Splitting procedures for the Mixed Capacitated Arc Routing Problem under Time
restrictions with Intermediate Facilities

Elias J. Willemse®!*, Johan W. Joubert®2

“Center of Transport Development, Department of Industrial and Systems Engineering, University of Pretoria, South Africa, 0002

Abstract

This paper develops optimal and quick near-optimal splitting procedures for the Mixed Capacitated Arc Routing Problem under
Time restrictions with Intermediate Facilities. Splitting procedures are a key component of giant tour-based solution methods for
Arc Routing Problems. The optimal and near-optimal splitting procedures are tested within a multi-start constructive heuristic, and
a fixed execution-time limit is imposed. Results on benchmark instances show that the constructive-heuristic linked with the new

optimal splitting algorithm performs better than the near-optimal versions.
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1. Introduction

The Capacitated Arc Routing Problem under Time restric-
tions with Intermediate Facilities (CARPTIF), first proposed by
Ghiani et al. [6]°, is a variant of the classical Capacitated Arc
Routing Problem (CARP) and models residential waste collec-
tion. On a mixed network, with one and two-way streets in
the case of waste collection, the problem is termed the Mixed
CARPTIF (MCARPTIF), first proposed by Willemse and Jou-
bert [13]. The problem considers a graph G = (V,E U A),
where V represents the set of vertices, E represents the set of
undirected edges that may be traversed in both directions, and
A represents the set of arcs that can only be traversed in one
direction. For waste collection, V corresponds to road inter-
sections and dead-ends, while E and A model road segments
between vertices. A subset of required edges and arcs, E, C E
and A, € A, must be serviced by a fleet of K homogeneous
vehicles with limited capacity, Q, that are based at the depot
vertex, v;. The fleet size K can be either fixed, left as a deci-
sion variable or treated as unlimited. Vehicles are allowed to
unload their waste at any Intermediate Facility (IF) at a cost of
A, and resume their collection routes. At the end of its route a
vehicle must first visit an IF before returning to the depot. The
set of IFs is modelled in G as T', where I' ¢ V. The sum of
demand on each sub-trip between IF visits may not exceed Q,
and unless v; € T', a vehicle has to visit an IF before returning
to the depot. Lastly, a route length or time restriction of L is
imposed on each vehicle route. For a comprehensive review of
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the CARP and other Arc Routing Problems we refer the reader
to Corberan and Laporte [3] and Corberan and Prins [4].

Since the CARP and all its extensions are N'P-hard the most
effective methods for solving the problems are based on heuris-
tics and metaheuristics, many of which employ giant tour ap-
proaches that rely on tour splitting procedures [10]. Splitting
procedures take as input a giant tour and partitions the tour into
feasible vehicle routes. In this paper we present optimal and
heuristic splitting procedures for the MCARPTIF that can be
used in giant tour approaches for the problem. The structure of
our optimal splitting procedure provides a substantial improve-
ment in efficiency over the existing CAPRTIF version that we
adapted for mixed networks. Fast, near-optimal splitting pro-
cedures are also presented. The optimal and near-optimal pro-
cedures were tested in a multi-start Route-First-Cluster-Second
heuristic on large MCARPTIF instances. Tight time-limits were
imposed to reduce the number of starts of the slower, opti-
mal procedures compared to the faster near-optimal procedures.
Even with less starts, the Route-First-Cluster-Second heuristic
linked with our efficient optimal splitting procedure performed
better than the near-optimal splitting versions.

The following is an outline of the remainder of the paper.
In the next section we review current splitting procedures for
the CARP and a few of its extensions. In Section 3 we present
the algorithm notation and detailed descriptions of our split-
ting procedures. In Section 4 we report on computational ex-
periments, focusing on the execution times of the procedures
and the difference in partition costs between optimal and near-
optimal splitting. We then compare the performance of the
different procedures within a multi-start Route-First-Cluster-
Second heuristic. The paper concludes in Section 5 with a sum-
mary of our main findings and suggestions for future research
opportunities.
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2. Current splitting procedures for the CARP and CAPRTIF

