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1 Introduction

Busy period of a single server classical queueing system is defined easily as the period
of time during which the server is continuously busy. More precisely, busy period is
a time interval that starts when an arriving customer finds the server idle, and ends
at the first subsequent time at which the system becomes empty. This performance
measure plays a very significant role in optimal control of queueing systems. For
the majority of queues, it is usually impossible to find the exact distribution of the
busy period. In such situations, the typical approach to studying the busy periods is
through their Laplace–Stieltjes or Z transforms, which tend to derive simple relations
for infinite-buffer systems since the number of customers served in the busy period has
the structure of a Galton–Watson branching process. However, this nice property does
not hold anymore for finite-buffer systems. Thus, due to methodological limitation,
the research progress on a busy period in finite-buffer queue is relatively slow over the
past few decades. As far as we are aware only a handful of papers have been explicitly
dealing with this important measure. One of the early papers to address related issues
is that of Natvig (1975). He dealt with a general birth-and-death finite-buffer queue
where the service and input rates are state-dependent. The first and second order
moments of the length of a busy period are reported. But the demonstrated formulae
in his paper are too complex to use easily. Recently, a similar model was studied by
Al Hanbali and Boxma (2010). The transient behavior of a state-dependent M/M/1/K
queue during the busy period was extensively investigated by using the theory of
absorbing Markov chains. Later, Al Hanbali (2011) further extended the above results
by considering the level dependent PH/PH/1/K queue. The closed-form expression for
the probability density function (p.d.f.) of the length of the busy period in M/M/1/K
queue was firstly studied by Sharma and Shobha (1986). Nonetheless, it is somewhat
regrettable that the expression of p.d.f. given by them involves the eigenvalues of
a transition matrix. To overcome this weakness, some further analysis was recently
conducted by Takagi and Tarabia (2009). In addition, the busy period analysis of non-
Markovian continuous-time finite-buffer queue has been addressed by Cooper and Tilt
(1976), Harris (1971), Miller (1975), Rosenlund (1978), Shanthikumar and Sumita
(1985), Pacheco and Ribeiro (2008), and references therein. Particularly, Lee (1984)
investigated the M/G/1/N queue with vacation time and derived the joint transform
of the length of the busy period and the number of customers served during the busy
period. His work can be viewed as an extension of the work given by Miller (1975)
and Cooper and Tilt (1976).

As one can see from above, there are very few results about the busy period in
discrete-time finite-buffer queue. Except the work done by Chaudhry and Zhao (1994)
and Alfa (2010), no work in this direction has come to our notice. Especially, the
research results concerning the discrete-time finite-buffer vacation queue which can
be used to get the moments of the busy period do not exist as far as we know. Actually,
analyzing the finite-buffer vacation queue gives someobvious advantages. Thefirst one
is that the finite-buffer system is prevalent in many real world situations and taking the
limit as capacity N approaches infinity allows us to get the result of the corresponding
infinite-buffer system.Moreover, in the case of finite-buffer queue, we can analyze the
unstable system, that is to say, the average arrival rate is higher than the average service
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rate. Thus, the shortcomings in existing research constitute the main motivation for
writing this paper. Meanwhile, we will attempt to fill these gaps in this work. Since
the number of customers present in the system at epochs of vacation termination is a
random variable that can take only a finite number of positive integers, we will use an
extended definition of the busy period that might be initiated by multiple customers
in model analysis. This definition is richer and more natural than the usual definition
of a busy period when discussing the systems with server vacations, and it is in line
with that of the busy period initiated with i customers studied in Chae and Kim (2007)
and Chae and Lim (2008). Additionally, it is worth noting that through some tips and
tricks for algebraic manipulations we are very easy to get the stochastic decomposition
structure of the busy period in a discrete-time finite-buffer vacation queue. To the best
of our knowledge, this result has not been reported in the previous literature.

The remainder of this paper is organized as follows. Section 2 gives the description
of the model. In Sect. 3, we discuss the first two moments of the busy period initiated
by i(1 ≤ i ≤ N ) customers, and then give the stochastic decomposition structure of
the busy period which indicates the relationship with that of the Geo/Geo/1/N queue
without server vacations. Moreover, we further provide an effective way to validate
the correctness of the analytical results in Sect. 4, and some numerical examples for
special cases are illustrated in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Model description

In this section, we develop a discrete-time Geo/Geo/1/N model by incorporating the
concept of multiple server vacations, where N (N ≥ 2) denotes the maximum num-
ber of customers allowed in the system including the one in service. Under discrete
situation, the time axis is divided into fixed-length contiguous period, called slots,
and all queueing activities occur around slot boundaries. To be more specific, we
suppose that potential departures occur in the time interval (t−, t), while potential
arrivals and the beginning or ending of the vacations take place in the time inter-
val (t, t+) (see Fig. 1). This also means that the queue is analyzed for the early
arrival system (EAS). We further assume that the inter-arrival times A of customers
are independent and geometrically distributed with probability mass function (p.m.f.)
Pr {A = k} = λλ̄k−1, 0 < λ < 1, k ≥ 1, where we use symbol x̄ = 1 − x , for
any real number x(0 < x < 1). The customers are served individually according

