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Abstract
A stochastic model designed to simulate transmission dynamics of African swine fever virus

(ASFV) in a free-ranging pig population under various intervention scenarios is presented.

The model was used to assess the relative impact of the timing of the implementation of dif-

ferent control strategies on disease-related mortality. The implementation of biosecurity

measures was simulated through incorporation of a decay function on the transmission

rate. The model predicts that biosecurity measures implemented within 14 days of the onset

of an epidemic can avert up to 74% of pig deaths due to ASF while hypothetical vaccines

that confer 70% immunity when deployed prior to day 14 of the epidemic could avert 65% of

pig deaths. When the two control measures are combined, the model predicts that 91% of

the pigs that would have otherwise succumbed to the disease if no intervention was imple-

mented would be saved. However, if the combined interventions are delayed (defined as

implementation from > 60 days) only 30% of ASF-related deaths would be averted. In the

absence of vaccines against ASF, we recommend early implementation of enhanced biose-

curity measures. Active surveillance and use of pen-side diagnostic assays, preferably

linked to rapid dissemination of this data to veterinary authorities through mobile phone

technology platforms are essential for rapid detection and confirmation of ASF outbreaks.

This prediction, although it may seem intuitive, rationally confirms the importance of early

intervention in managing ASF epidemics. The modelling approach is particularly valuable in

that it determines an optimal timing for implementation of interventions in controlling ASF

outbreaks.
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Introduction
African swine fever (ASF) is a devastating disease in domestic pigs caused by a DNA virus of
the Asfarviridae family [1,2]. This disease is a significant constraint to pig production, causing
economic losses to pig farmers and posing a threat to food security. ASF is endemic in most
parts of Africa and its recent introduction into Georgia and subsequent spread to Russia and
the European Union [3] renders it a global animal health problem that needs to be dealt with
urgently [4]. It is a highly contagious disease transmitted by either direct contact between
infected and susceptible pigs or indirectly through contact with infectious material in the envi-
ronment and on fomites [5]. African swine fever virus (ASFV) is a resistant and stable virus
capable of persisting in the environment and in pig products over a wide range of temperatures
and pH for a prolonged period of time thereby enabling its transmission over long distances
[2]. Clinical forms of the disease vary across a spectrum from peracute through acute to
chronic and in some cases, apparently healthy virus carriers arise [6]. Peracute and acute syn-
dromes are characterised by high fever, loss of appetite, haemorrhages and cyanosis on the skin
and internal organs with mortality rates of up to 100% in naïve pig herds [2,4,7,8].

ASF has no cure or vaccine and its control depends on proper use of biosecurity measures,
pig confinement and movement restriction plus culling of pigs on infected farms and in sur-
rounding areas [9]. However, movement restriction is challenging to be effectively imple-
mented in developing countries due to limited funding for public veterinary services. Likewise,
pig confinement is not widely used in resource-poor countries where a large number of pigs
are free-ranging due to limited access to and high cost of quality feeds. For other livestock dis-
eases, vaccination is a key component of control strategies. In the case of ASF, research to
develop and test vaccines is ongoing and a few experimental vaccines are promising candidates
but need wider evaluation before being commercialised [10–12]. In the absence of vaccines
and/or chemotherapy and a lack of funds to compensate farmers in the event of culling,
enhanced biosecurity remains the main ASF control measure in resource-poor countries.

In these resource-poor countries, there is limited information about animal movement pat-
terns, factors that favour persistence of transmissible virus as well as the role of farmer behav-
iour in maintaining the endemic status of the disease. These factors, together with the limited
knowledge about the disease’s transmission pathways renders the design of improved ASF con-
trol strategies even more difficult [13].

