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Abstract

Rabies is a fatal disease in dogs as well as in humans. A possible model to represent

rabies transmission dynamics in human and dog populations is presented. The next

generation matrix operator is used to determine the threshold parameter R0, that is the

average number of new infective individuals produced by one infective individual intro-

duced into a completely susceptible population. If R0 < 1, the disease-free equilibrium

is globally asymptotically stable, while it is unstable and there exists a locally asymptot-

ically stable endemic equilibrium when R0 > 1. A nonstandard finite difference scheme

that replicates the dynamics of the continuous model is proposed. Numerical tests to

support the theoretical analysis are provided.
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1 Introduction

Rabies, also known as hydrophobia of human, is an acute disease that progresses to coma

or death after the first symptom appearers by attacking the central nervous system of the

victim. It is a viral disease that mainly affects carnivores and bats, although it can affect

any mammals. Rabies transmits from animals to animals or animals to humans through bites

or scratches [10]. The most common wild animals to transmit rabies are raccoons, skunks,

bats, foxes and coyotes while domestic animals such as cats, cattle and dogs can also transmit

rabies [9].

A major observation during infection is a change in personality of the rabid animal such as

approach humans without fear or hesitation. Many rabid animals are incapable of swallowing

their saliva. The incubation period, the time between exposure to the rabies virus and the

development of sign varies from one week to one year.

The primary route of humans infection with the rabies is through a bite from a rabid dog.

Rabies transmission is also possible when a claw scratch or mucosal surface (e.g. mouse, nose,

eye) is contaminated with the saliva from a rabid dog. Rabies is responsible for the death of

50,000 to 60,000 people annually although effective vaccines for pre and post-exposed indi-

viduals are available. More than 99 percent of these death occur in the developing countries

where the disease is endemic in domestic dog population. There is no treatment after clinical

symptoms are observed [3, 10].

Domestic dogs in most African countries are the major source of rabies disease for humans.

Understanding the dynamics of rabies between humans and domestic dogs would therefore

important to design a more effective control strategy that could reduce human deaths. In the

controlling strategies of the disease, mathematical models play significant roles.

A model to study the spread of rabies among foxes is given in [17]. Here, we develop a

model to study the rabies transmission between human and dog populations. In each pop-

ulation of our study, we have susceptible (S), exposed (E), and infectious (I) compartments.

In the human population, we have additional compartment denoted by (V) containing indi-
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viduals removed by vaccination.

The proposed model, like most mathematical models in applied sciences, cannot be solved

by analytical techniques. Here, we design a nonstandard finite difference (NSFD) scheme to

approximate the solution of the continuous model. The scheme is constructed based on two

Mickens’ rules [15] and as singled out in [2]. To the best of our knowledge, this is the first

time to present the rabies model between human and dog populations with its dynamically

consistent numerical approximation.

This article is organized as follows. The model is formulated in Section 2. Equilibrium

points and their stability analysis are given in Section 3. In Section 4, a dynamically con-

sistent NSFD scheme is designed and its numerical simulations are illustrated in Section 5.

Concluding remarks on our findings and possible future research directions are indicated in

the last Section.

2 Model formulation

To formulate the model, we make the following assumptions:

1. there is no transmission of the disease from rabid humans to susceptible humans;

2. there is no contacts between rabid humans and susceptible dogs;

3. the contacts among susceptible and exposed humans, and among susceptible and ex-

posed dogs don’t give rise to infection;

4. there is no vaccination for susceptible dogs before and after exposed to the disease.

Based on these assumptions, the dynamics of the disease between humans and dogs is given

in Fig 1.
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Figure 1: Flow chart

Using system of differential equations, the flow chart given in Fig 1 reads as follows:

S ′h = µhKh − βhdShId − µhSh − ν1Sh (2.1)

E ′h = βhdShId − (µh + γh + ν2)Eh (2.2)

I ′h = γhEh − (αh + µh)Ih (2.3)

V ′h = ν1Sh + ν2Eh − µhVh (2.4)

S ′d = µdKd − βddSdId − µdSd (2.5)

E ′d = βddSdId − (µd + γd)Ed (2.6)

