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Abstract

In this paper, we introduce the notion of generalized almost rational contraction with respect to a pair of
self mappings on a complete metric space. Several common fixed point results for such mappings are proved.
Our results extend and unify various results in the existing literature. An example and application to obtain
the existence of a common solution of the system of functional equations arising in dynamic programming
are also given in order to illustrate the effectiveness of the presented results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Fixed point theory plays a vital role in solving problems arising in various disciplines of mathematical
analysis such as split feasibility problems, variational inequality problems, nonlinear optimization problems,
equilibrium problems, complementarity problems, selection and matching problems, and problems of proving
an existence of solution of integral and differential equations. One of the basic and the most widely applied
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result in metric fixed point theory is ”Banach (or Banach-Cassioppoli) Contraction principle” due to Banach
[8]. It states that if (X, d) is a complete metric space and f : X → X satisfies

d(fx, fy) ≤ kd(x, y),

for all x, y ∈ X with k ∈ (0, 1), then f has a unique fixed point. The basic idea of this principle rests in
the use of successive approximations to establish the existence and uniqueness of solution of an operator
equation f(x) = x, particularly it can be employed to prove the existence of solution of differential or
integral equations. Due to its applications in mathematics and other related disciplines, Banach contraction
principle has been generalized in many directions. Extensions of Banach contraction principle have been
obtained either by generalizing the domain of the mapping or by extending the contractive condition on the
mappings (see, [1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35]
and references therein).

In metric fixed point theory, contractive conditions on mappings play vital role in finding the solution
of fixed point problems. It is a common practice to extend and generalize existing contractive conditions
and then to employ it to obtain fixed point result in the framework of a metric space. Following this trend,
Samet et al. [34] first introduced α-admissible mappings and then α-ψ-contractive type mappings to obtain
some interesting generalizations of Banach contraction principle. For more results in this direction, we refer
to [6, 13, 14, 16, 17, 20, 21, 22, 24, 28, 30, 32] and references mentioned therein. Recently, Alizadeh et al.
[5] defined the concept of cyclic (α, β)-admissible mapping as follows:

Definition 1.1 ([5]). Let X be a nonempty set and α, β : X −→ [0,∞). A self-mapping T on X is called
cyclic (α, β)-admissible mapping if

(i) α (x) ≥ 1 for some x in X implies β (Tx) ≥ 1,

(ii) β (x) ≥ 1 for some x in X implies α (Tx) ≥ 1.

Definition 1.2 ([18, 25]). A pair (f, T ) of self-mappings on a set X is said to be weakly compatible if f
and T commute at their coincidence point (i.e. fTx = Tfx, x ∈ X whenever fx = Tx).

A point y ∈ X is called a point of coincidence of two self-mappings f and T on X if there exists a
point x ∈ Xsuch that y = fx = Tx. Also, x ∈ X is called a common fixed point of mappings f and T if
x = fx = Tx.

The notations F(f, T ) and C (f, T ) stand for the set of all common fixed points and the set of all
coincidence points of f and T , respectively. In the sequel, we will indicate the set of all real numbers, the set
of all non negative real numbers and the set of all natural numbers by the letters R, R+ and N, respectively.

To obtain common fixed point results, we extend the definition of cyclic (α, β)-admissible mapping to a
pair of two mappings as follows:

Definition 1.3. Let f, g, S and T be selfmaps of a nonempty set X and α, β : X → R+. Then the pair
(f, g) is called cyclic (α, β)-admissible with respect to (S, T ) (briefly, (f, g) is cyclic (α, β)(S,T )-admissible
pair) if

(i) α (Sx) ≥ 1 for some x ∈ X implies β (fx) ≥ 1,

(ii) β (Tx) ≥ 1 for some x ∈ X implies α (gx) ≥ 1.

If we take S = T = IX (identity mapping on X), then Definition 1.3 reduces to following definition.

Definition 1.4. Let f and g be selfmaps of a nonempty set X and α, β : X → R+. Then the pair (f, g) is
called cyclic (α, β)-admissible if

(i) α (x) ≥ 1 for some x ∈ X implies β (fx) ≥ 1,

(ii) β (x) ≥ 1 for some x ∈ X implies α (gx) ≥ 1.



N. Hussain, H. Isik, M. Abbas, J. Nonlinear Sci. Appl. 9 (2016), 2273–2288 2275

On the other hand, Khan et al. [26] introduced and employed the notion of altering distance function
to obtain some interesting fixed point results in metric spaces. Note that altering distance functions are
continuous whereas Su [35] defined generalized altering distance function, not necessarily continuous, as
follows:

Definition 1.5 ([35]). A mapping η : R+ → R+ is called a generalized altering distance function if

(i) η is non-decreasing,

(ii) η (t) = 0 if and only if t = 0.

We set
z = {η : R+ → R+ : η is generalized altering distance}.
Φ = {ϕ : R+ → R+ : ϕ is a nondecreasing, right upper semi-continuous and for all t > 0, we have

η(t) > ϕ(t), where η is a generalized altering distance}.
Θ = {θ : R+ → R+ : θ is continuous and θ(t) = 0 iff t = 0}.
Following the direction in [13], we denote set Ψ1 = {ψ1 : R+6 → R+ : ψ1 satisfies (i)-(iii)}, where

(i) ψ1 is nondecreasing and continuous in each coordinate;

(ii) ψ1 (t, t, t, t, t, t) ≤ t for all t > 0;

(iii) ψ1 (t1, t2, t3, t4, t5, t6) = 0 iff ti = 0 for all i ∈ {1, 2, 3, 4, 5, 6}.