•: Departure epoch ◦: Arrival epoch : Beginning or ending of the vacation

t−
•

Arrival

Departure

t

◦
t+ (t+1)−

•
Departure

t+1
◦

Arrival

(t+1)+

Fig. 1 Various time epochs in an early arrival system
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to the first-come-first-served (FCFS) basis, and service time S has a geometric dis-
tribution with common p.m.f. Pr {S = k} = μμ̄k−1, 0 < μ < 1, k ≥ 1. After all
the customers are served in the queue exhaustively, the server immediately takes a
vacation, where the vacation time is a discrete random variable, denoted by V , with
p.m.f. Pr {V = k} = θ θ̄ k−1, 0 < θ < 1, k ≥ 1. On returning from a vacation, if the
server finds no customer waiting in the queue, he will take another vacation and so on
until at least one customer presents in the system.

3 Busy period analysis: explicit expressions for the first two moments

The goal in this section is to find the explicit expressions for mean and variance of
the busy period. As for multiple vacations queue, the busy period B is defined to be
the time elapsed from the server’s return to the system after taking a vacation until
the queue becomes empty again and the next vacation begins. Because more than
one customer can be accumulated in the system during the server’s vacation period,
deriving the mean and variance of the busy period is implemented by means of the
analysis of the busy period that starts with i(i ≥ 1) customers, namely Bi . Since
the service discipline is exhaustive in this model, i represents the number of arrivals
during the preceding vacation time. Now, it is clear that to find E [B] and Var [B], the
key step is to calculate the first two moments of Bi . In what follows, we will use the
law of total expectation and the probability generating function (p.g.f.) technique to
achieve our objective.

3.1 The first moment of Bi (i = 1, 2, . . . , N)

Let Bi (z), i = 1, 2, . . . , N denote the p.g.f. of the discrete random variable Bi . For
determining this function, we first state the following lemma, which has been proved
in Margolin and Winokur (1967).

Lemma 1 Let X1 and X2 be independent random variables having geometric dis-
tributions with parameters η1 and η2, respectively. If X is the random variable
min(X1, X2), then X has a geometric distribution with parameter 1 − η̄1η̄2.

Using memoryless property of geometric distribution and a first-step argument (i.e.
by conditioning on the events that may occur in the next step), for i = 1, 2, . . . , N ,
the p.g.f. of Bi can be decomposed as

Bi (z) = E

[
zBi
]

= E

[
zBi I{A<S}

]
+ E

[
zBi I{A=S}

]
+ E

[
zBi I{A>S}

]

= E

[
zmin(A,S)

](
E

[
zBi+1

] λμ̄

1−λ̄μ̄
+ E

[
zBi
] λμ

1−λ̄μ̄
+E

[
zBi−1

] λ̄μ

1−λ̄μ̄

)

=
(
1 − λ̄μ̄

)
z

1 − λ̄μ̄z

(
Bi+1(z)

λμ̄

1 − λ̄μ̄
+ Bi (z)

λμ

1 − λ̄μ̄
+ Bi−1(z)

λ̄μ

1 − λ̄μ̄

)

= z

1−λ̄μ̄z

(
Bi+1(z)λμ̄+Bi (z)λμ+Bi−1(z)λ̄μ

)
, i =1, 2, . . . , N −1, (1)
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BN (z) = E

[
zBN

]
= E

[
zBN I{A≤S}

]
+ E

[
zBN−1I{A>S}

]

= E

[
zmin(A,S)

](
E

[
zBN

] λ

1 − λ̄μ̄
+ E

[
zBN−1

] λ̄μ

1 − λ̄μ̄

)

=
(
1 − λ̄μ̄

)
z

1 − λ̄μ̄z

(
BN (z)

λ

1 − λ̄μ̄
+ BN−1(z)

λ̄μ

1 − λ̄μ̄

)

= z

1 − λ̄μ̄z

(
BN (z)λ + BN−1(z)λ̄μ

)
, (2)

where IC is an indicator function such that IC =
{
1, if event C occurs,
0, if event C does not occur.

More-

over, according to the model assumptions, if the server finds the queue is empty upon
his return from vacation, he immediately takes another vacation, and the busy period
in this case is defined to be of zero length for mathematical convenience. Thus, in Eq.
(1), when i = 1, B0(z) = E

[
zB0
] = 1.

Let B ′
i (1) represent the first derivative of Bi (z) at z = 1. Taking the first derivative

of Eqs. (1) and (2) with respect to z, setting z = 1 and noting that B0(z) = 1, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ′
1 (1) = 1

1 − λ̄μ̄
+ 1

1 − λ̄μ̄

(
B ′
2 (1) λμ̄ + B ′

1 (1) λμ
)
,

B ′
i (1) = 1

1 − λ̄μ̄
+ 1

1 − λ̄μ̄

× (
B ′

i+1 (1) λμ̄ + B ′
i (1) λμ + B ′

i−1 (1) λ̄μ
)
, i = 2, 3, . . . , N − 1,

B ′
N (1) = 1

1 − λ̄μ̄
+ 1

1 − λ̄μ̄

(
B ′

N (1) λ + B ′
N−1 (1) λ̄μ

)
.