I ′d = γdEd − (αd + µd)Id, (2.7)
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where all parameters are nonnegative and the description of these parameters are given in

Table 1. Moreover, Nh = Sh +Eh + Ih + Vh and Nd = Sd +Ed + Id. Furthermore Nh and Nd

satisfy the equations

N ′h = µhKh − µhNh − αhIh (2.8)

and

N ′d = µdKd − µdNd − αdId, (2.9)

respectively. Nonnegative solutions Nh for (2.8) and Nd for (2.9) satisfy the conservation laws

µhKh − (µh + αh)Nh ≤ N ′h ≤ µh(Kh −Nh) (2.10)

and

µdKd − (µd + αd)Nd ≤ N ′d ≤ µd(Kd −Nd), (2.11)

respectively [16]. By applying Gronwall inequality for differential equations [18], from above

and below of (2.10) and (2.11), we get for t ≥ 0,

µhKh

µh + αh
−
(

µhKh

µh + αh
−N0

h

)
e−(µh+αh)t ≤ Nh(t) ≤ Kh − (Kh −N0

h)e−µht

and
µdKd

µd + αd
−
(

µdKd

µd + αd
−N0

d

)
e−(µd+αd)t ≤ Nd(t) ≤ Kd − (Kd −N0

d )e−µdt,

respectively. Thus for 0 ≤ N0
h ≤ Kh and 0 ≤ N0

d ≤ Kd, we get respectively,

0 ≤ Nh(t) ≤ Kh and 0 ≤ Nd(t) ≤ Kd.

Theorem 2.1 The epidemiological model (2.1) − (2.7) defines a dynamical system on the

biologically feasible region

Ω = {(Sh, Eh, Ih, Vh, Sd, Ed, Id) ∈ R7
+ : 0 ≤ Sh + Eh + Ih + Vh = Nh ≤ Kh,

0 ≤ Sd + Ed + Id = Nd ≤ Kd}.
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Parameters Description Parameters Description

and variables and variables

Kh human carrying capacity Sh susceptible human

Eh exposed human Ih Infectious human

Vh vaccinated human pre-exposed and post-exposed µh birth or natural death human

βhd contact rate between Sh and Id ν1 rate of vaccination for Sh

γh rate of transfer from Eh to Ih ν2 rate of vaccination for Eh

αh death rate of human due to rabies Kd dog carrying capacity

Sd susceptible dog Ed exposed dog

Id infectious dog µd birth or natural death rate of dogs

βdd contact rate between Sd and Id γd rate of transfer from Ed to Id

αd death rate of dogs induced by rabies

Table 1: Description of variables and parameters.

Proof: The theorem can be proved by showing that Ω is positively invariant. Thus for any

initial data in Ω, no trajectory will leave Ω by crossing through one of its faces (see [5]).

3 Equilibrium points and their stability analysis

To determine the equilibrium points of (2.1)− (2.7), we set

µhKh − βhdShId − µhSh − ν1Sh = 0 (3.1)

βhdShId − (µh + γh + ν2)Eh = 0 (3.2)

γhEh − (αh + µh)Ih = 0 (3.3)

ν1Sh + ν2Eh − µhVh = 0 (3.4)

µdKd − βddSdId − µdSd = 0 (3.5)

βddSdId − (µd + γd)Ed = 0 (3.6)

γdEd − (αd + µd)Id = 0. (3.7)
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From (3.7), we obtain

Ed =
(αd + µd)Id

γd
. (3.8)

Inserting Equation (3.8) into Equation (3.6), we get

βddSdId −
(γd + µd)(αd + µd)Id

γd
= 0. (3.9)

This gives Id = 0 or βddSd − (γd+µd)(αd+µd)
γd

= 0.

If Id = 0, then

E0 ≡ (Sh, Eh, Ih, Vh, Sd, Ed, Id) =

(
µhKh

µh + ν1

, 0, 0,
ν1Kh

µh + ν1

, Kd, 0, 0

)
is the disease-free equilibrium obtained by using appropriate substitutions in the subsequent

equations.