The first optimal splitting procedure for the CARP was de-
veloped by Ulusoy [12] as part of a Route-First-Cluster-Second
constructive heuristic. The heuristic is similar to the one of
Beasley [1] for the Vehicle Routing Problem. First, edge de-
mands are ignored and a giant tour is constructed servicing all
the required edges in G. In the second phase, an auxiliary Di-
rected Acyclic Graph (DAG) is constructed whose arcs repre-
sent feasible sub-tours of the giant tour, with respect to demand
of the sub-tour and vehicle capacity. The DAG is constructed
in such a way that the shortest path through the graph gives the
optimal partition of the giant tour into feasible vehicle routes.
The shortest path can be calculated using any shortest path al-
gorithm. The splitting procedure consists of constructing the
DAG, calculating the shortest path through the graph, and de-
coding the shortest path to retrieve the optimal giant tour par-
titions. Lacomme et al. [8] and Belenguer et al. [2] develop
multi-start Route-First-Cluster-Second heuristics for the CARP
and Mixed CARP (MCARP), respectively, whereby different
giant tours are constructed and partitioned, and the best returned
as the final solution.

Ghiani et al. [7] develop a splitting procedure, similar to
CAREP versions, for the Capacitated Arc Routing Problem with
Intermediate Facilities (CARPIF). Their procedure calculates
the optimal placement of Intermediate Facility (IF) visits within
a route. The problem allows inter-route offloads so that col-
lected demand between IF visits never exceeds vehicle capacity,
but it does not impose route duration limits. As such, a solution
always consists of only one route. When a route duration limit
is imposed the problem generalises to the CAPRTIF. To solve
the problem Ghiani et al. [6] develop a splitting procedure that
constructs two DAGs. The first consists of multiple source and
destination vertices, each representing a start- and end-edge of
a sub-tour in the giant tour. Shortest paths through the DAG be-
tween the sources and destinations represent the optimal place-
ment of IFs in all possible sub-tours. The shortest path costs,
calculated using a shortest path algorithm, are then used to con-
struct a second DAG whose shortest path represents the opti-
mal partition of the giant tour into vehicle routes. The optimal
placement of IFs in each route is traced back to the shortest
paths in the first DAG. The splitting procedure of Ghiani et al.
[6] can be applied as-is to giant tours on mixed networks. A so-
lution for the MCARPTIF can thus be obtained by combining
the Route-First phase of Belenguer et al. [2] for the MCARP
to construct a giant tour on a mixed network, and then apply-
ing the CARPTIF splitting procedure of Ghiani et al. [6] for the
Cluster-Second phase.

To improve the efficiency of splitting procedures Lacomme
et al. [8] develop a compact procedure for the CARP that does

not explicitly construct the DAG. Instead, the shortest path through

the DAG is directly calculated when scanning sub-tours for
their feasibility with respect to vehicle capacity limits. Their
version also accounts for a secondary objective of minimising
fleet size. The compact version is exclusively used in Memetic
Algorithms for the CARP [8, 9, 11] and MCARP [2], which are
currently some of the most effective solution methods for the

problems. Memetic Algorithms are metaheuristics based on ge-
netic algorithms enhanced with local search procedures. Chro-
mosomes are encoded as giant tours and an optimal splitting
procedure is used to determine chromosome fitness each time a
new chromosome is evaluated. An efficient splitting procedure
is critical for the applications since chromosome evaluation oc-
curs tens of thousands of times during the MA’s execution.

In this paper we extended the compact splitting version of
Lacomme et al. [8] to the MCARPIF. We then further extended
this version to deal with the MCARPTIF and show that it pro-
vides a substantial improvement in efficiency over the version
of Ghiani et al. [6]. We also developed two quick heuristic split-
ting procedures, one that greedily inserts IF visits into sub-tours
and then calculates the route partitions and a second that em-
ploys a next-fit bin-packing procedure.