Ψ2 = {ψ2 : R+4 → R+ : ψ2 is continuous in each coordinate and if any one of the argument is zero, then
ψ2 (t1, t2, t3, t4) = 0}.

We now introduce generalized almost rational contraction mappings as follows:

Definition 1.6. Let f, g, S and T be selfmaps of a metric space (X, d) , and (f, g) be a cyclic (α, β)(S,T )-
admissible pair. We say that (f, g) is a generalized almost (S, T )-rational contraction pair if

α (Sx)β (Ty) ≥ 1 implies η (d (fx, gy)) ≤ ϕ (M (x, y)) + Lθ (N (x, y)) (1.1)

for all x, y ∈ X and some L ≥ 0, where η ∈ z, ϕ ∈ Φ, θ ∈ Θ and

M (x, y) =ψ1

(
d (Sx, Ty) , d (Sx, fx) , d (Ty, gy) ,

d (Sx, gy) + d (fx, Ty)

2
,

d (Ty, gy) [1 + d (Sx, fx)]

1 + d (Sx, Ty)
,
d (fx, Ty) [1 + d (Sx, gy)]

1 + d (Sx, Ty)

)
,

N (x, y) =ψ2 (d (Sx, fx) , d (Ty, gy) , d (Sx, gy) , d (fx, Ty)) ,

with ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2.

In this paper, we obtain some common fixed point results of generalized almost rational contraction
pairs. Our results extend, generalize and unify comparable results in the existing literature. An example
is presented to support the results obtained herein. We employ our results to give common fixed points
of cyclic mappings on complete metric spaces. As an application of our results, the existence of common
bounded solutions of a system of functional equations arising in dynamic programming are also investigated.

2. Main Results

Our main result is stated as follows.

Theorem 2.1. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) and (f, g) be a generalized almost (S, T )-rational contraction pair. Suppose that:

(a) there exists x0 ∈ X such that α (Sx0) ≥ 1 and β (Tx0) ≥ 1;
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(b) if {xn} is a sequence in X such that α (xn) ≥ 1, β (xn) ≥ 1 for all n and xn → x as n → ∞, then
α (x) ≥ 1 and β (x) ≥ 1.

Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if

(i) {f, S} and {g, T} are weakly compatible,

(ii) α (Su) ≥ 1 and β (Tv) ≥ 1 whenever u ∈ C (f, S) and v ∈ C (g, T ) .

Then f, g, S and T have a common fixed point.

Proof. Let x0 be a given point in X such that α (Sx0) ≥ 1 and β (Tx0) ≥ 1. Since fX ⊂ TX, we can
choose a point x1 ∈ X such that fx0 = Tx1. Also, since gX ⊂ SX, there exists a point x2 ∈ X such that
gx1 = Sx2. Continuing this way, we can construct the sequences {xn} and {yn} in X such that

y2n = fx2n = Tx2n+1 and y2n+1 = gx2n+1 = Sx2n+2, n ∈ N0, (2.1)

where N0 = N ∪ {0} . Since (f, g) is a cyclic (α, β)(S,T )-admissible pair and α (Sx0) ≥ 1, we have
β (fx0) = β (Tx1) ≥ 1 which further implies α (gx1) = α (Sx2) ≥ 1. Continuing this way, we obtain that
α (Sx2n) ≥ 1 and β (Tx2n+1) ≥ 1 for all n ∈ N0. Similarly, by β (Tx0) ≥ 1, we have β (Tx2n) ≥ 1 and
α (Sx2n+1) ≥ 1 for all n ∈ N0. This means that

α (Sxn) ≥ 1 and β (Txn) ≥ 1, for all n ∈ N0. (2.2)

If y2n = y2n+1, by simple procedures, the proof is finished. Suppose that y2n 6= y2n+1 for all n ∈ N0.
Now we show that

lim
n→∞

d (yn, yn+1) = 0. (2.3)

Putting x = x2n and y = x2n+1 in (1.1) and using (2.1) and (2.2), we obtain

η (d (y2n, y2n+1)) = η (d (fx2n, gx2n+1))

≤ ϕ (M (x2n, x2n+1)) + Lθ (N (x2n, x2n+1)) , (2.4)

where

M (x2n, x2n+1) =ψ1

(
d (Sx2n, Tx2n+1) , d (Sx2n, fx2n) , d (Tx2n+1, gx2n+1) ,

d (Sx2n, gx2n+1) + d (fx2n, Tx2n+1)

2
,

d (Tx2n+1, gx2n+1) [1 + d (Sx2n, fx2n)]

1 + d (Sx2n, Tx2n+1)
,

d (fx2n, Tx2n+1) [1 + d (Sx2n, gx2n+1)]

1 + d (Sx2n, Tx2n+1)

)
=ψ1

(
d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1) ,

d (y2n−1, y2n+1) + d (y2n, y2n)

2
,

d (y2n, y2n+1) [1 + d (y2n−1, y2n)]

1 + d (y2n−1, y2n)
,

d (y2n, y2n) [1 + d (y2n−1, y2n+1)]

1 + d (y2n−1, y2n)

)
=ψ1

(
d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1) ,
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d (y2n−1, y2n+1)

2
, d (y2n, y2n+1) , 0

)
≤ψ1

(
d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1) ,

d (y2n−1, y2n) + d (y2n, y2n+1)

2
, d(y2n, y2n+1), d(y2n, y2n+1)

)
,

and

N (x2n, x2n+1) = ψ2 (d (Sx2n, fx2n) , d (Tx2n+1, gx2n+1) , d (Sx2n, gx2n+1) , d (fx2n, Tx2n+1))

= ψ2 (d (y2n−1, y2n) , d (y2n, y2n+1) , d (y2n−1, y2n+1) , d (y2n, y2n)) = 0.