To find the basic reproduction number which is very important in the qualitative analysis

of the model, we use the method of next generation matrix discussed in [6, 20]. For this, we

consider the vector function

F =


βhdShId

0

βddSdId

0

 ,

which is the rate at which disease compartments increase in size, but the vector function

V =


(γh + µh + ν2)Eh

−γhEh + (αh + µh)Ih

(µd + γd)Ed

−γdEd + (αd + µd)Id
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is the rate at which the disease compartments decrease due to the disease. By using Diekmann

et al [6] and van Driessche et al [20], the next generation matrix is given by

K = JF (JV )−1,

where

JF =


0 0 0 βhdµhKh

µh+ν1

0 0 0 0

0 0 0 βddKd

0 0 0 0


is the Jacobian matrix of F at E0 and

JV =


γh + µh + ν2 0 0 0

−γh αh + µh 0 0

0 0 γd + µd 0

0 0 −γd αd + µd


is the Jacobian of V at E0. The basic reproduction number denoted by R0 is defined as the

expected number of secondary cases produced in a completely susceptible population by a

typical infected individual during its entire period of infectious [4]. Numerically, it is defined

as the spectral radius of K. That is R0 = ρ(K) and explicitly,

R0 =
γdβddKd

(γd + µd)(αd + µd)
. (3.10)

Remark 3.1 In Equation (3.10), we can see that R0 is completely defined in terms of the

parameters of the dog population. In the eradication strategy of the disease, the action to

decrease the value of R0 is advised to considered with respect to these parameters.

If Id > 0, from (3.9)

Sd =
(γd + µd)(αd + µd)

γdβdd
or Sd =

Kd

R0

.
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Then by back substitution,

E∞ = (S∗h, E
∗
h, I
∗
h, V

∗
h , S

∗
d , E

∗
d , I
∗
d)

is the endemic equilibrium, where

S∗h =
µhβddKh

µdβhd (R0 − 1) + (µh + ν1) βdd
,

E∗h =
µdµhβhdKh (R0 − 1)

(µh + γh + ν2) [µdβhd(R0 − 1) + (µh + ν1)βdd]
,

I∗h =
µdµhγhβhdKh(R0 − 1)

(αh + µh) (µh + γh + ν2) [µdβhd(R0 − 1) + (µh + ν1)βdd]
,

V ∗h =
Kh

µdβhd(R0 − 1) + (µh + ν1)βdd

(
ν1βdd +

ν2µdβhd(R0 − 1)

µh + γh + ν2

)
,

S∗d =
Kd

R0

, E∗d =
µd(αd + µd)(R0 − 1)

γdβdd
, and I∗d =

µd
βdd

(R0 − 1).

For R0 > 1, we obtain unique endemic equilibrium.

Theorem 3.2 The disease-free equilibrium point E0 is globally asymptotically stable for R0 <

1 and unstable for R0 > 1.

Proof: To show that E0 is globally asymptotically stable, we use the LaSalle Invariance

Principle [12].

Let E(t) = (Sh(t), Eh(t), Ih(t), Vd(t), Sd(t), Ed(t), Id(t)) ∈ R7
+ for t > 0, then we consider a

function defined by

U(E) = γdEd + (µd + γd)Id

U̇(E) = γdE
′
d + (µd + γd)I

′
d

= γdβddSdId − (µd + γd)(αd + µd)Id

≤ (γdβddKd − (µd + γd)(αd + µd))Id

≤ (µd + γd)(αd + µd)(R0 − 1)Id

< 0
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for R0 < 1 and E 6= E0. Hence, U is a positive definite Lyapunov function and E0 is locally

asymptotically stable for R0 < 1 while unstable for R0 > 1. By using the procedure mention

in [12, 19], it is not difficult to show that the set A = {E0} is the maximum invariant set in

M = {E : U̇ = 0} for R0 < 1. This completes the proof. �

Remark 3.3 By using the Hartman-Grobman theorem [18], we can prove that E0 is hyper-

bolic, locally asymptotically stable for R0 < 1 and unstable for R0 > 1.

For Id > 0 and R0 > 1, the stability property of E∞ is given in the next theorem.