(3)

According to the property of p.g.f., the expectation of Bi is given byE [Bi ] = B ′
i (1).

Therefore, the above difference equations with constant coefficients may be written
in matrix format as

ΛN (E [B1] ,E [B2] , . . . ,E [BN ])
� =

(
1

1 − λ̄μ̄
,

1

1 − λ̄μ̄
, . . . ,

1

1 − λ̄μ̄

)�
, (4)

where

ΛN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
0 · · · 0 0

−λ̄μ

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
· · · 0 0

0
−λ̄μ

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄
· · · 0 0

.

.

.
.
.
.

. . .
. . .

.

.

.
.
.
.

0 0 0 · · · 1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄

0 0 0 · · · −λ̄μ

1 − λ̄μ̄
1 − λ

1 − λ̄μ̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

,

and the superscript � represents the transpose of a vector or matrix.
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Theorem 1 Using Cramer’s rule, Eq. (4) gives

E [B1] = det(Λ(1)
N )

det(ΛN )
= 1

λ̄μ

(
1 + ρ + ρ2 + · · · + ρN−1

)

= 1 − ρN

μ − λ
, 0 < λ,μ < 1, λ �= μ,

where Λ
(1)
N is derived from the matrix ΛN by replacing the first column with the vector(

1
1−λ̄μ̄

, 1
1−λ̄μ̄

, . . . , 1
1−λ̄μ̄

)�
and ρ = λμ̄

λ̄μ
.

Proof The determinant of matrix Λk(k = 2, 3, . . . , N ) may be expanded along the
first column as

det(Λk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
0 · · · 0 0

−λ̄μ

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
· · · 0 0

0
−λ̄μ

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄
· · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · 1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄

0 0 0 · · · −λ̄μ

1 − λ̄μ̄
1 − λ

1 − λ̄μ̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

=
(
1 − λμ

1 − λ̄μ̄

)
det (Λk−1) − λ̄μλμ̄(

1 − λ̄μ̄
)2 det (Λk−2) .

This implies that

det (Λk) − λ̄μ

1 − λ̄μ̄
det (Λk−1)

det (Λk−1) − λ̄μ

1 − λ̄μ̄
det (Λk−2)

= λμ̄

1 − λ̄μ̄
.

Hence, we have

det (Λk) − λ̄μ

1 − λ̄μ̄
det (Λk−1)

=
[
det (Λ3) − λ̄μ

1 − λ̄μ̄
det (Λ2)

](
λμ̄

1 − λ̄μ̄

)k−3

, k = 4, . . . , N .
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Notice that det (Λ3) − λ̄μ

1−λ̄μ̄
det (Λ2) = 0, thus, we further have

det (Λk) =
(
λ̄μ
)k

(
1 − λ̄μ̄

)k , k = 2, 3, . . . , N .

On the other hand, for k = 2, 3, . . . , N , let

det (Dk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
0 · · · 0 0

1

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄
· · · 0 0

1

1 − λ̄μ̄

−λ̄μ

1 − λ̄μ̄
1 − λμ

1 − λ̄μ̄
· · · 0 0

...
...

. . .
. . .

...
...

1

1 − λ̄μ̄
0 0 · · · 1 − λμ

1 − λ̄μ̄

−λμ̄

1 − λ̄μ̄

1

1 − λ̄μ̄
0 0 · · · −λ̄μ

1 − λ̄μ̄
1 − λ

1 − λ̄μ̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

Employing det (Dk), we can expand the determinant of matrix Λ
(1)
k along the last

column, and get the following relationship between Λ
(1)
k−1 and Λ

(1)
k

Λ
(1)
k =

(
1 − λ

1 − λ̄μ̄

)[
Λ

(1)
k−1 + λμ̄

1 − λ̄μ̄
Dk−2

]

+ λμ̄

1 − λ̄μ̄

[
−λ̄μ

1 − λ̄μ̄
Dk−2 + (λμ̄)k−2

(
1 − λ̄μ̄

)k−1

]

= λ̄μ

1 − λ̄μ̄
Λ

(1)
k−1 + (λμ̄)k−1

(
1 − λ̄μ̄

)k , k = 4, . . . , N ,

Therefore, we also have

Λ
(1)
k =

∑k
i=1

(
λ̄μ
)k−i

(λμ̄)i−1

(
1 − λ̄μ̄

)k .

This will then finally lead to the desired results presented in Theorem 1. ��
Next, employing the above results, we can also give the explicit expression of the

expected length of the busy period that starts with i(i = 2, . . . , N ) customers.

Remark 1 In fact, E [B1] is the average busy period in Geo/Geo/1/N queue without
server vacation. To obtain the stochastic decomposition structure of the busy period
in the corresponding vacation queue, here, we denote E [B1] = E

[
BGeo/Geo/1/N

]
.
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Notice that E [B0] = 0, from Eq. (3), we may obtain the following equation for the
first moment of Bi (i = 1, . . . , N − 1).