If d (y2n−1, y2n) ≤ d (y2n, y2n+1) for some n ∈ N, then by (2.4), we have

η (d (y2n, y2n+1)) ≤ ϕ (M (x2n, x2n+1))

≤ ϕ
(
ψ1

(
d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1) ,

d (y2n−1, y2n) + d (y2n, y2n+1)

2
, d (y2n, y2n+1) , d (y2n, y2n+1)

))
≤ ϕ(ψ1(d (y2n, y2n+1) , d (y2n, y2n+1) , d (y2n, y2n+1) ,

d (y2n, y2n+1) , d (y2n, y2n+1) , d (y2n, y2n+1)))

≤ ϕ (d (y2n, y2n+1)) ,

a contradiction to the fact y2n 6= y2n+1. So for all n ∈ N, we have d (y2n, y2n+1) < d (y2n−1, y2n) .
From (2.4), we deduce

η (d (y2n, y2n+1)) ≤ ϕ (d (y2n−1, y2n)) . (2.5)

Putting x = x2n+1 and y = x2n+2 in (1.1) and following arguing similar to those given above, we get

η (d (y2n+1, y2n+2)) ≤ ϕ (d (y2n, y2n+1)) . (2.6)

From (2.5) and (2.6), we conclude

η (d (yn, yn+1)) ≤ ϕ (d (yn−1, yn)) . (2.7)

It follows that the sequence {d (yn, yn+1)} is decreasing and bounded below. Hence, there exists r ≥ 0
such that limn→∞ d (yn, yn+1) = r. If r > 0, then taking limit as n→∞ on both sides of (2.7), we have

η (r) ≤ lim
n→∞

η (d (yn, yn+1))

≤ lim
n→∞

ϕ (d (yn−1, yn)) ≤ ϕ (r) ,

a contradiction and hence r = 0, that is, the equation (2.3) holds.
Now we show that {yn} is a Cauchy sequence in X. For that, it is sufficient to show that the sequence

{y2n} is Cauchy in X. Assume on contrary that {y2n} is not a Cauchy sequence. Then, there exists some
ε > 0 for which we can find two subsequences {y2mk

} and {y2nk
} of {y2n} such that nk is the smallest index

satisfying nk > mk > k and

d (y2nk
, y2mk

) ≥ ε and d (y2nk−1, y2mk
) < ε. (2.8)

Using the triangular inequality and (2.8),

ε ≤ d (y2nk
, y2mk

) ≤ d (y2nk
, y2nk−1) + d (y2nk−1, y2mk

)
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< d (y2nk
, y2nk−1) + ε.

Letting n→∞ in the above inequality and using (2.3), we obtain

lim
k→∞

d (y2nk
, y2mk

) = ε. (2.9)

Also, from the triangular inequality, we have

|d (y2nk
, y2mk+1)− d (y2nk

, y2mk
)| ≤ d (y2mk

, y2mk+1) .

On taking limit as k →∞ on both sides of above inequality and using (2.3) and (2.9), we get

lim
k→∞

d (y2nk
, y2mk+1) = ε. (2.10)

Similarly, it is easy to show that

lim
k→∞

d (y2nk−1, y2mk
) = lim

k→∞
d (y2nk−1, y2mk+1) = ε. (2.11)

Now, since

M (x2nk
, x2mk+1) =ψ1

(
d (Sx2nk

, Tx2mk+1) , d (Sx2nk
, fx2nk

) , d (Tx2mk+1, gx2mk+1) ,

d (Sx2nk
, gx2mk+1) + d (fx2nk

, Tx2mk+1)

2
,

d (Tx2mk+1, gx2mk+1) [1 + d (Sx2nk
, fx2nk

)]

1 + d (Sx2nk
, Tx2mk+1)

,

d (fx2nk
, Tx2mk+1) [1 + d (Sx2nk

, gx2mk+1)]

1 + d (Sx2nk
, Tx2mk+1)

)
=ψ1

(
d (y2nk−1, y2mk

) , d (y2nk−1, y2nk
) , d (y2mk

, y2mk+1) ,

d (y2nk−1, y2mk+1) + d (y2nk
, y2mk

)

2
,

d (y2mk
, y2mk+1) [1 + d (y2nk−1, y2nk

)]

1 + d (y2nk−1, y2mk
)

,

d (y2nk
, y2mk

) [1 + d (y2nk−1, y2mk+1)]

1 + d (y2nk−1, y2mk
)

)
and

N (x2nk
, x2mk+1) =ψ2(d (Sx2nk

, fx2nk
) , d (Tx2mk+1, gx2mk+1) , d (Sx2nk

, gx2mk+1) , d (fx2nk
, Tx2mk+1))

=ψ2 (d (y2nk−1, y2nk
) , d (y2mk

, y2mk+1) , d (y2nk−1, y2mk+1) , d (y2nk
, y2mk

)) ,

then, letting n→∞, we deduce that

lim
k→∞

M (x2nk
, x2mk+1) =ψ1 {ε, 0, 0, ε, 0, ε} ≤ ε, and

lim
k→∞

N (x2nk
, x2mk+1) =ψ2 {0, 0, ε, ε} = 0.