Theorem 3.4 For R0 > 1, the endemic equilibrium point E∞ is locally asymptotically stable.

Proof: To prove this theorem, we use Hartman-Grobman theorem [18]. The Jacobian matrix

of the right-side of (2.1)− (2.7) at E∞ is



−(βhdI
∗
d + µh + ν1) 0 0 0 0 0 −βhdS∗h

βhdI
∗
d −(µh + γh + ν2) 0 0 0 0 βhdS

∗
h

0 γh −(αh + µh) 0 0 0 0

ν1 ν2 0 −µh 0 0 0

0 0 0 0 −(βddI
∗
d + µd) 0 −βddS∗d

0 0 0 0 βddI
∗
d −(µd + γd) βddS

∗
d

0 0 0 0 0 γd −(αd + µd)



.

Clearly, the trace of this matrix is negative. We need to show that all eigenvalues of J(E∞)

have negative real parts. For this, let r be an eigenvalue of J(E∞) and the characteristic

equation is

det (rI − J(E∞)) = 0,
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which leads into the equation

[r + (βhdI
∗
d + µh + ν1)] (r + (µh + γh + ν2)) [r + µh]{[r + (βddI

∗
d + µd)](r + (µd + γd))[r + (αd + µd)]

− (r + µd)γdβddS
∗
d} = 0. (3.11)

All real parts of r in Equation (3.11) are negative if and only if all r in

[r + (βddI
∗
d + µd)](r + (µd + γd))[r + (αd + µd)]− (r + µd)γdβddS

∗
d = 0 (3.12)

have negative real parts. By using values of I∗d and S∗d with R0 in (3.10), Equation (3.12) can

be written as

r3 + a2r
2 + a1r + a0 = 0, (3.13)

where,

a2 = αd + µd(R0 + 2) + γd

a1 = µdR0(αd + 2µd + γd)

a0 = µd(µd + γd)(αd + µd)(R0 − 1).

Clearly a2 > 0, because the parameters in the expression are positive. It is also possible to

show that a2a1 > a0 > 0 for R0 > 1. Then by Routh-Hurwitz condition [8], all real parts of

r in (3.13) are negative. Hence, the endemic equilibrium point, E∞ is locally asymptotically

stable for R0 > 1. �.

4 Nonstandard finite difference scheme

In this section, we want to design a nonstandard finite difference scheme for (2.1) − (2.7)

that preserves all properties we discussed in the continuous model. For this numerical ap-

proximation, we replace the continuous time t ∈ [0,∞) with tn = n∆t, n = 0, 1, 2, ...,

where ∆t is the time step-size. Thus, we are interested in finding approximate solutions
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Snh , E
n
h , I

n
h , V

n
h , S

n
d , E

n
d , I

n
d of Sh, Eh, Ih, Vh, Sd, Ed, Id at time t = tn, respectively.

Having these in mind, we propose the following NSFD scheme:

Sn+1
h − Snh
φ(∆t)

= µhKh − βhdSn+1
h Ind − (µh + ν1)Sn+1

h (4.1)

En+1
h − En

h

φ(∆t)
= βhdS

n+1
h Ind − (µh + γh + ν2)En+1

h (4.2)

In+1
h − Inh
φ(∆t)

= γhE
n+1
h − (αh + µh)I

n+1
h (4.3)

V n+1
h − V n

h

φ(∆t)
= ν1S

n+1
h + ν2E

n+1
h − µhV n+1

h (4.4)

Sn+1
d − Snd
φ(∆t)

= µdKd − βddSn+1
d Ind − µdSn+1

d (4.5)

En+1
d − En

d

φ(∆t)
= βddS

n+1
d Ind − (µd + γd)E

n+1
d (4.6)

In+1
d − Ind
φ(∆t)

= γdE
n+1
d − (αd + µd)I

n+1
d , (4.7)

where the function φ(∆t) is obtained from the exact solutions of the conservation laws (2.8)

and (2.9) to satisfies the condition

φ ≡ φ(∆t) = ∆t+O((∆t)2). (4.8)

In the approximation, positive constants are left as positive constants. From Equations (2.10)

and (2.11), by using Grownwall inequality for difference equations, we choose

φ(∆t) =
eµ∆t − 1

µ
or φ(∆t) =

e(µ+α)∆t − 1

µ+ α
,

respectively, where µ = max{µh, µd} and α = max{αh, αd} (see [15, 19]). These functions

satisfy Equation (4.8).