Mathematical models may provide insight into the epidemiology of infectious diseases and
the design of control strategies. They can be used to guide the identification of critical interven-
tion points aimed at minimising disease-related mortality (hereafter referred to as disease bur-
den) [14]. In addition, they can be used as tools for quantifying the magnitude, duration and
cost of disease epidemics [15]. Models also provide an environment to assess how interventions
may change the dynamics of the disease and how benefits may accrue from these interventions
[14,16]. Therefore, integrating mathematical modelling benefits the design of ASF control
strategies. In this study, we develop and parameterise a mathematical model to simulate the
transmission of ASFV. We use the model to assess the relative impact of different intervention
scenarios as well as to determine the optimum response time to suspected ASF epidemics.

Due to data limitation, the scope of the current study was limited to simulations with the
aim of using the outcomes to inform further studies. For example, the outcomes from this
study provide a means to; 1) guide the design of the required experimental studies and, 2) help
improve field data collection during future epidemics. In a commensurate interaction, results
from these studies will in turn further refine future modelling attempts.
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Materials and Methods

Geographical study area
The pattern of ASF outbreaks in Eastern Africa is different from that reported in Eastern
Europe. In our study area some ASF outbreaks have been confirmed in areas with no wild pigs
or argasid ticks (R. Bishop and E. Okoth, unpublished). Wilkinson [17] & OIE [7] have
reported cases of pigs that survive ASF infection to become persistently infected (i.e., appear
healthy while still shedding the ASFV virus) but when stressed they reactivate to infectious
state.

The production system in the study area is characterised by low input pig husbandry prac-
tices where pigs are mainly free ranging and occasionally tethered [18]. Pigs in this kind of pro-
duction system are known to cover an area within a radius of about 3km per day scavenging
for food [19]. We therefore assume that pigs are homogeneously mixing due to the wide area
they cover per day. Our study unit was a Parish consisting of 9 villages. This unit covers a geo-
graphical area of over 20 square Kilometers.

Model formulation and assumptions
Our model consists of five compartments categorising animals based on their status with
respect to the disease: susceptible (S), infected but not yet infectious (E), infectious (I),
carrier (i.e. persistently infected and asymptomatic animals, C) and the disease-induced
deaths (D). The model incorporates population demographics as described by [20] and
[21]. The model structure is shown in Fig 1 and events, parameter definitions, data sources
and estimates are presented in Tables 1 and 2. The total population is given by N = S + E +
I + C + D.

Several assumptions are made to allow for this formulation. New animals are born into
the susceptible (S) class at a constant per capita birth rate equal to the natural mortality rate
μ. This assumption is vital to ensure that any system dynamics that we observe are likely to
be disease-related. The movement of susceptible pigs from S to the Exposed (E) class is gov-
erned by the transmission rate parameter β. After a latent period σ−1 days, exposed pigs tran-
sit to a state of infectiousness (I). A proportion ρ of infectious pigs succumb to the disease
while those that survive beyond the infectious period (γ−1 days) are assumed to become car-
rier pigs at a rate γ(1-ρ) [7,8,17,22]. Carrier pigs are also assumed to contribute to the infec-
tion pressure though at a reduced rate (βε) and may occasionally reactivate and transition
back to the infectious class (I) at a rate κ [23]. Natural mortality occurs in all classes and
additional disease-specific mortality occurs in the infectious class at a rate (γρ). We assume
density-dependent transmission because the pigs freely interact and infection can occur
when contact happens.

The dynamics of the system described and presented in Fig 1 are captured by the differential
equations:

dS
dt

¼ �bSðI þ εCÞ þ mN � mS;

dE
dt

¼ bSðI þ εCÞ � ðsþ mÞE;

dI
dt

¼ sE þ kC � grI � gð1�rÞI � mI;
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Fig 1. The schema shows the transition pathways between epidemiological classes of the ASFmodel.
The transition from class (S) to class (E) was governed by transmission rate (β) while the transition from class
(E) to class (I) was dependent on latent period (σ). The infectious animals either die at a rate (γρ) and enter
class (D) or enter the carrier class (C) at a rate γ(1−ρ). Carriers also transmit at a reduced rate (εβ) and can
re-activate to infectiousness at a rate (κ). There is natural mortality that occurs in each class at a rate μ. New
recruits enter the S class at a rate μN.

doi:10.1371/journal.pone.0158658.g001

Table 1. Events defining the effect of transition between compartments and the rate at which they
occur.