3. New splitting procedures

Before presenting our splitting procedures we first describe
the graph transformation of G and introduce the basic algorithm
notation. Consistent with Belenguer et al. [2] and Lacomme
et al. [8], the graph G is transformed into a fully directed graph,
G* = (V,A"). CARPTIF splitting procedures can then be used
as-is on the MCARPTIEF, and the other way around. Required
arcs, A,, and edges, E,, of G correspond in G* to a subset
R C A" of required arcs. Each arc, u € R, has a demand,
q(u), a collection cost, w(u), and a pointer, inv(u), to the arc
between the same vertices but in the opposite direction. Each
required arc in the original graph, G, is coded in R by one arc,
u, with inv(u) = 0, while each required edge is encoded as two
opposite arcs, u and v, such that inv(u) = v and inv(v) = u.
The depot is modelled by including in A* a fictitious loop, o,
with zero deadheading and service cost. Similarly, the set of
IFs are modelled in A* as a set of dummy arcs, I, such that each
IF in T is modelled as a fictitious loop, ®; € I, and ®; also has
zero deadheading and service cost. The cost of the shortest path
from arc u to arc v, which excludes the costs of deadheading u
and v, is given by D(u, v), which is pre-calculated for all arcs
in A*. Shortest paths can be efficiently calculated using a mod-
ified version of Dijkstra’s algorithm, and may also incorporate
forbidden turns and turn-penalties [8]. The best IF to visit after
servicing arc u and before servicing arc v can be pre-calculated
using

®*(u, v) = arg min{D(u, k) + Dk, v) : k € I}, (1)
u(u,v) = D(u, @ (u, v)) + D(®*(u, v),v) + 4, )

where @ (u, v) gives the best IF to visit, and y*(u, v) gives the
cost of the visit, including the unloading cost, 4, and deadhead-
ing costs. We denote by § the giant tour to be partitioned,
which consists of a list of tasks, [S,...,S5s]. It is assumed
that the shortest path is always followed between consecutive
tasks and only arcs in R are included in §, thus it contains
no depot or IF dummy arcs as these are implicitly accounted
for by the splitting procedures. Sub-tours in § are denoted as
Sin;=15,....,Sjlwherel <i < j<nandn =IS]. A
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single MCARPIF or MCAPRTIF route is a list of tasks that al-
ways starts with the dummy depot task, ends with a dummy IF
and depot task, and may include inter-route IF visits. The list
of tasks between dummy arcs represent subtrips and the load
collected on a subtrip may not exceed Q. For the MCAPRTIF,
the total cost of a route, including all task service costs, dead-
heading costs between tasks and IF visit costs, may not exceed
L.

3.1. Splitting procedures for the MCARPIF

The first splitting procedure that we present is an MCARPIF
adaption of the CARP procedure developed by Lacomme et al.
[8]. Recall that splitting procedures use S to construct an aux-
iliary DAG, H, in such a way that its shortest path represents
the optimal giant tour partition. For the CARPIF, Ghiani et al.
[7] construct H by including a vertex for each feasible sub-
tour §;_,; with respect to vehicle capacity. Vertices represent-
ing consecutive sub-tours §;_,; and S j,|_,; are then linked with
arcs. A source vertex, linked to vertices representing S |, ;, and
a sink vertex, linked to vertices representing S xs|, are also in-
cluded in H and the shortest path from the source to the sink
represents the optimal partition. Using this approach the DAG
consists of at most "(%”) vertices and 200D 4 oy ares. Bell-
man’s algorithm [5] can then compute the shortest path through
H in O(n?). For the CARP, Lacomme et al. [8] construct H so
that it consists of exactly n + 1 vertices and at most @ arcs
where each arc, instead of vertices, represents a feasible sub-
tour. Computing the shortest path through H then takes O(n?).
For a detailed illustration of the method we refer the reader to
Appendix A.

To improve the efficiency of split for the CARP, Lacomme
et al. [8] develop a compact version that does not explicitly
construct H. Algorithm 1 shows a similar procedure, called
Efficient-1F-Split, that we developed for the MCARPIF. It di-
rectly calculates the optimal partition and further minimises
the number of subtrips as a second objective. Modifications
to the CARP procedure of Lacomme et al. [8] are contained in
Lines 1, and 9-19, with the CARP calculations shown as com-
ments (//) in Lines 2, 13, 16 and 19. Three labels are used by the
procedure. The first, N;, represents the cost of the shortest path
from vertex O to i in H, the second, I1;, represents the number
of sub-trips in the same shortest path, and the third, P;, repre-
sents the predecessor vertex of i on this path and thus stores the
resulting optimal placement of IFs in S. Note that both N and
P are indexed from 0. The depot and final IF and depot visit
on a feasible route are implicitly accounted for by the algo-
rithm. By increasing i and j the procedure successively scans
sub-tours for capacity violations. When the feasible sub-tour
S i is found the optimal partition for the partial giant tour end-
ing at j is updated. In the worst case a total of 21D sub-tours
can be evaluated, giving the algorithm a running time of O(n?).
The actual running time of the algorithm is reduced as only fea-
sible sub-tours that meet the capacity constraint are evaluated.

