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Summary
This paper addresses the problem of output feedback stabilization for nonlinear systems with sampled
and delayed output measurements. Firstly, sufficient conditions are proposed to ensure that a class of
hybrid systems are globally exponentially stable. Then, based on the sufficient conditions and a dedicated
construction continuous observer, an output feedback control law is presented to globally exponentially
stabilize the nonlinear systems. The output feedback stabilizer is continuous and hybrid, and can be derived
without discretization. The maximum allowable sampling period and the maximum delay are also given. At
last, a numerical example is provided to illustrate the design methods.
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1. Introduction

Recently, great progress has been made in the problem of design global asymptotic output feedback
control laws for nonlinear systems. For example, the problem of global asymptotic stabilization
by output feedback has been studied for a class of nonlinear systems [1]. The nonlinear terms
considered in [1] admit an incremental rate depending on the measured output. In [2], the author
introduced a technique to stabilize a fully linearizable nonlinear system. The technique was utilized
in [3] and [4]. In [5], a linear output feedback controller with dynamic high gain was presented to
globally regulate a class of nonlinear systems.

It should be noted that the above results concerned with output feedback stabilization are based on
continuous time analysis. However, for a networked control system, the output is usually transmitted
through a shared band-limited digital communication network. It is only available at discrete-time
instants. Therefore, it is interesting to study output feedback stabilization for continuous systems
with sampled and delayed measurements. More recently, three main approaches are proposed
to deal with these problems. The first one is based on discrete time analysis by introducing a
consistent approximation of the exact discretized model [6, 7]. A quadratic observer coupled
with a quadratic dynamic feedback was proposed to achieve quadratic approximated feedback
linearization with stability [7]. The second one is based on continuous time analysis followed by
discretization [8, 9, 10, 11]. For example, sampled-data output feedback stabilization of nonlinear
systems by using high-gain observers has been considered in [8, 9, 10]. In [11], multirate sampled-
data output feedback control of a class of nonlinear systems was presented based on high gain
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observers. By carefully choosing the sampling period, the authors proposed a sampled-data output
feedback controller to make the closed-loop systems regionally or globally stable [12]. The results
obtained in [12] are based on the assumption that full-state are measurable. The third one is based
on a mixed continuous and discrete time analysis without discretization [13, 14, 15, 16, 17, 18]. For
example, based on the existence of a controller and a special Lyapunov function satisfying certain
L2 gain conditions, the authors presented a sampled-data output feedback stabilizer to ensure that
the closed-loop system is globally stable by using a hybrid system method [13]. It should be noted
that the closed-loop system is required to transformed into the hybrid system introduced in [20].
In [17, 19], a state feedback law has been constructed to achieve global asymptotic stabilization for
nonlinear systems under sampled and delayed measurements, and with inputs subject to delay and
zero-order hold. There are few results on sampled-data output feedback stabilization for nonlinear
systems in lower-triangular form with delayed output measurements, which motivates the present
study.

In this paper, our aim is to design an output feedback stabilizer for a class of nonlinear systems
with sampled and delayed measurements. Firstly, sufficient conditions are given to ensure that a
class of hybrid systems are globally exponentially stable. The sufficient conditions are derived
by constructing an iteration with a parameter. Then, based on the sufficient conditions and a
dedicated construction continuous observer, an output feedback control law is presented to globally
exponentially stabilize the nonlinear systems. The output feedback stabilizer is continuous and
hybrid. It has simple and explicit form and can be derived without discretization. The maximum
allowable sampling period and the maximum delay are also given.

This paper is organized as follows. In Section 2, some definitions are presented for hybrid
systems. Then, global exponential stable sufficient conditions are given for the hybrid systems. In
Section 3, continuous output feedback stabilizer are presented for a class of single-output nonlinear
systems with sampled and time delayed measurements. Section 4 provides an example to illustrate
the validity of the proposed design methods. Finally, the paper is concluded in Section 5.

2. Global exponential stability for hybrid systems

Let Rn denote n-dimension real space and R+ denote 1-dimension positive real space. For any
x ∈ Rn, let ‖x‖ = (xT x)1/2. For a continuous function f : R→ R and t ∈ R, let lims→t− f(s) =
lims→t,s<t f(s). For a matrix P ∈ Rn×n, λmax(P ) and λmin(P ) denote the largest and the smallest
eigenvalues of P , respectively.