E [Bi ] = 1

1 − λ̄μ̄
+ 1

1 − λ̄μ̄

{
E
[
Bi+1

]
λμ̄ + E [Bi ] λμ + E

[
Bi−1

]
λ̄μ
}
. (5)

Rearranging Eq. (5), we can arrive at

λμ̄

1 − λ̄μ̄

(
E
[
Bi+1

]− E [Bi ]
)

= − 1

1 − λ̄μ̄
+ λ̄μ

1 − λ̄μ̄

(
E [Bi ] − E

[
Bi−1

])
, i = 1, . . . , N − 1. (6)

Writing Eq. (6) in the following form:

ψi = − 1

λμ̄
+ λ̄μ

λμ̄
ψi−1, i = 1, . . . , N − 1, (7)

with ψi = E
[
Bi+1

]−E [Bi ], i = 0, 1, . . . , N − 1. Since ψ0 = E [B1], from Eq. (7),
we can iteratively obtain the following expression for ψi ,

ψi = −1

λμ̄

i∑
k=1

1

ρk−1 + E [B1]

ρi
, i = 1, 2, . . . , N − 1. (8)

Substituting E [B1] = 1 − ρN

μ − λ
into Eq. (8), it follows that

ψi = 1

λ̄μ

1 − ρN−i

1 − ρ
, i = 1, 2, . . . , N − 1.

Thus, a simple iteration formula based on initial value E [B0] can be expressed as

E
[
Bi+1

] = E [Bi ] + 1

λ̄μ

1 − ρN−i

1 − ρ
, i = 0, 1, . . . , N − 1. (9)

Also, from Eq. (9), the explicit expression of E [Bi ] (i = 1, 2, . . . , N ) is given by

E [Bi ] = 1

μ − λ

[
i − ρN

(
1 − ρi−1

)

ρi−1 (1 − ρ)
− ρN

]
. (10)

So far, we have given the explicit expression for the first moment of Bi (i =
1, 2, . . . , N ) in a very concise form. In the next subsection, a similar technique will
be used to derive the second moment of Bi (i = 1, 2, . . . , N ) and thus leads to the
variance of Bi (i = 1, 2, . . . , N ).
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3.2 The second moment of Bi (i = 1, 2, . . . , N)

By differentiating Eqs. (1) and (2) twice with respect to z and evaluating at z = 1, we
get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ′′
1 (1) = 2λ̄μ̄(

1 − λ̄μ̄
)2 + 2(

1 − λ̄μ̄
)2
(
B ′
2 (1) λμ̄ + B ′

1 (1) λμ
)

+ 1

1 − λ̄μ̄

(
B ′′
2 (1) λμ̄ + B ′′

1 (1) λμ
)
,

B ′′
i (1) = 2λ̄μ̄(

1 − λ̄μ̄
)2 + 2(

1 − λ̄μ̄
)2
(
B ′

i+1 (1) λμ̄ + B ′
i (1) λμ + B ′

i−1 (1) λ̄μ
)

+ 1

1 − λ̄μ̄

(
B ′′

i+1 (1) λμ̄ + B ′′
i (1) λμ + B ′′

i−1 (1) λ̄μ
)
, i = 2, 3, . . . , N − 1,

B ′′
N (1) = 2λ̄μ̄(

1 − λ̄μ̄
)2 + 2(

1 − λ̄μ̄
)2
(
B ′

N (1) λ + B ′
N−1 (1) λ̄μ

)

+ 1

1 − λ̄μ̄

(
B ′′

N (1) λ + B ′′
N−1 (1) λ̄μ

)
.

(11)

Since E
[
B2

i

] = B ′
i (1)+ B ′′

i (1), adding Eqs. (3) and (11) together, E
[
B2

i

]
is obtained

as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
B2
1

] = 1

1 − λ̄μ̄

(
E

[
B2
2

]
λμ̄ + E

[
B2
1

]
λμ
)

+ 2E [B1] − 1

1 − λ̄μ̄
,

E
[
B2

i

] = 1

1 − λ̄μ̄

(
E

[
B2

i+1

]
λμ̄ + E

[
B2

i

]
λμ + E

[
B2

i−1

]
λ̄μ
)

+ 2E [Bi ] − 1

1 − λ̄μ̄
,

i = 2, 3, . . . , N − 1,

E
[
B2

N

] = 1

1 − λ̄μ̄

(
E

[
B2

N

]
λ + E

[
B2

N−1

]
λμ
)

+ 2E [BN ] − 1

1 − λ̄μ̄
.