3.2. Splitting procedures for the MCAPRTIF
For the MCAPRTIF the splitting procedure has to simul-
taneously determine the optimal IF partitions, resulting from

Algorithm 1: Efficient-1F-Split for the MCARPIF

Input :S
Output: N, P

1 n=|S;Ilp = 0; Py = 0; No = D(0, S 1);
2 /[*No=0;
3 fori« 1tondoN; = co;II; = co;

4 fori— 1tondo

5
6
7
8
9

10

1
12

13

14
15
16

17
18
19
20

21

22
23
24

25

26

N

7

I'=0;¢'=0;j=1
repeat
U'=1+q(S));
if I/ < Q then
if j = n then
| a=uS;)0)
else
| a=u"S}S )
/[*a=D(S ;o)
if i = j then
" =w(S ) +a
| //*d =D, S)+wS))+a
else

Ac’ =D(S ;1,8 ) — (S j-1,5 )
/¥ Ac" = D(S j-1,8 j) = D(S j-1,0);
L ' =c +A +w(S)) +a

if Wit +¢" <Nj)or (Ni_y +¢’ =N;)and
(H,'_] +1< HI)) then

Nj:N,‘,1+C,;
H_/:H,',1+1;
L Pj=i—1;
| j=i+L

| until (j >n)or (I’ > Q);
return (N, P)

*Qriginal calculations of Lacomme et al. [8] for the CARP.
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the vehicle capacity limit Q, and the optimal route partitions,
resulting from the route time restriction, L. Ghiani et al. [6]
extend the method of Ghiani et al. [7] and explicitly construct
two DAGs for this purpose. Efficient-IF-Split can be used in
the same way. First, it calculates the optimal IF partitions for
all the sub-tours in S. The cost of the partitioned sub-tours are
then used to construct the second DAG, and the shortest path
through it represents the optimal route partitions. For a detailed
illustration of the method we refer the reader to Appendix A.

Similar to Efficient-1F-Split, H and H' need not be explicitly
constructed. Algorithm 2 shows a compact splitting version for
the MCAPRTIF that directly calculates the optimal partitions
for subtrips and routes. We refer to this version as Efficient-
Split and to the version that calculates the optimal IF and route
partitions in two-phases as Two-Phase-Split. Algorithm 2 min-
imises the total number of routes as the primary objective, and
partition cost as secondary. For the IF partitions, two labels are
used for each vertex i in H. The first, N, j, where i > j, repre-
sents the cost of the shortest path from vertex i to j in H, and
the second, P; j, where i > j, represents the predecessor vertex
of j on this path back to i and thus stores the resulting opti-
mal placement of IFs in sub-tours of §. Two more labels are
used for the optimal route partitions. The first, N?, represents
the cost of the shortest path from vertex O to i in H’, and the
second, P;, represents the predecessor vertex of i on this path
and thus stores the resulting optimal route partitions of § . Since
the MCAPRTIF has multiple routes, the partitioning algorithm
is further extended by including I1;, which represents the num-
ber of routes required from vertex O to i in H’. By increasing
i and j the procedure successively scans sub-tours for capacity
violations. When the feasible sub-tour S;,; is found the op-
timal partitions for all sub-tours starting at k € {1,...,i} and
ending at j are updated. In the worst case, a total of w
sub-tours are evaluated for the optimal IF partitions, giving the
algorithm a running time of O(n*). The actual running time
of Algorithm 2 is reduced as only feasible sub-tours, adhering
to the route time restriction, are optimally partitioned with IF
visits. When i = j the optimal partition of all sub-tours from
ke {l,..., j}to jhave been calculated. If §'+_, ; then exceeds L,
longer sub-tours starting at k will also exceed L and they need
not be updated with IF partitions in subsequent iterations. This
significantly reduces the number of sub-tours that have to be
updated each time i and j are incremented.