Consider the following system:




ẋ(t) = f(x(t), x(tk)),
tk+1 = tk + Tk+1,

x(tk+1 + τk+1) = limt→tk+1+τk+1
− x(t),

t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0,

(1)

where {tk}k∈N is a sequence of positive numbers defined by tk+1 = tk + Tk+1, Tk+1 denotes
the k + 1th sampling period, τk denotes time delay and has an upper bound τ , that is τk ≤ τ .
Let Tmax = max{Tk} and Tmin = min{Tk}. We also assume that τ ≤ Tmin, which can be taken
non-strict with the understanding that in case the update instant tk + τk coincides with the next
transmission instant tk+1, the update is performed before the next sample is taken. The function
f : Rn × Rn → Rn is continuous. It should be noted that x(t) is continuous on tk+1 + τk+1,
therefore, it is continuous on [t0,∞).

Remark 1
Sampling arises simultaneously with input and output delays in many control problems, especially
in control over networks. Similar systems to the form (1) arise frequently in certain applications in
mathematical control theory and numerical analysis, which have been investigated in [15, 17, 19,
21, 22, 23, 24]. For example, the authors proposed a system-theoretic framework to study hybrid
uncertain systems [21]. They also presented characterizations of robust global asymptotic output
stability. In [15], observer was designed for certain classes of nonlinear systems with both sampled
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and delayed measurements by using a small gain approach. Continuous-discrete observers have also
been studied for multi-input and multi-output state affine systems with sampled and delayed output
measurements [24].

We next give the following definitions for the hybrid system (1).

Definition 1
Consider the system (1), for each (t0, x0) ∈ R+ × Rn, there exists a piecewise continuous function
t → x(t, t0, x0) with the initial condition x(t) = x0 (t ∈ [t0, t0 + τ0]) satisfying (1). We call that
x(t, t0, x0) is a solution of the system (1). If f(·) satisfies that f(0, 0) = 0, and there exist
a non-decreasing function N : R+ → R+ and a positive constant λ such that ‖x(t, t0, x0)‖ <
e−λ(t−t0)N(‖x0‖) for any x0 ∈ Rn, then, the system (1) is globally exponentially stable.

Now, we give the following sufficient conditions to ensure the hybrid system (1) is globally
exponentially stable.

Theorem 1
Suppose there exist three positive constants ρ1, α1, β1, and a positive definite and radially
unbounded function V (x(t)) defined on [t0,∞), satisfying the following conditions

dV (x(t))
dt

∣∣∣∣
(1)

≤ −α1V (x(t)) + β1V (x(tk)), t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0, (2)

and
max
k≥0

{
ρ1e

−α1(Tk+1−τk) + e−α1(Tk+1+τk+1−τk)
}

< 1,

max
k≥0

{
(
β1

α1
+ ρ1

β1

α1
−β1

α1
e−α1(Tk+1−τk)(e−α1τk+1 + ρ1))/ρ1

}
< 1. (3)

Then, the system (1) is globally exponentially stable.

Proof: The main point of the proof is to construct an iteration with a parameter. Then, a convergent
sequence with the parameter can be obtained based on the iteration. Therefore, the exponential
stability of the system (1) can be derived.

Multiplying the both sides of (2) by eα1t yields

eα1t d

dt
V (x(t))|

(1)
+ eα1tα1V (x(t)) ≤ eα1tβ1V (x(tk)), t ∈ [tk + τk, tk+1 + τk+1).

Integrating the above differential inequality from tk + τk to t, we have

V (x(t)) ≤ e−α1(t−tk−τk)V (x(tk + τk)) + β1
α1

V (x(tk))
− β1

α1
e−α1(t−tk−τk)V (x(tk)), t ∈ [tk + τk, tk+1 + τk+1).

(4)

Note that x(t) is continuous on [t0,∞). Let t = tk+1 + τk+1 and t = tk+1, respectively, then

V (x(tk+1 + τk+1)) ≤ e−α1(Tk+1+τk+1−τk)V (x(tk + τk)) + β1
α1

V (x(tk))
− β1

α1
e−α1(Tk+1+τk+1−τk)V (x(tk)),

and

V (x(tk+1)) ≤ e−α1(Tk+1−τk)V (x(tk + τk)) +
β1

α1
V (x(tk))− β1

α1
e−α1(Tk+1−τk)V (x(tk)).