From (2.2), we have α (Sx2nk
)β (Tx2mk+1) ≥ 1. Substituting x = x2nk

and y = x2mk+1 in (1.1), we get

η (d (y2nk
, y2mk+1)) =η (d (fx2nk

, gx2mk+1))

≤ϕ (M (x2nk
, x2mk+1)) + Lθ (N (x2nk

, x2mk+1)) .
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On taking limit as k →∞, we have

η (ε) ≤ lim
k→∞

η (d (y2nk
, y2mk+1))

≤ lim
k→∞

ϕ (M (x2nk
, x2mk+1)) + L lim

k→∞
θ (N (x2nk

, x2mk+1))

= lim
k→∞

ϕ (M (x2nk
, x2mk+1)) ≤ ϕ (ε) ,

a contradiction and so {y2n} is a Cauchy sequence in X. Thus, from the completeness of (X, d) , there
exists z ∈ X such that

lim
n→∞

yn = z. (2.12)

From (2.1) and (2.12), we obtain

lim
n→∞

fx2n = lim
n→∞

Tx2n+1 = lim
n→∞

gx2n+1 = lim
n→∞

Sx2n+2 = z. (2.13)

We now show that z is a common fixed point of f ,g,S and T .
Since g(X) ⊂ S(X), we can choose a point u in X such that z = Su. Suppose that d(z, fu) 6= 0.
By (2.2), (2.13) and the condition (b) , we have α (Su)β (Tx2n+1) ≥ 1. Then, putting x = u and

y = x2n+1 in (1.1), we get

η (d (fu, gx2n+1)) ≤ ϕ (M (u, x2n+1)) + Lθ (N (u, x2n+1)) , (2.14)

where

M (u, x2n+1) = ψ1

(
d (Su, Tx2n+1) , d (Su, fu) , d (Tx2n+1, gx2n+1) ,

d (Su, gx2n+1) + d (fu, Tx2n+1)

2
,

d (Tx2n+1, gx2n+1) [1 + d (Su, fu)]

1 + d (Su, Tx2n+1)
,

d (fu, Tx2n+1) [1 + d (Su, gx2n+1)]

1 + d (Su, Tx2n+1)

)
→ ψ1

(
0, d (z, fu) , 0,

d (fu, z)

2
, 0, d (fu, z)

)
,

and

N (u, x2n+1) = ψ2 (d (Su, fu) , d (Tx2n+1, gx2n+1) , d (Su, gx2n+1) , d (fu, Tx2n+1))

→ ψ2 (d (z, fu) , 0, 0, d (fu, z)) ,

as n→∞. From (2.14), we have

η (d (fu, z)) ≤ lim
n→∞

η (d (fu, gx2n+1))

≤ lim
n→∞

ϕ (M (u, x2n+1)) + L lim
n→∞

θ (N (u, x2n+1))

= lim
n→∞

ϕ (M (u, x2n+1))

≤ ϕ
(
ψ1

(
0, d (z, fu) , 0,

d (fu, z)

2
, 0, d (fu, z)

))
≤ ϕ (d (fu, z)) ,

a contradiction and hence d (fu, z) = 0, that is fu = z, and so u ∈ C (f, S) .
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Similarly, since f(X) ⊂ T (X), we can choose a point v in X such that z = Tv. Suppose that d(z, gv) 6= 0.
By (2.2), (2.13) and the condition (b) , we have α (Sx2n)β (Tv) ≥ 1. Then, substituting x = x2n and

y = v in (1.1), we deduce

η (d (fx2n, gv)) ≤ ϕ (M (x2n, v)) + Lθ (N (x2n, v)) , (2.15)

where

M (x2n, v) = ψ1

(
d (Sx2n, T v) , d (Sx2n, fx2n) , d (Tv, gv) ,

d (Sx2n, gv) + d (fx2n, T v)

2
,
d (Tv, gv) [1 + d (Sx2n, fx2n)]

1 + d (Sx2n, T v)
,

d (fx2n, T v) [1 + d (Sx2n, gv)]

1 + d (Sx2n, T v)

)
→ ψ1

(
0, 0, d (z, gv) ,

d (z, gv)

2
, d (z, gv) , 0

)
,

and

N (x2n, v) = ψ2 (d (Sx2n, fx2n) , d (Tv, gv) , d (Sx2n, gv) , d (fx2n, T v))

→ ψ2 (0, d (z, gv) , d (z, gv) , 0) ,

as n→∞. Now by (2.15), we have

η (d (z, gv)) ≤ lim
n→∞

η (d (fx2n, gv))

≤ lim
n→∞

ϕ (M (x2n, v)) + L lim
n→∞

θ (N (x2n, v))

= lim
n→∞

ϕ (M (x2n, v))

≤ ϕ
(
ψ1

(
0, 0, d (z, gv) ,

d (z, gv)

2
, d (z, gv) , 0

))
≤ ϕ (d (z, gv)) ,

a contradiction and hence d (z, gv) = 0, that is z = gv, and so v ∈ C (g, T ) .
Thus, z = fu = Su = gv = Tv. By the weak compatibility of the pairs (f, S) and (g, T ), we obtain that

fz = Sz and gz = Tz.
Since z ∈ C (f, S) and v ∈ C (g, T ) , by (ii) , we have α (Sz)β (Tv) ≥ 1 and so, from (1.1)