3.3. Heuristic splitting procedures for the MCAPRTIF

The last two splitting procedures that we developed for the
MCAPRTIF are heuristic in nature and thus do not guarantee
an optimal partition. The first is a straight forward Next-Fit bin-
packing type procedure that starts with a route consisting of the
starting depot task. Starting with the first task in §, tasks are
progressively added in sequence to the route. If a task cannot
be added without exceeding Q, an IF visit is included before the
task. If a task cannot be added to the route without exceeding L,
including the cost of going from the task to the nearest IF and
depot, the route is closed and the task is added to a new route.
The procedure, which we call Simple-Split, runs in O(n).

Algorithm 2: Efficient-Split for the MCAPRTIF

[N RTINS

e ® 9
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Input :S§
Output: N,P,N’, P’
n=1S|;

fori —Oton—1do N;; =D(0,S;); Pij=1i;
fori — lton—1do

for j— i+ 1tondo

| Nij=oo

I, = 0; P, = 0; Nj, = 0;

fori«— ltondo N; =oco;II; = o0

ks =05

fori « 1tondo

V'=0¢" =0;¢" =05 j=1is ko = ky;
repeat

U'=1+q());

if // < O then

if j=nthen a=p"(§;,0);
else a:y*(Sj,SjH);

if i = j then
L =wlj)+a
else

A" =D(S ;1,8 ) — (S j-1,5 )
L = + A +w(S))+a;

/.

"=+ (S0 -a

if ¢’ < L then
fork «— kotoi—1do
Ntc’mp = Nk,i—l + C’;
if Niemp < Ny j then

Nk,j = Ntemp;
L Pk,j = k;
Niop = Nijo1 + 75
if N}, < L then
if @+ 1 <I0)) or (@L; + 1 =10;) and
(N}, + Nion, < N7) then
Hj = H,‘ +1;
N; = Nllc + Nt,emp;
P =k
j
if (i = j) and (j < n) then
Nl’)est = Nk,j _H*(Sj’sj+1) +
D(S S jr1) + w(S ji1) + 17(S j+1,0);
L if NI;est > L then ks = ks +1;

j=Jj+1

| until (j>n)or (" > Q) or (¢ > L);
return (N,P, N',P’)
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The second heuristic procedure that we developed, called
Heuristic-Split, is shown in Algorithm 3. It is an extension of

Algorithm 3: Heuristic-Split for the MCAPRTIF
Input :S§
Output: N, P

1 n=IS|;Py=0;Ny=0;
2 1'[6=0;f0ri<—]tond0 N} =oo;II; = o0

3 fori — 1tondo

4 I'=0,¢=0;j=1;

5 repeat

6 U'=1+q(S;);

7 if i = j then

8 | ¢ =D(@.S))+w(S )+ 1S j,0)

9 else

10 if I/ < Q then

1 | A =D(Sjo1,8 ) = 1*(S j-1,0)

12 else

13 Ac" = (S j-1,8 j) — (S j-1,0);

14 I'=q(S )

15 | ="+ A+ w(S )+ (S, 0);

16 if ¢/ < L then

17 if @; + 1 <IIj) or (I; + 1 =II;) and (N;—1 + ¢’ < N))
then

18 1'[_,- = H; +1;

19 N;=N;+c;

20 P;i=i-1;

21 | j=Jj+1L

2 | until (j>n)or(c’ > L)

23 return (N,P)

Efficient-1F-Split whereby IF visits are included in routes greed-
ily instead of optimally. When evaluating progressively longer
sub-tours, IF visits are inserted the moment that the load of a
sub-tour since the last IF insertion exceeds vehicle capacity.
The optimal placement of IFs is not calculated for each sub-
tour, reducing the computational complexity of the algorithm to
O(n?) while still ensuring that it produces feasible routes with
respect to Q and L. After partitioning S, the IF partitions for
each of the resulting routes can be improved using Efficient-IF-
Split while maintaining the overall complexity of O(n?).

4. Computational results

For the computational tests we analysed and compared the
efficiency of Two-Phase-Split, Efficient-Split, Simple-Split and
Heuristic-Split for the MCAPRTIF. Efficiency was measured
as the time taken by each procedure to partition a giant tour.
We then compared the number of routes and cost of the giant
tour partitions from each procedure. Heuristic-Split was always
linked with Efficien-IF-Split as a post-partition procedure to im-
prove the IF placements in each route. The aim was to deter-
mine if Simple-Split or Heuristic-Split could be potentially used
as a substitute for Two-Phase-Split and Efficient-Split in giant
tour solution methods when solving large scale instances.