From the above two inequalities, we have

V (x(tk+1 + τk+1)) + ρ1V (x(tk+1)) ≤ (e−α1(Tk+1+τk+1−τk) + ρ1e
−α1(Tk+1−τk))V (x(tk + τk))

+ (
β1

α1
+ ρ1

β1

α1
− β1

α1
e−α1(Tk+1−τk)(e−α1τk+1 + ρ1))V (x(tk)), k ≥ 0. (5)
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Let η1 = max{maxk≥0{ρ1e
−α1(Tk+1−τk) + e−α1(Tk+1+τk+1−τk)}, maxk≥0{( β1

α1
+ ρ1

β1
α1
−

β1
α1

e−α1(Tk+1−τk)(e−α1τk+1 + ρ1))/ρ1}}. From (3), we have 0 < η1 < 1. Therefore, it follows
from (5) that

V (x(tk+1 + τk+1)) + ρ1V (x(tk+1)) ≤ η1[V (x(tk + τk)) + ρ1V (x(tk))], k ≥ 0. (6)

Applying iteratively (6) with the parameter ρ1, we have

V (x(tk + τk)) + ρ1V (x(tk)) ≤ ηk
1 [V (x(t0 + τ0)) + ρ1V (x(t0))], k ≥ 0, (7)

that is, the sequence {V (x(tk + τk)) + ρ1V (x(tk))} is convergent. It follows from (4) and (7) that

V (x(t)) ≤ V (x(tk + τk)) + β1
α1

V (x(tk)) ≤ ηk
1 (1 + β1

α1ρ1
)[V (x(t0 + τ0)) + ρ1V (x(t0))],

t ∈ [tk + τk, tk+1 + τk+1).

For any t > t0 + τ0, there exists k ≥ 0 such that t ∈ [tk + τk, tk+1 + τk+1). Then, t−t0−τ0
Tmax+τ − 1 ≤ k.

Therefore,

V (x(t)) ≤ η
t−t0−τ0
Tmax+τ −1

1 (1 + β1
α1ρ1

)[V (x(t0 + τ0)) + ρ1V (x(t0))

= e
t

Tmax+τ ln η1η
−t0−τ0
Tmax+τ−1

1 (1 + β1
α1ρ1

)[V (x(t0 + τ0)) + ρ1V (x(t0))],

which implies that the system (1) is globally exponentially stable.
For Theorem 1, we have the following corollaries.

Corollary 1
If there exist three positive constants ρ1, α1, β1 and a positive definite and radially unbounded
function V (x(t)) defined on [t0,∞), such that the condition (2) and

e−α1(Tmin−τ)(1 + ρ1) < 1,
β1(1 + ρ1)

α1ρ1
< 1, (8)

hold, then, the system (1) is globally exponentially stable.

Corollary 2
If there exist two positive constants α1, β1 and a positive definite and radially unbounded function
V (x(t)) defined on [t0,∞), satisfying the condition (2) and

α1 > β1, Tmin − τ >
β1

α1(α1 − β1)
, (9)

then, the system (1) is globally exponentially stable.

Proof: The condition (9) implies that there exists ρ > 0 such that eα1(Tmin−τ) − 1 > α1(Tmin −
τ) > ρ > β1

α1−β1
. Therefore, the conditions (8) hold. The proof is completed.

Remark 2
The condition (9) can hold for sufficiently large value of Tmin, that is, there is no upper bound of
Tk + τk. In fact, the inequality (4) holds on [tk + τk, tk+1 + τk+1]. If Tk is sufficiently large, we
have

V (x(tk+1 + τk+1)) <
β1

α1
V (x(tk + τk)).

Then,
V (x(tk + τk)) < ( β1

α1
)kV (x(t0 + τ0)) < ( ρ1

1+ρ1
)kV (x(t0 + τ0)),

which implies that the system (1) is globally exponential stable.
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3. Continuous output feedback stabilization for a class of nonlinear systems with 
sampled and delayed measurements

In this section, our aim is to propose an output feedback stabilization for the following system




ẋ1(t) = x2(t) + f1(x1(t)),
...