Remark 4.1 Note that in the constructed NSFD scheme, two Mickens rules [15] are rein-

forced as highlighted in [2]: the nonlinear terms are approximated in a nonlocal way and the

usual standard denominator ∆t of the discrete derivative is replaced by the complex denomi-

nator function φ(∆t).
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By adding (4.1)− (4.4) and (4.5)− (4.7), we obtain

Nn+1
h −Nn

h

φ(∆t)
= µhKh − µhNn+1

h − αhIn+1
h (4.9)

and

Nn+1
d −Nn

d

φ(∆t)
= µdKd − µdNn+1

d − αdIn+1
d , (4.10)

respectively. From (4.9) and (4.10), the inequalities

µhKh − (µh + αh)N
n+1
h ≤ Nn+1

h −Nn
h

φ(∆t)
≤ µhKh − µhNn+1

h (4.11)

and

µdKd − (µd + αh)N
n+1
d ≤ Nn+1

d −Nn
d

φ(∆t)
≤ µdKd − µdNn+1

d (4.12)

are obtained, respectively. By using the Gronwall inequality for discrete dynamical systems

[18], solutions for (4.9) and (4.10) are positive and bounded. More precisely, 0 ≤ N0
h ≤ Kh

and 0 ≤ N0
d ≤ Kd, lead into the inequalities 0 ≤ Nn

h ≤ Kh and 0 ≤ Nn
d ≤ Kd, respectively

for n ∈ N.

Theorem 4.2 The NSFD scheme (4.1) − (4.7) defines a discrete dynamical system on the

biologically feasible domain

Ω = {(Sh, Eh, Ih, Vh, Sd, Ed, Id) ∈ R7 : Sh, Eh, Ih, Vh, Sd, Ed, Id ≥ 0,

Nh, Nd > 0, 0 ≤ Sh + Eh + Ih + Vh = Nh ≤ Kh, 0 ≤ Sd + Ed + Id = Nd ≤ Kd}.
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For further computational purpose, we rearrange the system (4.1)− (4.7) into

Sn+1
h =

µhφ(∆t)Kh + Snh
1 + (βhdI

n
d + µh + ν1)φ(∆t)

(4.13)

En+1
h =

βhdφ(∆t)Sn+1
h Ind + Enh

1 + (µh + γh + ν2)φ(∆t)
(4.14)

In+1
h =

γhφ(∆t)En+1
h + Inh

1 + (αh + µh)φ(∆t)
(4.15)

V n+1
h =

(ν1S
n+1
h + ν2E

n+1
h )φ(∆t) + V n

h

1 + µhφ(∆t)
(4.16)

Sn+1
d =

µdφ(∆t)Kd + Snd
1 + (βddI

n
d + µd)φ(∆t)

(4.17)

En+1
d =

βddφ(∆t)Sn+1
d Ind + End

1 + (µd + γd)φ(∆t)
(4.18)

In+1
d =

γdφ(∆t)En+1
d + Ind

1 + (αd + µd)φ(∆t)
(4.19)

From Equations (4.13)− (4.19), we can see that the NSFD scheme (4.1)− (4.7) gives positive

solutions for any positive initial data. Moreover, the algorithm runs by following the Gauss-

Seidel cycle on (4.13)− (4.19).