(12)

Equation (12) may be written compactly in a matrix form

ΛN

(
E

[
B2
1

]
,E
[

B2
2

]
, . . . ,E

[
B2

N

])�

=
(
2E [B1] − 1

1 − λ̄μ̄
,
2E [B2] − 1

1 − λ̄μ̄
, . . . ,

2E [BN ] − 1

1 − λ̄μ̄

)�
. (13)

Use Cramer’s rule again to find the value of E
[
B2
1

]
in the solution to the Eq. (13), we

have
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E

[
B2
1

]
= det(Λ̄

(1)
N )

det(ΛN )
,

where the matrix Λ̄
(1)
N in the numerator is obtained by replacing the first column of

ΛN with the right hand side of Eq. (13). It is similar to the proof of Theorem 1, E
[
B2
1

]
can be expressed in terms of E [Bi ] as

E

[
B2
1

]
=

N∑
i=1

1

λ̄μ
ρi−1 (2E [Bi ] − 1) =

N∑
i=1

2

λ̄μ
ρi−1

E [Bi ] − E [B1]

= 2
[
1 − (2N + 1)ρN (1 − ρ) − ρ2N+1

]
(
λ̄μ
)2

(1 − ρ)3
− 1 − ρN

μ − λ
. (14)

Remark 2 Let Var
[
BGeo/Geo/1/N

]
represent the variance of the busy period of the

standard Geo/Geo/1/N queue without vacations. So, we have

Var
[
BGeo/Geo/1/N

] = E

[
B2
1

]
− E [B1]

2

= 2
[
1−(2N +1)ρN (1−ρ)−ρ2N+1

]
(
λ̄μ
)2

(1−ρ)3
− 1−ρN

μ − λ

[
1+ 1−ρN

μ − λ

]
.

Because E
[
B2
0

] = 0, from Eq. (12), we can also derive the following relationship
on the second moment of Bi .

E

[
B2

i+1

]
−E

[
B2

i

]
= 1 − 2E [Bi ]

λμ̄
+ λ̄μ

λμ̄

(
E

[
B2

i

]
− E

[
B2

i−1

])

= 1

ρi

i∑
k=1

1

λ̄μ
ρk−1 (1−2E [Bk])+E

[
B2
1

]

ρi
, i =1, 2, . . . , N −1.

(15)

Then, from Eqs. (14) and (15), we get

E

[
B2

i+1

]
= 1

ρi

N∑
k=i+1

1

λ̄μ
ρk−1 (2E [Bk] − 1) + E

[
B2

i

]
, i = 1, 2, . . . , N − 1.

(16)

Hence, for i = 2, 3, . . . , N , the expression of E
[
B2

i

]
can be obtained recursively

using Eq. (16) as follows

10



E

[
B2

i

]
= E

[
B2
1

] ρi − 1

ρi−1 (ρ − 1)
+

i−1∑
r=1

1

ρr

r∑
k=1

1

λ̄μ
ρk−1 (1 − 2E [Bk])

= E

[
B2
1

] ρi − 1

ρi−1 (ρ − 1)
+

i−1∑
r=1

1

λ̄μ
(1 − 2E [Br ])

ρi−r − 1

ρi−r (ρ − 1)
. (17)

3.3 Stochastic decomposition structure of the busy period

Let a j be the probability that exactly j customers arrive during a vacation V . Thus

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 =
∞∑

k=1

θ θ̄k−1λ̄k = θλ̄

1 − λ̄θ̄
,

a j =
∞∑

k= j

θ θ̄k−1
(

k

j

)
λ j λ̄k− j = θλ

(
θ̄λ
) j−1

(
1 − λ̄θ̄

) j+1 , j = 1, 2, . . . , N − 1,

aN = 1 −
N−1∑
j=0

a j = λN θ̄ N−1

(
1 − λ̄θ̄

)N
.

For j ≥ 1, {Vc = j} represents the case in which the busy period starts with the ending
of a vacation during which j customers have arrived. It follows that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr {Vc = j} = a j

1 − a0
= θ

(
λθ̄
) j−1

(
1 − λ̄θ̄

) j
= θξ j−1
(
1 − λ̄θ̄

) , j = 1, 2, . . . , N − 1,

Pr {Vc = N } = aN

1 − a0
=

(
λθ̄
)N−1

(
1 − λ̄θ̄

)N−1 = ξ N−1,

(18)

where ξ = λθ̄

1−λ̄θ̄
. By conditioning on the number of customers who have arrived

during a vacation period, we have

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E [B] =
N∑

l=1

E [Bl ] Pr {Vc = l} ,

E

[
B2
]

=
N∑

l=1

E

[
B2

l

]
Pr {Vc = l} .

(19)

Also, substituting Eqs. (10), (17), (18) into Eq. (19) and then after some algebraic
manipulations, we can get
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E [B] =
N−1∑
j=1

θξ j−1

1 − λ̄θ̄

1

μ − λ

[
j − ρN

(
1 − ρ j−1

)

ρ j−1 (1 − ρ)
− ρN

]

+ ξ N−1

μ − λ

[
N − ρN

(
1 − ρN−1

)

ρN−1 (1 − ρ)
− ρN

]

= −ρN

μ − λ

⎛
⎝

N−1∑
j=1

θξ j−1

1 − λ̄θ̄
+ ξ N−1

⎞
⎠+ θ

1 − λ̄θ̄

1

μ − λ

N∑
j=1

jξ j−1 + Nξ N

μ − λ

− θξρN−1

(1 − ρ)
(
1 − λ̄θ̄

)
(μ − λ)

N−1∑
j=1

(
1 − ρ j

)( ξ

ρ

) j−1

− ξ N

μ − λ

ρ
(
1 − ρN−1

)

1 − ρ

= −ρN

μ − λ
+ 1 − λ̄θ̄

θ (μ − λ)