ẋn−1(t) = xn(t) + fn−1(x1(t), x2(t), · · · , xn−1(t)),
ẋn(t) = fn(x1(t), x2(t), · · · , xn(t)) + u(t),
y(t) = x1(t),

(10)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input. We make the following assumptions. The output
y(t) is sampled at instants tk and is available at instants tk + τk, where {tk} is a strictly increasing
sequence and satisfies limk→∞ tk = ∞, and τk > 0 represents the transmission delay. The sampling
interval Tk+1 = tk+1 − tk satisfies 0 < Tmin ≤ tk+1 − tk ≤ Tmax for two positive real numbers
Tmin, Tmax and for all k = 0, 1, · · · ,∞. The transmission delays τk are unknown, but have an upper
bound τ . We also assume that τ ≤ Tmin, that is, the measures sampled at instants tk are available
for the observer before the next measures sampled at instants tk+1. We assume that fi(x1, · · · , xi)
(i = 1 · · · , n) are unknown and satisfy the following conditions

|fi(x1, · · · , xi)| ≤ l1(|x1|+ · · ·+ |xi|), i = 1, · · · , n, (11)

where l1 is a positive real number.

Remark 3
The system (10) is firstly introduced in [28], where a linear state feedback control law has been
proposed to achieve global exponential stability without considering sampled measurements. Under
the same condition, the authors in [30] have presented a linear dynamic output compensator to
globally exponentially stabilize the system (10). In [29], an exponential observer has been built for
a biological system. Global asymptotic stabilization via output feedback has also been studied for
nonlinear systems similar to (10) in [1]. The dynamics considered in [1] are in a feedback form and
the nonlinear terms have an incremental rate which depends on the measured output. In [17, 19], a
state feedback law has been constructed to achieve global asymptotic stabilization for the nonlinear
system (10) under sampled and delayed measurements, and with inputs subject to delay and zero-
order hold.

Next, we construct the following output feedback stabilizer




˙̂x1(t) = x̂2(t) + La1e1(tk),
...

˙̂xn−1(t) = x̂n(t) + Ln−1an−1e1(tk),
˙̂xn(t) = Lnane1(tk) + u(t),
x̂i(tk+1 + τk+1) = limt→(tk+1+τk+1)− x̂i(t),
i = 1, · · · , n, t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0,

(12)

u(t) = −[Lnk1x̂1(t) + Ln−1k2x̂2(t) + · · ·+ Lknx̂n(t)], (13)

where x̂(t) = x̂(t0) = x̂0 for t ∈ [t0 − Tmax − τ, t0 + τ0] and L ≥ 1, e1(tk) = x1(tk)− x̂1(tk),
ai > 0 and ki > 0, i = 1, 2, · · · , n are the coefficients of the Hurwitz polynomial sn + w1s

n−1 +
· · ·+ wn−1s + wn, with wi = ai or wi = kn−i+1. Now, we give the definition of output feedback
stabilization for the system (10).

Definition 2
We call that the n-dimensional system (10) is globally exponentially stabilizable under the
condition (11) and x(t) = x0 for t ∈ [t0 − Tmax − τ, t0], if there exists an n-dimensional
dynamical system (12) such that the 2n-dimensional subsystem (10)-(12) satisfies ‖x̂(t)‖ ≤
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e−λ(t−t0)N(‖x̂0‖, ‖x0‖) and ‖x̂(t)− x(t)‖ ≤ e−λ(t−t0)N(‖x̂0‖, ‖x0‖) for any x0 ∈ Rn and x̂0 ∈
Rn, where λ > 0 and N : R+ → R+ is a non-decreasing function. Or, we call that n-dimensional
dynamical system (12) globally exponentially stabilizes the n-dimensional system (10) under the
condition (11).

The following lemma is also useful for our main results.

Lemma 1
[25] For any positive definite matrix U ∈ Rn×n, scalar γ > 0, vector function w : [0, γ] → Rn such
that the integrations concerned are well defined, the following inequality holds

[∫ γ

0

w(s)ds

]T

U

[∫ γ

0

w(s)ds

]
≤ γ

[∫ γ

0

w(s)T Uw(s)ds

]
.

Let ei(t) = xi(t)− x̂i(t) denote the estimation error of the high gain observer (12). Then, the
error dynamics is given by





ė1(t) = e2(t)− La1e1(tk) + f1(x1(t)),
...

ėn−1(t) = en(t)− Ln−1an−1e1(tk)
+fn−1(x1(t), x2(t), · · · , xn−1(t)),

ėn(t) = −Lnane1(tk) + fn(x1(t), x2(t), · · · , xn(t))
ei(tk+1 + τk+1) = limt→(tk+1+τk+1)− e(t),

i = 1, · · · , n, t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0.

(14)

In order to simplify the analysis, we consider the following coordinate transformation

εi(t) =
ei(t)
Li

, zi(t) =
x̂i(t)
Li

, i = 1, 2, · · · , n.