To determine the fixed points, we set (4.13)− (4.19) into the following form:

µhφ(∆t)Kh + Sh
1 + (βhdId + µh + ν1)φ(∆t)

= Sh (4.20)

βhdφ(∆t)ShId + Eh
1 + (µh + γh + ν2)φ(∆t)

= Eh (4.21)

γhφ(∆t)Eh + Ih
1 + (αh + µh)φ(∆t)

= Ih (4.22)

(ν1Sh + ν2Eh)φ(∆t) + Vh
1 + µhφ(∆t)

= Vh (4.23)

µdφ(∆t)Kd + Sd
1 + (βddId + µd)φ(∆t)

= Sd (4.24)

βddφ(∆t)SdId + Ed
1 + (µd + γd)φ(∆t)

= Ed (4.25)

γdφ(∆t)Ed + Id
1 + (αd + µd)φ(∆t)

= Id. (4.26)
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From (4.26), we get

Ed =
(αd + µd)Id

γd
. (4.27)

Plugging (4.27) into (4.25), we obtain

βddSdId =
(αd + µd)(µd + γd)Id

γd
. (4.28)

From (4.28), we get

Id = 0 or Sd =
(αd + µd)(µd + γd)

γdβdd
=
Kd

R2
0

.

If Id = 0, then

E0 =

(
µhKh

µh + ν1

, 0, 0,
ν1Kh

µh + ν1

, Kd, 0, 0

)
is the fixed point associated with the disease-free equilibrium point. This confirms that the

scheme preserves the disease-free equilibrium point.

If Id > 0, by using (3.10) and (4.20) − (4.28), E∞ = (S∗h, E
∗
h, I
∗
h, V

∗
h , S

∗
d , E

∗
d , I
∗
d) is the

endemic fixed point for R0 > 1, where

S∗d =
Kd

R0

,

I∗d =
µd(R0 − 1)

βdd
,

E∗d =
µd(αd + µd)(R0 − 1)

γdβdd
,

S∗h =
µhβddKh

µdβhd(R0 − 1) + (µh + ν1)βdd
,

E∗h =
µdµhβhdKh(R0 − 1)

(µh + γh + ν2) (µdβhd(R0 − 1) + (µh + ν1)βdd)
,

I∗h =
µdµhγhβhdKh(R0 − 1)

(αh + µh)(µh + γh + ν2) (µdβhd(R0 − 1) + (µh + ν1)βdd)
,

V ∗h =
Kh

µdβhd(R0 − 1) + (µh + ν1)βdd

(
ν1βdd +

ν2µdβhd(R0 − 1)

µh + γh + ν2

)
.

Hence, the NSFD scheme given in (4.1)− (4.7) also preserves the endemic equilibrium point.

In the coming two theorems, we will check the stability properties of the fixed points.
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Theorem 4.3 The disease-free fixed point E0 of (4.1)− (4.7) is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

Proof: The Jacobian matrix of (4.13)− (4.19) at E0 is given by



1
1+(µh+ν1)φ

0 0 0 0 0 x

0 1
1+(µh+γh+ν2)φ

0 0 0 0 y

0 z 1
1+(αh+µh)φ

0 0 0 0

ν1
1+µhφ

φ
1+(µh+ν1)φ

ν2
1+µhφ

φ
1+(µh+γh+ν2)φ

0 1
1+µhφ

0 0 0

0 0 0 0 1
1+µdφ

0 −βddKdφ
1+µdφ

0 0 0 0 0 1
1+(µd+γd)φ

βddKdφ
1+(µd+γd)φ

0 0 0 0 0 γdφ
1+(αd+µd)φ

1
1+(µd+γd)φ

1
1+(µd+γd)φ



,

where

x =
−µhβhdKhφ

(1 + (µh + ν1)φ)(µh + ν1)

y =
µhβhdKhφ

(1 + (µh + γh + ν2)φ)(µh + ν1)

z =
γhφ

1 + (αh + µh)φ

1

1 + (µh + γh + ν2)φ

The corresponding characteristic equation is

det (rI − J(E0)) = 0.

16



This leads into(
r − 1

1 + (µh + ν1)φ

)(
r − 1

1 + (µh + γh + ν2)φ

)(
r − 1

1 + (αh + µh)φ

)
(
r − 1

1 + µhφ

)(
r − 1

1 + µdφ

)(
r2 + a1r + a0

)
= 0, (4.29)

where

a1 = −
(

1

1 + (µd + γd)φ
+

1

1 + (αd + µd)φ

)
a0 =

1

(1 + (µd + γd)φ) (1 + (αd + µd)φ)

(
1− R

2
0(µd + γd)(αd + µd)φ

2

1 + (µd + γd)φ

)
.