(
1 − ξ N

)
− 1 − λ̄θ̄

θ (μ − λ)
Nξ N

+ 1 − λ̄θ̄

θ (μ − λ)
Nξ N+1 − Nξ N

μ − λ
−

θξρN
[
1 −

(
ξ
ρ

)N−1
]

(
1 − λ̄θ̄

)
(μ − λ) (1 − ρ) (ρ − ξ)

+ θξρN
(
1 − ξ N−1

)
(
1 − λ̄θ̄

)
(μ − λ) (1 − ρ) (1 − ξ)

− ξ N ρ
(
1 − ρN−1

)

(μ − λ) (1 − ρ)

= −ρN

μ − λ
+ 1 − λ̄θ̄

θ (μ − λ)

(
1 − ξ N

)
− θξρN
(
1 − λ̄θ̄

)
(μ − λ) (1 − ρ) (ρ − ξ)

+ ξρ

(1−ρ) (μ−λ)

⎡
⎢⎣

(1−ξ) ρN−1
(

ξ
ρ

)N−1

ρ−ξ
+ρN−1

(
1−ξ N−1

)
−ξ

(
1−ρN−1

)
⎤
⎥⎦

= 1 − ρN

μ − λ
+ 1 − λ̄θ̄

θ (μ − λ)

(
1 − ξ N

)

− 1

μ − λ

{
1 + ρN

1 − ρ

[
θξ(

1 − λ̄θ̄
)
(ρ − ξ)

−
(

ξ

ρ

)N−1
ξ (1 − ρ)

ρ − ξ
− ξ

]}

= E
[
BGeo/Geo/1/N

]+ 1 − λ̄θ̄

θ (μ − λ)

(
1 − ξ N

)

− 1

μ − λ

{
1 + ρN

1 − ρ

[
θξ(

1 − λ̄θ̄
)
(ρ − ξ)

−
(

ξ

ρ

)N−1
ξ (1 − ρ)

ρ − ξ
− ξ

]}
. (20)

E

[
B2
]

= E

[
B2
1

]
+ E

[
B2
1

] ξ
[
ρN−1 − ξ N−1

]

ρN−1 (ρ − ξ)

+ 1

λ̄μ

N−1∑
k=1

(1 − 2E [Bk])
ξ k
(
ρN−k − ξ N−k

)

ρN−k (ρ − ξ)

12



=
{
2
[
1 − (2N + 1)ρN (1 − ρ) − ρ2N+1

]
(
λ̄μ
)2

(1 − ρ)3
− 1 − ρN

μ − λ

}
ρN − ξ N

ρN−1 (ρ − ξ)

+ 1

λ̄μ

N−1∑
k=1

{
1 − 2

[
k − ρN

(
1 − ρk−1

)

ρk−1 (1 − ρ)
− ρN

]}
ξ k
(
ρN−k − ξ N−k

)

ρN−k (ρ − ξ)
.

(21)

From the first and second moments of the busy period we can compute the variance
as Var [B] = E

[
B2
] − E [B]2. It is clear that the variance of the busy period also

have the stochastic decomposition structure. Just because the expressions of E
[
B2
]

and E [B]2 are slightly cumbersome to write, we do not indent to substitute Eqs. (20)
and (21) into above formula.

3.4 Expectation of the busy cycle

The time interval from the instant of commencement of a service at the endof a vacation
to the instant of starting the next service after availing at least one vacation is a busy
cycle, denoted by Bc. The duration between two consecutive busy periods is called
a whole vacation period, denoted by Vw, which is composed of some vacations V .
According to the above definitions, the expectation of the busy cycle can be expressed
asE [Bc] = E [B]+E [Vw]. That is to say, as long as the value ofE [Vw] is determined,
we can obtain the expectation of the busy cycle.

Let H be the number of consecutive vacations taken by the server. Based on the
multiple vacation policy, it is easy to verify that Pr {H = h} = (1 − a0) ah−1

0 . Then,
using Wald’s equation, we have

E [Vw] = E

[
H∑

k=1

Vk

]
= E [H ]E [V ] = 1 − λ̄θ̄

θλ
. (22)

From Eq. (20), it follows that

E [Bc] = E
[
BGeo/Geo/1/N

]+ 1 − λ̄θ̄

θ (μ − λ)

(
1 − ξ N

)

− 1

μ − λ

{
1 + ρN

1 − ρ

[
θξ(

1 − λ̄θ̄
)
(ρ − ξ)

−
(

ξ

ρ

)N−1
ξ (1 − ρ)

ρ − ξ
− ξ

]}

+1 − λ̄θ̄

θλ
. (23)

Further, let Pbusy and Pvacation be the probabilities of the server’s being busy and on

vacation, respectively. We then have Pbusy = E[B]
E[Bc]

and Pvacation = E[Vw]
E[Bc]

.
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4 Validate the correctness of the analytical results

In the previous section, we have presented a concise approach for analysis of the first
two moments of the busy period in the Geo/Geo/1/N vacation queue. Is there any
effective way to validate the correctness of the analytical results? This problem merits
our attention. In what follows, by the calculation of the steady-state probabilities of
the system, we may numerically verify the correctness of our analysis.