The closed-loop system (10) and (14) can be expressed as




ε̇1(t) = Lε2(t)− La1ε1(t) + La1(ε1(t)− ε1(tk)) + f1
L ,

...
ε̇n−1(t) = Lεn(t)− Lan−1ε1(t) + Lan−1(ε1(t)− ε1(tk)) + fn−1

Ln−1 ,

ε̇n(t) = −Lanε1(t) + Lan(ε1(t)− ε1(tk)) + fn

Ln ,
εi(tk+1 + τk+1) = limt→(tk+1+τk+1)− εi(t), i = 1, · · · , n,

(15)

and 



ż1(t) = Lz2(t) + La1ε1(t)− La1(ε1(t)− ε1(tk)),
...

żn−1(t) = Lzn(t) + Lan−1ε1(t)− Lan−1(ε1(t)− ε1(tk)),
żn(t) = −L(k1z1(t) + · · ·+ knzn(t)) + Lanε1(t)− Lan(ε1(t)− ε1(tk)),
zi(tk+1 + τk+1) = limt→(tk+1+τk+1)− zi(t),

i = 1, · · · , n, t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0.

(16)

Now, we give the following results.

Theorem 2
There exists an output feedback control law in the form of (12) which globally exponentially
stabilizes the system (10) with the condition (11), if ai > 0 and ki > 0 (i = 1, · · · , n) are selected
such that there exist two symmetric positive definite matrices P and Q such that

AT P + PA ≤ −I, (17)

BT Q + QB ≤ −2I, (18)
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are satisfied, and L satisfies

L > {1, l1, 6nl1λ1, 2(β2 + 1)nl1λ1}, (19)

and
Tmax + τ ≤ 1

c3L , Tmin − τ > ( c2
c1−c2

) 1
c1L , (20)

where c1 = min{ 1
8λ1(β2+1) ,

1
8λ3
}, c3 > max{8, 16nā1(λ2

1(β2 + 1) + λ2
3) + c1,

κ1
c1

,
κ1+

√
κ2
1+4c3

1κ1

2c2
1

},

c2 = κ1
c2
3

, κ1 = 16nā2
1(λ

2
1(β2+1)+λ2

3)
λ2(β2+1) , and ā1 = max{a2

i }, λ1 = λmax(P ), λ2 = λmin(P ),

λ3 = λmax(Q), λ4= λmin(Q), β2 = 4nā1λ
2
3, A =




−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0


 , B =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−k1 −k2 · · · −kn


.

Proof: Consider the following positive definite function

V1(t) = (β2 + 1)ε(t)T Pε(t), V2(t) = z(t)T Qz(t), (21)

where ε(t) = [ε1(t), · · · , εn(t)]T , z(t) = [z1(t), · · · , zn(t)]T . Let F = ( f1
L , f2

L2 , · · · , fn

Ln )T . Then,

dV1(t)
dt

∣∣
(15)

+ dV2(t)
dt

∣∣
(16)

= L(β2 + 1)ε(t)T (PA + AT P )ε(t) + 2(β2 + 1)ε(t)T PF

+2L(β2 + 1)ε(t)T P [a1, · · · , an]T (ε1(t)− ε1(tk)) + Lz(t)T (QB + BT Q)z(t)
+2Lz(t)T Q[a1, · · · , an]T ε1(t)− 2Lz(t)T Q[a1, · · · , an]T (ε1(t)− ε1(tk))

≤ −L(β2 + 1)ε(t)T ε(t) + 1
4L(β2 + 1)ε(t)T ε(t) + 4L(β2 + 1)λ2

1nā1(ε1(t)− ε1(tk))2

+2(β2 + 1)ε(t)T PF − 2Lz(t)T z(t) + Lz(t)T z(t) + Lnλ2
3ā1ε1(t)2 + 1

4Lz(t)T z(t)
+4Lnā1λ

2
3(ε1(t)− ε1(tk))2

≤ − 3
4L(β2 + 1)ε(t)T ε(t) + 4L(β2 + 1)λ2

1nā1[ε1(t)− ε1(tk)]2 + 2(β2 + 1)ε(t)T PF
− 3

4Lz(t)T z(t) + Lnλ2
3ā1ε

2
1(t) + 4Lnā1λ

2
3[ε1(t)− ε1(tk)]2, t ∈ [tk + τk, tk+1 + τk+1).