Two sets of MCAPRTIF benchmark sets developed in [14]
were used for our tests. The first set, Lpr-IF, is based on the Ipr

MCAREP set of Belenguer et al. [2], and the second set, referred
to as Cen-IF, is based on actual road networks and contains
some of the largest arc routing instances currently available. All
heuristics were programmed in Python version 2.7, with critical
procedures optimised using Cython version 0.17.1. Computa-
tional experiments were run on a PC with a 2.5Ghz Intel Core i5
processor and with 8 GB memory. For more information on the
benchmark instances, including download-links, we refer the
reader to DATA IN BRIEF.

To compare the efficiency of the procedures thirty giant tours
were constructed using Path-Scanning-Random-Link developed
by Belenguer et al. [2] for the MCARP and relaxing the capac-
ity limit and route time restriction, as proposed by the authors.
The giant tours were then partitioned using one of the four
splitting procedures with the primary objective to minimise the
number of required routes, and secondly to minimise the parti-
tion cost. Figure 1 shows the CPU time taken by each procedure
to partition the giant tours as a function of the size of the tours,
n. Giant tours for Cen-IF instances are of sizes 1012, 2519 and
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Figure 1: Scatter plots and trend lines for giant tour size, n, versus partitioning
time (in seconds, on a logarithmic scale) of four MCAPRTIF splitting proce-
dures on 30 different giant tours per instance.

2755. All other points in the figure are for the Lpr-IF instances.
All four splitting procedures show polynomial growth in their
execution times as a factor of n. Simple-Split was extremely
efficient, since it runs in O(n), splitting the Cen-IF tours with
over 2500 tasks in less 0.05 seconds. Heuristic-Split was also
efficient, taking less than 0.5 seconds to partition the Cen-IF
tours. Owing to their O(n*) complexity, Two-Phase-Split and
Efficient-Split took longer to partition tours. On all instances,
Efficient-Split was substantially quicker than Two-Phase-Split,
though on small instances with n < 104 the difference in perfor-
mance may not be practically significant, with both procedures
taking less than 0.5 seconds per partition. Two-Phase-Split took
close to 60 seconds on the largest Cen-IF instances, whereas
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Efficient-Split took only 12 seconds.

Next we compared the solution quality of the partitioning
procedures over the thirty Path-Scanning-Random-Link giant
tours per instance. Since Two-Phase-Split and Efficient-Split
produce the same optimal partitions their partition costs and re-
sulting number of routes were used as a target. For the primary
objective, to minimise the number of routes resulting from the
partition, both Simple-Split and Heuristic-Split matched Two-
Phase-Split on more than 79 of the 90 Cen-IF and on 431 of
the 450 Lpr-IF giant tours. On the remaining tours, the near-
optimal procedures required at most one additional route. To
see how close the suboptimal partitions were to the optimal par-
titions, cost wise, the cost gap between the partitions was mea-
sured as Zy,, = £% where Z is the cost of the final partition of
the giant tour, partitioned using Simple-Split or Heuristic-Split,
and Z* is the cost of the optimal partition, as calculated through
Efficient-Split. Results per problem instance are shown in Fig-
ure 2 where each instance is labelled according to its giant tour
size, n. Except for two instances, the partitions produced by
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Figure 2: Box-and-Whisker plot for the cost gap, Zg),, between the partitions
of Simple-Split and Heuristic-Split, and the optimal partitions of Efficient-Split.

Heuristic-Split were very close to optimal with an average cost
gap of less than 1%. The cost gap range (maximum gap minus
mininum gap) of the procedure is also small, being less than
or close to 2%, which shows that it consistently produced near-
optimal partitions. Negative cost gaps were observed for the
procedure on some of the giant tours for Cen-IF-c. These were
tours where Heuristic-Split partitions required an extra route
over the optimal partitions, and the extra route resulted in a
lower solution cost. Since minimising the number of routes was
our primary objective, these partitions are suboptimal. Simple-
Split matched Heuristic-Split on the two smallest giant tour in-
stances. On all other instances its cost gap was larger, which
was expected given its simple structure. The cost gap range of
Simple-Split was also larger than Heuristic-Split, showing that
its performance was not as consistent.