At an arbitrary time t−, the steady state of the system can be characterized by the
following random variables:

N (t) : the number of customers in the system at time t−;
Y (t) : the state of the server at time t−, i.e., Y (t) = 1 or 0 corresponding to
whether the server is busy, or on vacation, respectively.

Then {(N (t), Y (t)) : t = 0, 1, . . .} forms a two-dimensional Markov chain with a
state space

Ω = {(0, 0)} ∪
{

N⋃
i=1

{(i, 0) , (i, 1)}
}

.

In limiting case, let us define the joint probability πi, j = limt→∞ Pr
{

N (t) = i, Y (t)
= j

}
, i = 0, 1, . . . , N , j = 0, 1. Here, we consider N (t) as the level variable and

Y (t) as auxiliary variable. For i = 1, 2, . . . , N , level l(i) denotes the union of two
states given by l(i) = {(i, 0), (i, 1)}. If the states in Ω are listed in lexicographical
order then the transition probability matrix of the vector-valued discrete-time Markov
chain governing the system has the following block tridiagonal matrix form

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

P3,2 P3,3 P3,4
. . .

. . .
. . .

PN−1,N−2 PN−1,N−1 PN−1,N

PN ,N−1 PN ,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where the coefficient matrices appearing in (24) are given by

P0,0 = (
λ̄
)
, P0,1 = (

λθ̄ λθ
)
, P1,0 =

(
0

μλ̄

)
,

P i,i−1 =
(
0 0

0 μλ̄

)
, i =2, . . . , N , P i,i =

(
λ̄θ̄ λ̄θ

0 μλ + μ̄λ̄

)
, i =1, . . . , N −1,

P i,i+1 =
(

λθ̄ λθ

0 μ̄λ

)
, i = 1, . . . , N − 1, PN ,N =

(
θ θ̄

0 μλ + μ̄

)
.
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Obviously, P is what is known as a finite quasi-birth-and-death (QBD) process. This
is reflected by having the block tridiagonal structure. Also, in matrix P , the blocks
for which the entries are zero are not written. Since {(N (t), Y (t)), t ≥ 0} is an irre-
ducible Markov chain on a finite state space, it must be positive recurrent. Next, we
shall provide an effective and numerically stable algorithm to compute the stationary
probability vector of the Markov chain.

The steady-state probability vector π for P is generally partitioned as π =
{π0,π1, . . . ,π N }, where the subvectors π0 and π i (i = 1, . . . , N ), are of dimension
1 and 2, respectively. For i = 0 and i = 1, . . . , N , we also write π0 = (π0,0) and
π i = (

πi,0, πi,1
)
, respectively. It is well known that the vector π is the unique solution

to the following system of linear algebraic equations

{
(π0,π1, . . . ,π N ) (P − I2N+1) = 0,

(π0,π1, . . . ,π N ) e = 1,
(25)

where I2N+1 represents the identity matrix of dimension (2N + 1) × (2N + 1), 0
denotes a zero matrix of appropriate dimension and e is a column vector of ones of
suitable dimension. Employing LU-type RG-factorization (see Li 2010), we will give
an RG-factorization solution to Eq. (25). The major advantage of RG-factorization is
that it can avoid the calculation of high dimensional matrices by decomposing them
into small ones. Essentially speaking, RG-factorization is iteratively constructed in
terms of three probabilistic measures, namely R-, U - and G-measures. Now, we first
define U -measures as

⎧⎨
⎩
U0 = P0,0 − I1,

Uk = (
Pk,k − I2

)+ Pk,k−1

(
−U−1

k−1

)
Pk−1,k, k = 1, 2, . . . , N .

Based on the matrices Uk(k = 0, 1, . . . , N − 1), the R-measures amd G-measures
can be expressed as

Rk = Pk,k−1

(
−U−1

k−1

)
, k = 1, 2, . . . , N ,

Gk =
(
−U−1

k

)
Pk,k+1, k = 0, 1, . . . , N − 1.

Using the matrix sequences {Uk, k = 0, 1, . . . , N }, {Rk, k = 1, 2, . . . , N } and
{Gk, k = 0, 1, . . . , N − 1}, the LU-type RG-factorization for matrix P − I2N+1
is given by

P − I2N+1 = (I2N+1 − RL) diag (U0,U1, . . . ,UN ) (I2N+1 − GU ) ,

15



where

RL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

R1 0

R2 0
. . .

. . .

RN−1 0

RN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and GU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 G0

0 G1

0 G2

. . .
. . .

0 GN−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the Markov chain is a QBD with finitely-many levels, using the LU-type RG-
factorization, the steady-state probability vector is given as thematrix-product solution
(see Li and Cao 2004)

⎧⎪⎪⎨
⎪⎪⎩

π N = τωN ,

πk = τωN

N−k−1∏
i=0

RN−i , k = 0, 1, . . . , N − 1,

where ωN is the stationary probability vector of the generator UN and the scalar τ is
determined by π0,0 +∑N

k=1 πke = 1, that is to say, τ is a normalization constant.
As soon as the vectors π i , i = 0, 1, . . . , N , have been calculated, we are able to

find various performance measures of the system under consideration. Particularly, if
the previous analysis about the busy period is correct, then the following equalities
must hold:

Pbusy = E [B]

E [Bc]
=

N∑
i=1

πi,1 and Pvacation = E [Vw]

E [Bc]
=

N∑
i=0

πi,0.