Event Effect Transition rate

Exposure (S, E, I, C)! (S-1, E+1, I, C) βS(I + εC)

Infection (S, E, I, C)! (S, E-1, I+1, C) σE

Disease mortality (S, E, I, C)! (S, E, I-1, C) γρI

Recruitment (S, E, I, C)! (S+1, E, I, C) μN

To Carrier (S, E, I, C)! (S, E, I-1, C+1) γ(1−ρ)I

Carrier reactivation (S, E, I, C)! (S, E, I+1, C-1) κC

Natural death in Susceptibles (S, E, I, C)! (S-1, E, I, C) μS

Natural death in Exposed (S, E, I, C)! (S, E-1, I, C) μE

Natural death in Infectious (S, E, I, C)! (S, E, I-1, C) μI

Natural death in Carriers (S, E, I, C)! (S, E, I, C-1) μC

doi:10.1371/journal.pone.0158658.t001
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dC
dt

¼ gð1� rÞI � ðkþ mÞC;

dR
dt

¼ grI

The system’s events were implemented stochastically using Gillespie’s direct algorithm
[24,25] and 1000 simulations were run per scenario described in the section of intervention
scenarios.

Model parameters
In Table 2 we present estimates for some model parameters obtained from literature. Generally,
there is limited fields and /or experimental data to quantify model parameters and those
accessed varied widely. We chose to use the Pert distribution to randomly generate parameter
estimates over the extracted parameter ranges. The Pert distribution is best suited to situations
when information available to estimate parameters is limited but sufficient to extract the Mini-
mum, Maximum and Mode (i.e., most likely) estimate. The non-specific mortality (μ) was esti-
mated as the reciprocal of the mean life expectancy of pigs in the study region (i.e. 280–500
days). The transmission rate parameter β(t) has been estimated from the literature [26] taking
into account the difference in pig interactions between those under experimental conditions
and those in the natural setting. The scale-down factor (ε) on the transmission rate for carrier
animals and the rate of reactivation of carriers (κ) to infectious state are user-defined for simu-
lation purposes. These parameters have been set to values between zero and one due to lack of
information on them pending further studies to give them appropriate values. For purposes of
our exploration we set them in a low range of 0.3 and 0.06 respectively.

Intervention scenarios modelled
Using scenario analysis approach, we assess the effect of different interventions on the cumula-
tive number of pigs that succumb to ASF over a simulation period of 200 days. As a reference
point for the assessment of impact of interventions, we started by simulating the dynamics of
the disease in the population of 500 pigs without any intervention. Thereafter two categories of
intervention scenarios were simulated, with each being initiated at various time points after the

Table 2. The Minimum, Mode and Maximum estimates used in the Pert distributions for the parameters of the model (day -1).

Definition Min Mode Max Key data source

μ Non-specific mortality/ crude birth rate* 0.0020 0.0027 0.0035 User defined#

β Transmission rate$ 0.200 0.300 0.500 [26]

γ ASF-specific mortality rate 0.080 0.125 0.250 [26]

ρ Proportion of infectious that die 0.600 0.700 0.800 [4]

σ Transition rate from exposed to infectious class 0.120 0.250 0.350 [4,7,33,34]

κ Rate of reactivation of carriers* 0.040 0.060 0.080 [7]

ε Scale-down factor on effective contact rate for carrier animals* 0.250 0.300 0.350 User defined

* User defined for purposes of this simulation.
# Based on observed average life expectancy of 370 days.
$ The minimum β estimate of [26] is taken as the Max value for the Pert distribution in estimating β.