η (d (fz, z)) = η (d (fz, gv))

≤ ϕ (M (z, v)) + Lθ (N (z, v)) , (2.16)

where

M (z, v) = ψ1

(
d (Sz, Tv) , d (Sz, fz) , d (Tv, gv) ,

d (Sz, gv) + d (fz, Tv)

2
,
d (Tv, gv) [1 + d (Sz, fz)]

1 + d (Sz, Tv)
,

d (fz, Tv) [1 + d (Sz, gv)]

1 + d (Sz, Tv)

)
= ψ1 (d (fz, z) , 0, 0, d (fz, z) , 0, d (fz, z)) ≤ d (fz, z) ,

and

N (z, v) = ψ2 (d (Sz, fz) , d (Tv, gv) , d (Sz, gv) , d (fz, Tv))
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= ψ2 (0, 0, d (fz, z) , d (fz, z)) = 0.

By (2.16), we get
η (d (fz, z)) ≤ ϕ (d (fz, z)) ,

which implies that z = fz, and so z = fz = Sz. Similarly, it can be shown that z = gz = Tz. This
completes the proof.

Corollary 2.2. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) and (f, g) be a cyclic (α, β)(S,T )-admissible pair such that

α (Sx)β (Ty) η (d (fx, gy)) ≤ ϕ (Mmax (x, y)) + Lθ (Nmin (x, y)) , (2.17)

for all x, y ∈ X and some L ≥ 0, where η ∈ z, ϕ ∈ Φ, θ ∈ Θ and

Mmax (x, y) = max

(
d (Sx, Ty) , d (Sx, fx) , d (Ty, gy) ,

d (Sx, gy) + d (fx, Ty)

2
,

d (Ty, gy) [1 + d (Sx, fx)]

1 + d (Sx, Ty)
,
d (fx, Ty) [1 + d (Sx, gy)]

1 + d (Sx, Ty)

)
and

Nmin (x, y) = min (d (Sx, fx) , d (Ty, gy) , d (Sx, gy) , d (fx, Ty)) .

Assume that the conditions (a) and (b) in Theorem 2.1 are satisfied. Then the pairs (f, S) and (g, T )
have a point of coincidence in X. Moreover, if the conditions (i) and (ii) in Theorem 2.1 hold, then f, g, S
and T have a common fixed point.

Proof. Let α (Sx)β (Ty) ≥ 1 for x, y ∈ X. If we take ψ1 (t1, t2, t3, t4, t5, t6) = max {t1, t2, t3, t4, t5, t6} and
ψ2 (t1, t2, t3, t4) = min {t1, t2, t3, t4} in Theorem 2.1, then by (2.17), we have

η (d (fx, gy)) ≤ ϕ (M (x, y)) + Lθ (N (x, y)) .

Hence the result follows from Theorem 2.1.

If we take α (Sx) = β (Ty) = 1, and η (t) = t, ϕ (t) = δt and θ (t) = t in Corollary 2.2, we have a
generalized version of Theorem 1 in [10],

Theorem 2.3. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X) and
g(X) ⊂ S(X). Suppose that there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d (fx, gy) ≤ δMmax (x, y) + LNmin (x, y) , (2.18)

for all x, y ∈ X. Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if {f, S} and
{g, T} are weakly compatible, then f, g, S and T have a common fixed point.

If we take L = 0 in Corollary 2.2, we have the following result.

Corollary 2.4. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) and (f, g) be a cyclic (α, β)(S,T )-admissible pair such that

α (Sx)β (Ty) η (d (fx, gy)) ≤ ϕ (Mmax (x, y)) , (2.19)

for all x, y ∈ X, where η ∈ z and ϕ ∈ Φ. Assume that the conditions (a) and (b) in Theorem 2.1 are
satisfied. Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if the conditions (i)
and (ii) in Theorem 2.1 hold, then f, g, S and T have a common fixed point.

If we take ϕ (t) = η (t)− φ (t) in Corollary 2.4, we have the following corollary.
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Corollary 2.5. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) and (f, g) be a cyclic (α, β)(S,T )-admissible pair such that

α (Sx)β (Ty) η (d (fx, gy)) ≤ η (Mmax (x, y))− φ (Mmax (x, y)) , (2.20)

for all x, y ∈ X, where η ∈ z and φ ∈ Φ. Assume that the conditions (a) and (b) in Theorem 2.1are
satisfied. Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if the conditions (i)
and (ii) in Theorem 2.1 hold, then f, g, S and T have a common fixed point.

If we take α (Sx) = β (Ty) = 1 in Corollary 2.5, we have a generalized version of Theorem 2.1 in [2],

Theorem 2.6. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X). Suppose that for any x, y ∈ X, there exist η ∈ z and φ ∈ Φ such that

η (d (fx, gy)) ≤ η (Mmax (x, y))− φ (Mmax (x, y)) . (2.21)

Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if {f, S} and {g, T} are weakly
compatible, then f, g, S and T have a common fixed point.

If we take η (t) = t in Corollary 2.4, we have the following result.

Corollary 2.7. Let f, g, S and T be selfmaps of a complete metric space (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) and (f, g) be a cyclic (α, β)(S,T )-admissible pair such that

α (Sx)β (Ty) d (fx, gy) ≤ ϕ (Mmax (x, y)) , (2.22)

for all x, y ∈ X, where ϕ ∈ Φ. Assume that the conditions (a) and (b) in Theorem 2.1 are satisfied.
Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if the conditions (i) and (ii)
in Theorem 2.1 hold, then f, g, S and T have a common fixed point.