Actually, through a number of numerical experiments we found that the above equal-
ities are indeed always true. For instance, taking N = 10, λ = 0.21, μ = 0.24 and
θ = 0.018, we have

Pbusy = E [B]

E [Bc]
=

N∑
i=1

πi,1 = 0.707974 and

Pvacation = E [Vw]

E [Bc]
=

N∑
i=0

πi,0 = 0.292026.

This indicates that the analytical results presented in the previous section are accurate
and reliable.

5 Numerical results

To end this paper, we provide tables and figures of the moments of the busy period in
Geo/Geo/1/N multiple vacation queue that obtained through a MATLAB code based
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Table 1 Expected value and standard deviation of the busy period initiated with i customers

i Geo/Geo/1/7 Geo/Geo/1/8 Geo/Geo/1/9

E [Bi ] SD [Bi ] E [Bi ] SD [Bi ] E [Bi ] SD [Bi ]
1 15.9532 33.0717 16.7791 36.7498 17.4364 39.9869

2 30.8688 43.9410 32.7323 49.4397 34.2155 54.3093

3 44.4807 50.2279 47.6479 57.2831 50.1687 63.5865

4 56.4546 53.8111 61.2598 62.2366 65.0843 69.8592

5 66.3705 55.5940 73.2337 65.1628 78.6962 73.9753

6 73.7008 56.2460 83.1496 66.6426 90.6701 76.4535

7 77.7824 56.3577 90.4799 67.1875 100.5860 77.7187

8 – – 94.5615 67.2810 107.9163 78.1864

9 – – – – 111.9980 78.2668

on the results of the previous section. We use Eqs. (10) and (17) to compute the first
two moments and the standard deviation (SD) of Bi . The SD is always equal to the
square root of the variance, and it measures the amount of variation or dispersion from
the average. Unlike the variance, SD is expressed in the same units as the data. Here,
a particular case we consider is that λ = 0.3, μ = 0.35, θ = 0.1. The computational
results for different system capacities N are listed in Table 1. We observe from Table 1
that the increasing rates of E [Bi ] and SD [Bi ] becomes slower as the values of i get
larger. In addition, by fixing N = 17, μ = 0.32 and θ = 0.05, we look at the effect
of varying λ on E [B] and SD [B]. The corresponding results of the Geo/Geo/1/17
queue with/without server vacations are displayed in Figs. 2 and 3. From Fig. 2, we
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Fig. 2 Effect of λ on E [B] for Geo/Geo/1/N queue with/without server vacations λ < μ
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Fig. 3 Effect of λ on SD [B] for Geo/Geo/1/N queue with/without server vacations λ < μ

observe that the measure E [B] increases as the arrival rate λ increases, and it also
shows a very big variation when the server is allowed to take vacations. From Fig. 3,
with respect to the measure SD [B], we may see some interesting trends. In vacation
queue, SD [B] decreases initially and then increases with the increasing value of λ.
This implies that the number of customers that arrive during the vacation time can
cause larger fluctuations in length of the busy period. On the other hand, as is to be
expected, in the ordinary Geo/Geo/1/N queue, SD [B] is a monotonically increasing
function of λ. As we have already mentioned, the case in which the average arrival rate
is higher than the average service rate can be considered in the finite-buffer queue. In
Figs. 4 and 5, holding all other parameter values unchanged, the numerical example
was performed by varying λ from 0.33 to 0.38. As we had expected, Figs. 4 and 5
indicate that E [B] and SD [B] are both strictly monotonically increasing functions of
λ. Furthermore, a much greater difference of mean busy period will occur in vacation
and non-vacation models.

6 Conclusions

The busy period analysis is just as important as the analysis of the queue length and
the waiting time of customers because it helps us to study the traffic intensity and the
cycle time of the queueing system. In vacation queueing model, since the busy period
does not start at an arrival instant, we define a random variable Bi as the time length
that starts from the instant when the number of customers is i to when the number of
customers becomes zero for the first time. By calculating the first two moments of Bi ,
we easily get the stochastic decomposition structure of the busy period in discrete-time
finite-buffer vacation queue. Based on the results of this research, further studies can
be conducted in the following directions. First, research topics such as Geo/Geo/1/N
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Fig. 4 Effect of λ on E [B] for Geo/Geo/1/N queue with/without server vacations λ > μ
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Fig. 5 Effect of λ on SD [B] for Geo/Geo/1/N queue with/without server vacations λ > μ

queue with single vacation policy and min(N , T ) vacation policy (see Alfa and Frigui
1996) can be studied with the same analysis techniques. On the other hand, it is not
impossible to get the higher moments of the busy period by extending our method.
But owing to the growth of complexity, it is not a simple job. With the help of the
computer algorithms, we think this difficulty might be overcome.
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