Our results show that as a factor of giant tour size, the ex-
ecution time of Heuristic-Split is an order of magnitude lower

to that of Efficient-Split, whose computation time is an order
of magnitude lower than Two-Phase-Split (Figure 1). Further-
more, Heuristic-Split consistently produced near-optimal par-
titions, whereas Simple-Split resulted in higher cost partitions
and its performance varied per instance (Figure 2). In time lim-
ited applications, methods linked with Simple-Split and Heuristic-
Split may produce better results than Twwo-Phase-Split and Efficient-
Split since their higher efficiency will allow the methods to eval-
uate and split more giant tours.

To test the hypothesis the following experiment was con-
ducted using a multi-start Route-First-Cluster-Second construc-
tive heuristic. Path-Scanning-Random-Link (PSRL) was again
used for the Route-First phase and different splitting procedures
were used for the Cluster-Second phase. Giant tours, represent-
ing different starts, were generated with PSRL and partitioned
by the splitting procedure until an execution time-limit of 60
seconds was reached. The best partitioned solution from all the
starts was then returned as the final solution. This was repeated
for 30 experiments per instance and the mean number of routes,
K, and cost, C, over the returned solutions were calculated.
Summary results over the Lpr-IF and Cen-IF problem sets are
shown in Table ??. Within the multi-start heuristic all the pro-
cedures performed the same in minimising the number of so-
lution routes. The only difference in performance was in min-
imising solution cost. As expected, Efficient-Split performed
better than Two-Phase-Split since it was able to make more
starts in 60 seconds while still producing optimal partitions.
On small instances the difference between Efficient-Split and
Two-Phase-Split was less prominent. Heuristic-Split outper-
formed Two-Phase-Split on all the Cen-IF instances, and five
of the fifteen Lpr-IF instances. Simple-Split had up to 30 and
800 times more starts than Efficient-Split and Heuristic-Split,
respectively, on large Cen-IF and Lpr-IF instances, but could
only match Efficient-Split on one and Heuristic-Split on three
of the smallest Lpr-IF instances. Solution costs of Heuristic-
Split are within one percent of Efficient-Split and it performed
better on the Cen-IF-c instance. On all other instances Efficient-
Split performed the best, making it the best constructive heuris-
tic implementation on both small and large instances, with and
without execution time-limits imposed.

For metaheuristics the effect of using Simple-Split or Heuristic-
Split instead of Efficient-Split is difficult to analyse without em-
bedding the procedures within a Memetic Algorithm (MA). The
MA of Belenguer et al. [2] terminates after 26 000 to 40 000
evaluations, or when a one hour execution time limit is reached.
If a similar time limit is imposed for the Cen-IF instances, and
ignoring time required by the MA to perform other functions,
such as Local-Search, Efficient-Split will be able to evaluate
at most approximately 1350, 300, and 350 chromosomes for
the three Cen-IF instances, respectively. Heuristic-Split will
be able to evaluate at most 47 000, 12000 and 12 500 chromo-
somes for the same problem instance. The impact of more chro-
mosome evaluations based on near-optimal instead of optimal
partitions can only be evaluated by implementing the proce-
dures within an MA for the MCAPRTIF.



5. Conclusion

Tests showed that Efficient-Split, developed in this paper,
was significantly faster than Two-Phase-Split that was based on
an existing splitting procedure for the CAPRTIF. On small in-
stances the difference in performance between the two proce-
dures was less prominent, highlighting the need for tests to be
performed on more realistically sized instances. With this be-
ing, to our knowledge, the first formal study on splitting pro-
cedures for the MCAPRTIF, the next step will be to extend
metaheuristics for the CARP and MCARP that rely on split-
ting procedures, such as Memetic Algorithms, at which point
the effect of using Heuristic-Split instead of Efficient-Split un-
der time-limits can be formally tested.
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Abstract

This online companion contains detailed illustrations of splitting procedures from the manuscript Splitting procedures
for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities, submitted for
publication to Operations Research Letters.