The stability properties of E0 depends on the roots of

r2 + a1r + a0 = 0.

By using [13], the roots lie inside the unit circle if and only if |a0| < 1 and |a1| < 1 + a0.

Clearly |a0| < 1 and |a1| < 1 + a0 if R0 < 1. Hence, E0 is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1. �.

Theorem 4.4 The disease-free fixed point E0 is globally attractor if R0 < 1 and µd+γd
βdd
≤ 1.

Proof: From Equation (4.18), we have

In+1
d =

γdφE
n+1
d + Ind

1 + (αd + µd)φ

≤ (γdφKd + 1)Ind
1 + (αd + µd)φ

=

(
(αd+µd)(µd+γd)R0φ

βdd
+ 1

1 + (αd + µd)φ

)
Ind .

Thus, In+1
d ≤ DInd , where

D =

(αd+µd)(µd+γd)R2
0φ

βdd
+ 1

1 + (αd + µd)φ
.
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For R0 < 1 and µd+γd
βdd

≤ 1, 0 < D < 1, the sequence (Ind )n≥0 tends to zero for any initial

value 0 ≤ I0
d ≤ Kd. Using this sequence in Equations (4.12) − (4.17), we can show that if

En = (Snh , E
n
h , I

n
h , V

n
h , S

n
d , E

n
d , I

n
d ),

lim
n→∞

En = E0.

This implies that E0 is globally attractor. �.

Theorem 4.5 The disease-free fixed point E0 is globally asymptotically stable for R0 < 1 and
µd+γd
βdd
≤ 1.

Proof: This is a result obtained from Theorem 4.2 and Theorem 4.3.

Theorem 4.6 The endemic fixed point E∞ of (4.1)− (4.7) is locally asymptotically stable

for R0 > 1.

Proof: To prove this theorem, we need to show that all roots of the characteristic polynomial

related to the Jacobian matrix of (4.12) − (4.18) at E∞ lie inside the unit circle. To show

this, we have the Jacobian matrix at E∞ and read as



b 0 0 0 0 0 c

d 1
1+(µh+γh+ν2)φ

0 0 0 e

0 f 1
1+(αh+µh)φ

0 0 0 0

g h 0 1
1+µhφ

0 0 0

0 0 0 0 1
1+(βddI∗d+µd)φ

0 − (µdφKd+S
∗
d)βddφ

(1+(βddI∗d+µd)φ)2

0 0 0
βddφI

∗
d

1+(µd+γd)φ
1

1+(βddI∗d+µd)φ
1

1+(µd+γd)φ
βddφS

∗
d

1+(µd+γd)φ

0 0 0 0 γdφ
1+(αd+µd)φ

1
1+(µd+γd)φ

1
1+(αd+µd)φ
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where,

b =
1

1 + (βhdI∗d + µh + ν1)φ

c = − (µhφKh + S∗h)βhdφ

(1 + (βhdI∗d + µh + ν1)φ)2

d =
βhdφI

∗
d

1 + (µh + γh + ν2)φ

1

1 + (βhdI∗d + µh + ν1)φ

e =
βhdφS

∗
h

1 + (µh + γh + ν2)φ

f =
µhφ

1 + (αh + µh)φ

1

1 + (µh + γh + ν2)φ

g =
ν1φ

1 + µhφ

1

1 + (βhdI∗d + µh + ν1)φ

h =
ν2φ

1 + µhφ

1

1 + (µh + γh + ν2)φ
.

For an eigenvalue r of E∞, the characteristic equation is given by

det(rI − J(E∞)) = 0.