We scaled down by a factor of (1.5)-1 and (1.5)-2 respectively for the mode and minimum values.

doi:10.1371/journal.pone.0158658.t002
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onset of the epidemic. The first category consisted of implementation of biosecurity measures
which were modelled as a change in the time-dependent transmission rate parameter β(t)
according to

bðtÞ ¼ b1 t < t

b0 þ ðb1 � b0Þe�ðt�tÞ t � t

(

where τ is the time at which biosecurity interventions start [27]. β(t) is modelled to gradually
reduce following an exponential decay from a baseline value β1 to a value that asymptotically
approaches β0 (set to 0.05 in this study) [27,28]. The value of β0 can be set to zero if the biosecu-
rity measures put in place are perceived to be able to stop all further transmission.

The second category of interventions modelled the potential effect of using hypothetical
vaccines with varying efficacies and coverage. The vaccine-protected proportion is obtained
from the product of vaccine efficacy and coverage levels. In this study, we modelled vaccination
at three protection levels; 30%, 50% and 70%. Vaccination was modelled as a single pulse event
during the course of the simulation. The effect of time to intervention was assessed by imple-
menting the above interventions at 14, 30 and 60 days after the start of the epidemic. As exam-
ples the naming of the intervention scenarios was as follows: “Vac_7030” is vaccine
intervention with effect of 70% and day 30 after onset of epidemic whereas “Bio_30” is a biose-
curity intervention 30 days after the onset of the epidemic. Baseline is an intervention-free sce-
nario while “Bio_Vac_7014” is a combination of biosecurity and vaccination strategy (with
70% effect) at day 14 and “Ctns_Vac_7014” is an intervention scenario where 70% are effec-
tively vaccinated at day 14 and all new recruits thereafter are also vaccinated.

We present results of a few of the many permutations of intervention scenarios that could
be compared. Day 14 and day 60 were of particular interest because they represented the earli-
est practical date to implement an intervention and a representation of a date not very long
into the complete course of an outbreak, yet too late for an intervention to cause the desired
mitigating effect. The model simulations were run in WolframMathematica 9.

Results
Model predictions of the impact of the different intervention strategies on the cumulative num-
ber of pigs that succumbed to the disease are presented. The results are presented as boxplots
depicting the median, lower and upper quartiles of predicted disease burden from the 1000
simulations per intervention scenario. Fig 2 depicts the disease burden for different times of
introduction of intervention scenarios while Fig 3 presents a comparison of the potential
impact of delaying the start of intervention strategies (scenarios for day 14 and day 60).

Effect of enhanced biosecurity measures on the disease burden
In Fig 2A, the model predicts a 74% reduction on the disease burden if biosecurity measures
are implemented 14 days after the onset of the epidemic (Bio_14) compared to the baseline sce-
nario which predicts a median of 535 fatalities. Implementing biosecurity measures 30 and 60
days after the onset of the epidemic decreases the disease burden by 41% and 13.5% from the
baseline scenario, respectively.

Effect of vaccination interventions on the disease burden
Fig 2B shows the disease burden under pulse vaccination where 50% of the animals at risk are
vaccine-protected at 14, 30 or 60 days after onset of the epidemic. Vaccinating 50% after 14
days of the epidemic onset reduced the burden by 44% while waiting for 60 days reduced the
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burden by 16%. Fig 2C shows the impact of the different proportions protected by the vaccine
when intervening at day 14, either singly or in combination with biosecurity measures. The
model predicts a 65% reduction in cumulative pig deaths when the vaccine protects 70% of the
animals at risk (i.e., Vac_7014). With a delayed intervention, i.e. when intervening at day 60
post epidemic onset, there is a minimal reduction (ranging from 4% to 14%) in the disease bur-
den across all simulated intervention scenarios (Fig 2D). Among the simulated vaccine inter-
vention scenarios, Vac_7014 is predicted to avert the highest number of pig deaths (only 185
deaths) compared to the baseline scenario.