For the uniqueness of the fixed point of a generalized almost (S, T )-rational contraction, we will consider
the following hypothesis.

(H) For all x, y ∈ F(f, g, S, T ), we have α (Sx) ≥ 1 and β (Ty) ≥ 1.

Theorem 2.8. Adding condition (H) to the hypotheses of Theorem 2.1, we obtain the uniqueness of the
common fixed point of f, g, S and T.

Proof. Suppose that x = fx = gx = Sx = Tx and y = fy = gy = Sy = Ty. Then, from (H) ,
since α (Sx)β (Ty) ≥ 1, applying (1.1), we obtain

η (d (x, y)) =η (d (fx, gy))

≤ϕ (M (x, y)) + Lθ (N (x, y)) , (2.23)

where

M (x, y) =ψ1

(
d (Sx, Ty) , d (Sx, fx) , d (Ty, gy) ,

d (Sx, gy) + d (fx, Ty)

2
,
d (Ty, gy) [1 + d (Sx, fx)]

1 + d (Sx, Ty)
,

d (fx, Ty) [1 + d (Sx, gy)]

1 + d (Sx, Ty)

)
=ψ1 (d (x, y) , 0, 0, d (x, y) , 0, d (x, y)) ≤ d (x, y) ,
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and

N (x, y) =ψ2 (d (Sx, fx) , d (Ty, gy) , d (Sx, gy) , d (fx, Ty))

=ψ2 (0, 0, d (x, y) , d (x, y)) = 0.

From (2.23), we have
η (d (x, y)) ≤ ϕ (d (x, y)) ,

which implies that d (x, y) = 0, that is, x = y.

Remark 2.9. Adding condition (H) to the hypotheses of Corollaries 2.2, 2.4, 2.5 and 2.7, we obtain the
uniqueness of the common fixed point of f, g, S and T.

If we choose S = T = IX in Corollary 2.2, we have the following result.

Corollary 2.10. Let f and g be selfmaps of a complete metric space (X, d) and (f, g) be a cyclic (α, β)-
admissible pair such that

α (x)β (y) η (d (fx, gy)) ≤ ϕ (Mfg (x, y)) + Lθ (Nfg (x, y))

for all x, y ∈ X and some L ≥ 0, where η ∈ z, ϕ ∈ Φ, θ ∈ Θ and

Mfg (x, y) = max

(
d (x, y) , d (x, fx) , d (y, gy) ,

d (x, gy) + d (fx, y)

2
,

d (y, gy) [1 + d (x, fx)]

1 + d (x, y)
,
d (fx, y) [1 + d (x, gy)]

1 + d (x, y)

)
,

Nfg (x, y) = min (d (x, fx) , d (y, gy) , d (x, gy) , d (fx, y)) .

Assume also that the following conditions are satisfied:

(a) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1;

(b) if {xn} is a sequence in X such that α (xn) ≥ 1 and β (xn) ≥ 1 for all n and xn → x as n→∞, then
α (x) ≥ 1 and β (x) ≥ 1.

Then f and g have a common fixed point. Moreover, if α (x) ≥ 1 and β (y) ≥ 1 whenever x, y ∈ F (f, g) ,
then f and g have a unique common fixed point.

Now, we furnish the following example which illustrates Theorem 2.1 as well as Theorem 2.8.

Example 2.11. Let X = R be endowed with the usual metric and η, ϕ : R+ → R+ be defined by η (t) = t
and ϕ (t) = 7t

8 . Also, let ψ1 (t1, t2, t3, t4, t5, t6) = max {t1, t2, t3, t4, t5, t6} for all t1, t2, t3, t4, t5, t6 ≥ 0. Define
the self-mappings f, g, S and T on X by

fx =

{
−2x

5 if x ∈
[
−1

2 , 0
]
,

7x
10 if x ∈ R\

[
−1

2 , 0
]
,

and gx =

{
−2x

15 if x ∈
[
0, 12
]
,

7x
10 if x ∈ R\

[
0, 12
]
,

Sx =

{
−4x

5 if x ∈
[
0, 12
]
,

x
5 if x ∈ R\

[
0, 12
]
,

and Tx =

{
−4x

5 if x ∈
[
−1

2 , 0
]
,

x
10 if x ∈ R\

[
−1

2 , 0
]
.

Note that f(X) ⊂ T (X) and g(X) ⊂ S(X), {f, S} and {g, T} are weakly compatible.
Define α, β : X → R+ as

α (x) =

{
1 if x ∈

[
−2

5 , 0
]
,

0 otherwise,
and β (x) =

{
1 if x ∈

[
0, 25
]
,

0 otherwise.
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If there exists x ∈ X such that α (Sx) ≥ 1, then Sx ∈
[
−2

5 , 0
]

and hence x ∈
[
0, 12
]
. By the definitions of f

and β, we have fx ∈
[
0, 25
]

and so β (fx) ≥ 1. If for some x ∈ X, we have β (Tx) ≥ 1 then Tx ∈
[
0, 25
]

and
hence x ∈

[
−1

2 , 0
]
. By the definitions of g and α, we have gx ∈

[
−2

5 , 0
]

and so α (gx) ≥ 1. Therefore, (f, g)
is a cyclic (α, β)(S,T )-admissible pair. Moreover, α (Sx0) ≥ 1 and β (Tx0) ≥ 1 holds for x0 = 0.