1. Splitting procedures for the MCARPIF

In this section we show how the procedure of Lacomme et al. [2] can be extended for the MCARPIF. Figure 1
shows the partitioning of § = [a,b,c,d, e] into a feasible MCARPIF route with subtrips. The tour of Figure 1a is
partitioned by building H = (V’,A’), with n + 1 vertices, {v,...,v,} € V’, indexed from 0 onward (Figure 1b). Each
sub-tour, S;_,;, with load less than Q represents a feasible subtrip and is modeled as (v;_;,v;) € A’. Only feasible
subtrips are modelled in A’. The cost of arc (v;_1, ;) is equal to the subtrip cost, which includes the service cost of
its tasks, the deadheading cost between tasks, and the cost of visiting an IF facility after S ; and traveling to S ;; if
J < n, or traveling from S ; to an IF and then the depot if j = n. For example, the feasible sub-tour §,_4 = [b,c,d]
is modeled by the arc (v,v4) in H, and its weight is 79, which is the cost of servicing tasks b, ¢ and d, equaling
5+ 5+ 5 =15, plus the deadheading costs between tasks, equaling 20 + 20 = 40, plus the cost of going to @, and to
task e, equaling 14 + 10 = 24. The shortest path from vertex O to n in H represents the optimal partition of § with IF
visits (Figure 1c¢). Once H has been constructed, Bellman’s algorithm for DAGs can efficiently compute the shortest
path from vertex vg to v, in H.

2. Splitting procedures for the MCARPTIF

To illustrate the Two-Phase-Split methods, the same giant tour in Figure la is used and a route time restriction
of L = 70 is imposed. It is further assumed that the shortest paths from the depot to tasks in S, excluding task a,
are through the respective IFs. For the first DAG, H, each of the "(”T_l) sub-tours of § is included in H, and each
one is treated as a single route, starting at the depot, and ending with an IF and depot visit. Each sub-tour can be
optimally partitioned with IF visits using Efficient-1F-Split. The result of the first phase on the example route is
shown in Figure 2, in which the optimal partition of each sub-tour is calculated and given separately. Next, as shown
in Figure 3, the algorithm uses the feasible sub-tours with total cost not exceeding L to construct the second DAG,
H = (V",A"”), with n + 1 vertices, {vo,...,v,} € V", indexed from O onward (Figure 3a). Each sub-tour §;_,; is
modeled by one arc (v;_|, v}) in A”, weighted by the route’s partitioned cost, given by the cost of the shortest path in
H from v;_; to v;. In Figure 3a, arc (v, v}) in H" models the route starting with task §; = a and ending with task
S, = b. Referring back to H (Figure 2), the optimal IF partition cost of this route is 67, which becomes the weight

of arc (vj,v) in H’. Since the IF partitioned cost of the route is less than L, it is included in H’. The shortest path
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(a) Initial giant tour S = [a, b, ¢, d, €] to be partitioned with IF visits. While not directly included
in §, it is assumed that the giant tour always starts at the depot, and ends with an IF and depot
visit, as shown in the figure.
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(b) Auxiliary Directed Acyclic Graph, H, with the shortest path shown in bold representing the
optimal IF partitions. Cost labels are shown in each vertex.

c(5)

Depot

(c) Optimally partitioned route with IF visits, obtained through H. The total cost of the parti-
tioned route is 146, which is equal to the shortest path from vg to vs in H.

Figure 1: Example of a splitting procedure for the MCARPIF, with vehicle capacity Q = 9 and unloading cost A = 0.
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from vertex v;, to v, in H’ represents the optimal route partition of §, and the optimal IF visits for each route can
be traced back to H. The optimal route and IF partitions for the giant route in Figure la are shown in Figure 3b.
When constructing H, the optimal placement of IFs does not have to be calculated for all sub-tours. If the optimally

be(62) de(56)

/
168 L e(30)

(a) Second auxiliary Directed Acyclic Graph, H’, constructed using H with the shortest path
shown in bold representing the optimal route partitions. Cost labels are shown in each vertex.

Depot

Route 1 = Route 2 =+ =— Route3 = = = =
(b) Optimally partitioned giant tour with each route further partitioned with IF visits, as given
by the shortest paths in H and H'.

Figure 3: Example of a splitting procedure for the MCLARPIF, with vehicle capacity Q = 9, unloading cost 4 = 0 and route time restriction L = 70.

partitioned sub-tour § ;_, ; exceeds L, then all the partitioned sub-tours S ;_, j.x, where 0 < k < n — j, will also exceed L
and can thus be skipped in the construction of H.
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