Fig 2. Box plots showing the effect of timing of introduction of different intervention scenarios on disease burden. The baseline box represents an
intervention-free scenario. Panel (a) shows the effect of the timing of introduction of biosecurity measures after the onset of the epidemic (where
Bio_xx = Biosecurity strategy implemented at day xx). Panel (b) depicts effects of vaccination (protecting 50%) implemented at day 14, 30 and 60 days on
disease burden (i.e. Vac_50xx = Vaccination conferring 50% protection at day xx). Panel (c) compares the effects of different vaccine efficacies and a
combination intervention strategy on disease burden when intervention is started at day 14 (Bio_Vac_7014 = Combination of biosecurity and 70% Vaccine
efficacy implemented at day 14). Panel (d) depicts the effects of delayed intervention on disease burden across different strategies of vaccine efficacies and
combination scenarios (i.e. Vac_yyxx = Pulse Vaccination of efficacy yy% implemented at day xx while Bio_Vac_7060 is a combination strategy of
Biosecurity measures and 70% efficacy vaccine implemented at day 60).

doi:10.1371/journal.pone.0158658.g002
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In Fig 3A we compare the impact of interventions implemented at day 14 involving protec-
tion of 70% of the pigs at risk through vaccination under different vaccination and biosecurity
schemes. An intervention scenario involving a pulse vaccination at day 14 coupled with a con-
tinuous vaccination (and protection) of 70% of the new recruits (i.e., Ctns_Vac_7014) reduces
the disease burden by 82%. A strategy combining intensified biosecurity measures and pulse
vaccination and protecting 70% of the pigs at risk (i.e., Bio_Vac_7014) could avert up to 91%
of pig deaths, yet the same strategy, when implemented after 60 days post epidemic onset could
only save 30% (Fig 3B).

Discussion
ASF continues to be a major constraint to the growth of the pig industry in sub-Saharan Africa
and poses a significant risk to established pig industries in the developed world mainly the
European Union and China. There is a need to continuously refine and update both our knowl-
edge of its epidemiology and control measures. In the present study, we used a stochastic com-
partmental mathematical model to assess the potential impact of different intervention
scenarios on the disease burden.

In the absence of treatment or vaccines against ASF, control strategies primarily rely on bio-
security measures [6,9]. It has been noted that smallholder pig farmers find it difficult to fully
comply with biosecurity measures for a prolonged period of time because of the nature of their
production systems [18]. We investigated the benefits of compelling small holder farmers to
adopt and intensify biosecurity measures specifically in times of ASF outbreaks, in order to
minimize the disease burden. When compared to the baseline scenario of not intervening at all,
our model predicts that if biosecurity measures are enhanced within a fortnight of an epidemic
onset, the disease burden can be reduced by up to 74%. This finding emphasises the need to
hasten the intensification of biosecurity measures in the event of suspicion. This can be
achieved through measures such as improved hygiene, isolation of sick or new pigs, movement
control, treatment of swill, use of disinfectants, proper housing and disposal of dead pigs as

Fig 3. Box plots comparing different intervention scenarios at day 14 and day 60. Panel (a) shows relative impact of the intervention scenarios at day
14. Bio_Vac_7014 is a combination of biosecurity measures and vaccination with 70% effect at day 14. Box Ctns_Vac_7014 is a scenario of pulse
vaccination at day 14 followed by continuous vaccination programme of new recruits. Panel (b) compares the effects similar intervention scenarios at day 14
and day 60 to show the effect of timing of intervention on disease burden irrespective of the strategy implemented.

doi:10.1371/journal.pone.0158658.g003
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soon as ASF is suspected [18]. This is achievable if resources are available to implement this
intervention however if left entirely in the hands of farmers, they may not have the resources
or incentive to meet these costs. Above all, farmers in the settings in question need to be highly
aware of ASF and of the tools available to them to quickly upscale their on-farm biosecurity.
This is in agreement with standard ASF control protocols, which emphasises that biosecurity is
essential in the control of ASF [4,29].