If {xn} is any sequence in X such that α (xn) ≥ 1 and β (xn) ≥ 1 for all n ∈ N and xn → x as n→∞,
then by the definition of α and β, we have xn ∈

[
−2

5 , 0
]
∩
[
0, 25
]

= {0} for all n ∈ N and so x ∈ {0} which
implies that α (x) ≥ 1 and β (x) ≥ 1.

Now, we prove that (f, g) is a generalized almost (S, T )-rational contraction pair. Let α (Sx)β (Ty) ≥ 1.
Then x ∈

[
0, 12
]

and y ∈
[
−1

2 , 0
]
, and so

η (d (fx, gy)) = |fx− gy| =
∣∣∣∣7x10
− 7y

10

∣∣∣∣
=

7

8
· 4

5
|x− y| = 7

8
d (Sx, Ty)

=ϕ (d (Sx, Ty)) ≤ ϕ (M (x, y))

≤ϕ (M (x, y)) + Lθ (N (x, y)) ,

for some L ≥ 0 and θ ∈ Θ. Note that assumption (ii) of Theorem 2.1 and the condition (H) also hold.
Thus, by Theorems 2.1 and 2.8, f, g, S and T have a unique common fixed point which is 0.

3. Common fixed points of cyclic mappings

Let A and B be two nonempty subsets of a set X. A mapping f : X → X is said to be cyclic (with
respect to A and B) if f(A) ⊆ B and f(B) ⊆ A.

The fixed point theory of cyclic contractive mappings is a recent development. Kirk et al. [27] in 2003
introduced a class of mappings which satisfy contraction condition for points x and y where x ∈ A and
y ∈ B. For more work in this direction, we refer to [19, 31, 33].

Definition 3.1. The mappings f, g, S, T : A ∪ B → A ∪ B are called cyclic if fA ⊆ TB and gB ⊆ SA,
where A,B are nonempty subsets of a metric space (X, d).

As an application of our results in the previous section, we obtain some fixed point results of cyclic
mappings in the setting of complete metric spaces.

Theorem 3.2. Let A and B be two closed subsets of complete metric space X such that A ∩ B 6= ∅ and
f, g, S, T : A ∪B → A ∪B with fA ⊆ TB and gB ⊆ SA. Assume that

η (d (fx, gy)) ≤ ϕ (M (x, y)) + Lθ (N (x, y)) (3.1)

for any x ∈ A and y ∈ B and some L ≥ 0, where η ∈ z, ϕ ∈ Φ and θ ∈ Θ. If S and T are one to one then
the pairs (f, S) and (g, T ) have a coincidence point in A ∩ B. If {f, S} and {g, T} are weakly compatible,
then f, g, S and T have a common fixed point in A ∩B.

Proof. Define α, β : X → R+ by

α (x) =

{
1, x ∈ SA,
0, otherwise

and β (x) =

{
1, x ∈ TB,
0, otherwise

.

Let α (Sx)β (Ty) ≥ 1. Then Sx ∈ SA and Ty ∈ TB. Since S and T are one to one, we have x ∈ A and
y ∈ B. From (3.1), we obtain that

η (d (fx, gy)) ≤ ϕ (M (x, y)) + Lθ (N (x, y)) .
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Let α (Sx) ≥ 1 for some x ∈ X, so Sx ∈ SA and then x ∈ A. Hence, fx ∈ TB and so β (fx) ≥ 1. Again,
let β (Tx) ≥ 1 for some x ∈ X. Then Tx ∈ TB and so x ∈ B. Hence, gx ∈ SA and α (gx) ≥ 1. Therefore,
(f, g) is a cyclic (α, β)(S,T )-admissible pair.

There exists an x0 ∈ A ∩ B, as A ∩ B is nonempty. This implies that Sx0 ∈ SA and Tx0 ∈ TB and so
α (Sx0) ≥ 1 and β (Tx0) ≥ 1.

Let {xn} be a sequence in X such that α (xn) ≥ 1 and β (xn) ≥ 1 for all n ∈ N and xn → x as n→∞.
Then xn ∈ SA ∩ TB for all n ∈ N and so x ∈ SA ∩ TB. This implies that α (x) ≥ 1 and β (x) ≥ 1.

Thus, the conditions (a) and (b) of Theorem 2.1 hold. Hence, there exist u, v, z ∈ A ∪ B such that
z = fu = Su = gv = Tv. Moreover, since Su ∈ SA and Tv ∈ TB, we deduce that α (Su) ≥ 1 and
β (Tv) ≥ 1. Thus, the hypothesis (ii) in Theorem 2.1 is also satisfied.

On the other hand, since S and T are one to one, there exist u1, v1 ∈ A and u2, v2 ∈ B such that
Su1 = Su2 = z and Tv1 = Tv2 = z which implies that u1 = u2 = u and v1 = v2 = v. Therefore,
z = fu = Su and z = gv = Tv for u, v ∈ A ∩B.

Finally, suppose that {f, S} and {g, T} are weakly compatible. Following arguments similar to those in
proof of Theorem 2.1, we have z = fz = gz = Sz = Tz.

4. An application in dynamic programming

The existence and uniqueness of solutions of functional equations and system of functional equations
arising in dynamic programming have been studied by using different fixed point results (see, [1, 7, 22, 30]).

