opposite direction as compared to the basic  ̅ chart 

and converge to some value, no matter how large H is. However, the overall performance of the 

WS, DW and MC2 schemes tend to decrease, at first, and then at some point, increase towards the 

overall performance of the basic  ̅ chart – this phenomenon is summarized in Table 8. 

 

4. Application example 

 To illustrate the utility and the application of the proposed chart, we consider a well-known 

dataset from Montgomery [20] on the inside diameters of piston rings manufactured by a forging 

process. This data set contains twenty-five retrospective or Phase I samples, each of size five, that 

were collected when the process was thought to be IC. These data are considered to be the Phase I 

reference data for which a goodness of fit test for normality is not rejected. This data set also 

contains fifteen prospective (Phase II) samples each of five observations (n = 5). Firstly, though, 

when the distribution parameters of a particular process are unknown, it is generally accepted that 

there are two phases of application of control charts, namely Phase I and Phase II, see Chakraborti 

et al. [7] for further discussion on this.  
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Figure 5: The synthetic and runs-rules  ̅ charts for the piston ring data 

  

Here we use the piston rings data to illustrate the construction and operation of the MSS, 

MC2, DW, WS, AR, MC1, KL and DR schemes in steady-state mode, since Champ [8] stated that a 

more realistic mode of analysis is the steady-state. Note though, zero-state analysis follows in a 

similar fashion by using the chart design constants (i.e. H and k) in Table 3. Assume that the desired 

ARL0 is 370.4 and we are interested in a 2-of-3 runs-type chart (i.e. H=2). The sample mean and 

sample standard deviation estimated from an IC Phase I data are 74.001 and 0.005, respectively. 

Then, using the values of k in Panel (b) of Table 3 for H=2, k=3 for the  ̅ chart and Equation (1), it 

follows that the control limits for each of these schemes are as given in Figure 5. From Figure 5, it 

is clear that the Phase I data are IC, as no OOC signal is detected by each of the 2-of-3 runs-type 

schemes or the 1-of-1 for the  ̅ chart, for the first 25 observations. However, in Phase II, the MSS, 

MC2, DW, AR, MC1 and KL schemes give an OOC signal at sample number 35, as two out of 

three consecutive plotting statistics are above the respective UCLs. Note though, the non-side-

sensitive DR and WS schemes only signal later at sample number 37 – similar to the first OOC 
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signal by the  ̅ chart. This supports the fact that the side-sensitive charts are more efficient than 

their non-side-sensitive counterparts. 

 

5. Conclusion 

 The literature has witnessed a tremendous growth in synthetic charts in the last few years 

since many practitioners prefer waiting until the occurrence of a second nonconforming sample 

beyond the control limits before looking for an assignable cause. Hence, in this paper, we 

considered the performance of such schemes that take into account two nonconforming samples 

falling outside the control limits (i.e. the 2-of-(H+1) runs-rules schemes for H = 1, 2, … , 20 – with 

or without a head-start) before issuing an OOC signal. We then proposed a MSS synthetic  ̅ chart 

that issues a signal when all the consecutive H+1 samples that lead to an OOC event are on one side 

of the center line. Using the zero-state and steady-state ARL, EQL, PCI and ARARL as performance 

measures, we showed that this new synthetic  ̅ chart has either the same or better overall OOC 

performance than the other competing Shewhart-type  ̅ schemes that take into account two 

nonconforming samples falling outside the control limits before issuing an OOC signal. Note 

though, the performance of this new synthetic  ̅ chart is more pronounced in zero-state and 

relatively lower in steady-state, but it is uniformly better than the three classes of synthetic  ̅ charts 

currently available in the literature. Based on this study, the MSS synthetic  ̅ chart warrants being a 

strong contender to practical applications where 2-of-(H+1) runs-rules  ̅ schemes with or without a 

head-start feature are currently used.  

 The results in this article are based on the assumptions of iid normally distributed 

observations; hence if the assumptions do not hold, the above results may have to be re-examined. 

A synthetic  ̅ chart with warning limits (in addition to control limits in Equation (1)) similar to the 

runs-rules scheme in Antzoulakos and Rakitzis [4] has been investigated and reported in Shongwe 

and Graham [23]. For future research purposes, we will investigate the double sampling MSS chart 

and compare its performance to the double sampling schemes in Khoo et al. [15] (for WS scheme) 
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and Costa and Machado [9] (for MC2 scheme). In addition, the effect of parameter estimation may 

be conducted for both fixed and double sampling schemes, similar to that done in Zhang et al. [27] 

and You et al. [26], respectively. 
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