In addition, we modelled three protection levels of hypothetical vaccines and three interven-
tion time points for their use. The greatest vaccine impact (of 65% reduction in disease burden)
was predicted at the highest simulated vaccine protection level of 70% when implemented at
day 14 post epidemic onset. The impact of this pulse vaccination on disease burden is likely to
be affected by the continuous influx of susceptible new recruits that enter the system. In an
ideal situation, vaccination schemes should be designed in such a way as to include newly-
recruited animals on a continuous basis. We capture this scenario by simulating interventions
where vaccination is continuous and conclude that continuous vaccination reduces the disease
burden by 82%.

The most effective simulated intervention strategy (with 91% of deaths averted) is a combi-
nation of pulse vaccination (protecting 70% of the pigs at risk) together with enhanced biosecu-
rity measures implemented by day 14. However, vaccines are still a long way from being
commercially available, let alone accessible and affordable to the rural pig farmers. Early
attempts to develop conventional vaccines against ASFV achieved partial protection or could
not be scaled up for commercial production [11]. Nonetheless, these results, although theoreti-
cal at this point, illustrate the potential impact of vaccines on disease burden and how they
could improve control efficacy when combined with biosecurity measures. They also help in
identifying the levels of protection that any eventual vaccine would need to attain in order to
be effective in preventing epidemics.

The predicted effect of intervention strategies on the disease burden was found to be depen-
dent on time to intervention with delayed intervention reducing the impact of intervention sce-
narios. For example, intervening 60 days post epidemic onset reduced the impact of all
scenarios, with only 4% to 30% of baseline deaths averted as compared to reductions of 65% to
91% when intervening at day 14. This prediction, although intuitive, emphasises the impor-
tance of early intervention in managing ASF epidemics, and our modelling approach provides
a means to determine appropriate and feasible intervention moments in controlling ASF, in
this case found to be 14 days post epidemic onset.

ASFV varies in virulence with some strains causing 100% mortality while less virulent ones
allow some pigs to recover from either sub-acute or chronic infections to become persistently
infected or carrier pigs. These carrier animals are assumed to play a role in maintaining the dis-
ease in the domestic cycle and pose a major challenge to its control [7,30]. However, there is no
sufficient evidence to quantify the contribution of carrier pigs to infection pressure and what
proportion reactivate to an infectious state.

We recommend that further studies be carried out to more reliably quantify these model
parameters using empirical data from field activities. Our studies [22,31] on ASFV p72 geno-
types IX and X in East African smallholder systems indicates that transmission data is particu-
larly hard to collect in the field with the currently available techniques, since anthropogenic
effects (rapid selling to butchers, or pig farmers in distant villages) complicate collection and
interpretation of transmission data. It is also difficult to detect (with the currently available
tests) the genotype IX virus in blood samples by either serology or real time PCR because of
great viral genetic and antigenic diversity [32]. In this study we have relied on using random
parameter choice based on the Pert distribution informed by available data to improve
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reliability of the study’s outcomes. We envisage that in future projects involving appropriately
designed experimental infections will be used to refine ASFV transmission parameters.

Although our model predicts a combination of vaccination and enhanced biosecurity as the
best intervention scenario, the only currently feasible strategy is implementation of enhanced
biosecurity measures. We therefore recommend intensification of active surveillance and use of
pen-side diagnostic assays for rapid detection and confirmation of ASF to allow for timely
implementation of enhanced biosecurity. However, we also recommend continued research on
the development of a vaccine against ASFV to allow for deployment of a hybrid intervention
strategy. Most importantly, given the importance of the time to implementing biosecurity mea-
sures, we recommend that veterinary services in ASF outbreak risk areas work to educate farm-
ers on the most feasible biosecurity measures to adopt in a time efficient manner [18]. Finally,
we also suggest that further work on cost-benefit analyses should be performed to compare the
simulated interventions from an economic perspective.
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