Throughout this section, we assume that U and V are Banach spaces, W ⊆ U is a state space, D ⊆ V is
a decision space. We now prove the existence of the common solution of the following system of functional
equations:

pi (x) = sup
y∈D
{q (x, y) +Qi (x, y, pi (τ (x, y)))} , x ∈W (4.1)

where τ : W ×D →W, q : W ×D → R and Qi : W × D× R→ R, i ∈ {1, 2}. It is well known that equation
of the type (4.1) provides useful tools for mathematical optimization, computer and dynamic programming
(see, [9, 12]).

Let B(W ) denote the space of all bounded real-valued functions defined on the set W , where B(W ) is
endowed with the metric d(h, k) = supx∈W |hx − kx| for all h, k ∈ B(W ). Note that B(W ) is a complete
metric space.

We consider the operators fi : B(W )→ B(W ) given by

fihi(x) = sup
y∈D
{q (x, y) +Qi (x, y, hi (τ (x, y)))} ,

for x ∈ W, hi ∈ B(W ), where i ∈ {1, 2} ; these operators are well-defined if the functions qi and Gi are
bounded.

Suppose that the following conditions hold.

(A) p, q : W ×D → R and G,K : W ×D × R→ R are bounded;

(B) there exist ξ, ζ : X → R such that if ξ (h) ≥ 0 and ζ (k) ≥ 0 for all h, k ∈ B(W ), then for every
(x, y) ∈W ×D and t ∈W, we have

|Q1 (x, y, h (x))−Q2 (x, y, k (x))| ≤ ln (1 +M (h, k)) , (4.2)

where

M (h, k) = max

(
d (h (t) , k (t)) , d (h (t) , f1h (t)) , d (k (t) , f2k (t)) ,

d (h (t) , f2k (t)) + d (f1h (t) , k (t))

2
,
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d (k (t) , f2k (t)) [1 + d (h (t) , f1h (t))]

1 + d (h (t) , k (t))
,

d (f1h (t) , k (t)) [1 + d (h (t) , f2k (t))]

1 + d (h (t) , k (t))

)
;

(C)
ξ (h) ≥ 0 for some h ∈ X implies ζ (f1h) ≥ 0,

and
ζ (h) ≥ 0 for some h ∈ X implies ξ (f2h) ≥ 0;

(D) if {hn} is a sequence in B(W ) such that ξ (hn) ≥ 0 and ζ (hn) ≥ 0 for all n ∈ N0 and hn → h∗ as
n→∞, then ξ (h∗) ≥ 0 and ζ (h∗) ≥ 0;

(E) there exists h0 ∈ B(W ) such that ξ (h0) ≥ 0 and ζ (h0) ≥ 0.

Theorem 4.1. Assume that the conditions (A)-(E) are satisfied. Then the system of functional equations
(4.1) has a common bounded solution in W .

Proof. Let λ be an arbitrary positive number, x ∈W and h1, h2 ∈ B(W ) such that ξ (h1) ≥ 0 and ζ (h2) ≥ 0.
Then there exist y1, y2 ∈ D such that

f1h1 (x) < q (x, y1) +Q1 (x, y1, h1 (τ (x, y1))) + λ, (4.3)

f2h2 (x) < q (x, y2) +Q2 (x, y2, h2 (τ (x, y2))) + λ, (4.4)

f1h1 (x) ≥ q (x, y2) +Q1 (x, y2, h1 (τ (x, y2))) , (4.5)

f2h2 (x) ≥ q (x, y1) +Q2 (x, y1, h2 (τ (x, y1))) . (4.6)

From (4.3) and (4.6), we have

f1h1 (x)− f2h2 (x) <Q1 (x, y1, h1 (τ (x, y1)))−Q2 (x, y1, h2 (τ (x, y1))) + λ

≤ |Q1 (x, y1, h1 (τ (x, y1)))−Q2 (x, y1, h2 (τ (x, y1)))|+ λ

≤ ln (1 +M (h1, h2)) + λ. (4.7)

Similarly, from (4.4) and (4.5), we obtain that

f2h2 (x)− f1h1 (x) < ln (1 +M (h1, h2)) + λ. (4.8)

By (4.7) and (4.8), we have

|f1h1 (x)− f2h2 (x)| < ln (1 +M (h1, h2)) + λ

or, equivalently,
d (f1h1, f2h2) ≤ ln (1 +M (h1, h2)) + λ.

Since λ > 0 is arbitrary, we get

d (f1h1, f2h2) ≤ ln (1 +M (h1, h2)) .

Define α, β : B(W )→ R+ by

α (h) =

{
1 if ξ (h) ≥ 0 where h ∈ B(W ),

0 otherwise
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and

β (h) =

{
1 if ζ (h) ≥ 0 where h ∈ B(W ),

0 otherwise.

Also, define η, ϕ : R+ → R+ by η (t) = t and ϕ (t) = ln (1 + t) . Thus, we have

α (h1)β (h2) η (d (f1h1, f2h2)) ≤ ϕ (M (h1, h2))

≤ ϕ (M (h1, h2)) + Lθ (N (h1, h2)) ,

where L ≥ 0, θ ∈ Θ and

N (h1, h2) = min (d (h (t) , f1h (t)) , d (k (t) , f2k (t)) , d (h (t) , f2k (t)) , d (f1h (t) , k (t))) .

If f = f1 and g = f2, it is easy to observe that all the hypotheses of Corollary 2.10 are satisfied. Therefore
f1 and f2 have a common fixed point and hence the system of functional equations (4.1) has a bounded
common solution.
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