By observing the given Jacobian matrix, the stability properties of E∞ are determined based

on the roots of the cubic equation

(r − 1

1 + (βddI∗d + µd)φ
){(r − 1

1 + (µd + γd)φ
)(r − 1

1 + (αd + µd)φ
)− γdβddφ

2S∗d
(1 + (µd + γd)φ)2(1 + (αd + µd)φ)

}

+
(µdφKd + S∗d)γdβ

2
ddφ

3I∗d
(1 + (βddI∗d + µd)φ)3(1 + (µd + γd)φ)2(1 + (αd + µd)φ)

= 0,

the other roots of the characteristic equation lie inside the unit circle. This expression can

be simplified into

r3 + a2r
2 + a1r + a0 = 0, (4.30)
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where,

a2 = −
(

1

1 + (µd + γd)φ
+

1

1 + (αd + γd)φ
+

1

1 + (βddI∗d + µd)φ

)
a1 =

(
1

1 + (βddI∗d + µd)φ

)(
1

1 + (µd + γd)φ
+

1

1 + (αd + γd)φ

)
+

1

(1 + (µd + γd)φ)(1 + (αd + γd)φ)

(
1−

γdβddKd

R0
φ2

1 + (µd + γd)φ

)

a0 =
1

(1 + (βddI∗d + µd)φ)

1

(1 + (µd + γd)φ) (1 + (αd + γd)φ)

(
γdβddKd

R0
φ2

1 + (µd + γd)φ
− 1

)
+ c,

where,

c =
(µdφKd + S∗d) γdβ

2
ddI
∗
dφ

2

(1 + (βddI∗d + µd)φ)
3

(1 + (αd + µd)φ) (1 + (µd + γd)φ)
2 .

By using [13], E∞ is locally asymptotically stable if the the roots of (4.30) lie inside the

unit circle. This is true if and only if

|a0 + a2| < 1 + a1 and |a1 − a0a2| < 1− a2
0.

From the given values, we can check that |a0 + a2| < 1 + a1 and |a1 − a0a2| < 1 − a2
0 for

R0 > 1. Hence, E∞ is locally asymptotically stable for R0 > 1. �

5 Numerical Simulation

In this section, we give numerical experiments for our nonstandard finite difference scheme

(4.1)-(4.7). It is known that standard finite difference methods do not always preserve the

dynamics of the corresponding differential equation (see [2]). The designed numerical scheme,

for arbitrary values of the system parameters, provides accurate numerical solutions to the

original model. To show this, we arbitrarily choose the data given in Table 2 with in the

domain of parameters to show the consistency of the scheme with the theoretical analysis of

the continuous model. By using Eqn (3.10), the corresponding value of R0 ' 3.3 > 1. Hence,

by using Theorem 4.5, we can infer that all solutions will converge to the endemic fixed point
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E∞. More precisely, the performance of the NSFD scheme (4.1)−(4.7) is illustrated in Fig 2-3,

which display the local stability of endemic fixed point for R0 > 1. For R0 < 1, analogously

the disease-free fixed point is globally asymptotically stable.

Variable value parameter value

Kh 1000 βhd 0.3

Sh0 900 µh 0.2

Eh0 0 αh 0.1

Ih0 0 γh 0.2

Vh0 10 ν1 0.2

Kd 100 ν2 0.1

Sd0 80 βdd 0.5

Ed0 5 µd 0.1

Id0 5 γd 0.2

αd 0.2

Table 2: parameter values.

6 Conclusion

The qualitative analysis of the rabies model is given. It is proved that the disease free

equilibrium is globally stable for R0 < 1 and unstable for R0 > 1. The endemic equilibrium

is locally asymptotically stable for R0 > 1.

Nonstandard finite difference techniques were developed empirically for solving practical

problems in applied sciences before two decades by R. E. Mickens. Having this in our mind,

we designed a NSFD scheme which is dynamically consistent with the original rabies model.

Numerical simulations of the NSFD scheme are given from Fig 2-3.

The given model is relatively simple and it captures some basic features of epidemiological
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Figure 2: Numerical simulation of human population
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Figure 3: Numerical simulation of dog population

models. When the rabies virus enters the central nervous system, it induces behavioral changes

in its host. If it enters in the spinal cord, it causes paralysis. Moreover, if it enters the limbic

system, the dog become aggressive, lose their sense of direction and territorial behavior and

wander about in a more or less random way. For such cases, our future interest is to add
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a diffusion term in the infected dog compartment and to add vaccination parameters in the

susceptible dog population. Fitting real data to estimate the parameters is also our interest

for future research. The extension of the model will also include the qualitative analysis and

the numerical simulation.
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