(22)

In addition, from the condition (11), it follows that
∣∣2ε(t)T PF

∣∣ ≤ 2(εT (t)Pε(t))1/2(FT PF )1/2 ≤ 2nl1λ1(εT (t)ε(t))1/2

×[(εT (t)ε(t))1/2 + (z(t)T z(t))1/2] ≤ nl1λ1(3εT (t)ε(t) + zT (t)z(t)).
(23)

By Lemma 1, we have

| ε1(t)− ε1(tk) |2≤ (t− tk)
∫ t

tk
| ε̇1(s) |2 ds

≤ 4(t− tk)L2
∫ t

tk
[ε2(s)2 + l21

L2 (z1(s)2 + ε1(s)2) + ā1ε1(tk)2]ds, t ∈ [tk + τk, tk+1 + τk+1).
(24)

From (22), (23) and (24), it follows that

dV1(t)
dt

∣∣
(15)

+ dV2(t)
dt

∣∣
(16)

≤ −(β2 + 1)[ 34L− 3nl1λ1]ε(t)T ε(t) + 16(β2 + 1)L3

×nā2
1λ

2
1(t− tk)2ε1(tk)2 + 16(β2 + 1)L3nā1λ

2
1(t− tk)

∫ t

tk
[ε1(s)2 + ε2(s)2 + z1(s)2]ds

−( 3
4L− (β2 + 1)nl1λ1)z(t)T z(t) + Lnλ2

3ā1ε(t)T ε(t) + 16L3nā2
1λ

2
3(t− tk)2ε1(tk)2

+16L3nā1λ
2
3(t− tk)

∫ t

tk
[ε1(s)2 + ε2(s)2 + z1(s)2]ds, t ∈ [tk + τk, tk+1 + τk+1).

Construct the following auxiliary integral function:

V3(t) =
∫ t

t−Tmax−τ

∫ t

ρ
[ε(s)T ε(s) + z(s)T z(s)]dsdρ, t ∈ [t0,∞).
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We have

dV3(t)
dt = (Tmax + τ)(ε(t)T ε(t) + z(t)T z(t))− ∫ t

t−Tmax−τ
(ε(s)T ε(s) + z(s)T z(s))ds, (25)

and
V3(t) ≤ (Tmax + τ)

∫ t

t−Tmax−τ
[ε(s)T ε(s) + z(s)T z(s)]ds, t ∈ [t0,∞). (26)

Now, consider the following Lyapunov-Krasovskii function

V (t) = V1(t) + V2(t) + L2V3(t). (27)

From (19), (25), (25) and (26), we can obtain

dV (t)
dt

|
(15),(16)

≤ −[(β2 + 1)(
3
4
L− 3nl1λ1)− nλ2

3ā1L]ε(t)T ε(t)− [
3
4
L− (β2 + 1)nl1λ1]z(t)T z(t)

+(Tmax + τ)L2[ε(t)T ε(t) + z(t)T z(t)] + [16L3nā1(λ2
1(β2 + 1) + λ2

3)(t− tk)− L2]
∫ t

t−Tmax−τ

[ε(s)T ε(s) + z(s)T z(s)]ds + 16L3nā2
1(λ

2
1(β2 + 1) + λ2

3)(t− tk)2ε1(tk)2

≤ − 1
λ1

[
1
4 − (Tmax + τ)L

]
LV1(t) + [16nā1(λ2

1(β2 + 1) + λ2
3)− 1

(Tmax+τ)L ]L3V3(t)

− 1
λ3

[
( 1
4 − (Tmax + τ)L

]
LV2(t) + 16L3nā2

1(λ
2
1(β2+1)+λ2

3)
λ2(β2+1) (Tmax + τ)2V1(tk).

Note that L > {6nl1λ1, 2(β2 + 1)nl1λ1}, β2 = 4nλ2
3ā1, Tmax + τ < 1

c3L , then, we have

dV (t)
dt |

(15),(16)
≤ − 1

λ1(β2+1)

(
1
4 − 1

c3

)
LV1(t) + [16nā1(λ2

1(β2 + 1) + λ2
3)− c3]L3V3(t)

− 1
λ3

(
1
4 − 1

c3

)
LV2(t) + 16nā2

1(λ
2
1(β2+1)+λ2

3)

λ2(β2+1)c2
3

LV1(tk).

Since c3 > max{8, 16nā1(λ2
1(β2 + 1) + λ2

3) + c1,
κ1
c1

,
κ1+

√
κ2
1+4c3

1κ1

2c2
1

}, c1 = min{ 1
8λ1(β2+1) ,

1
8λ3
},

c2 = κ1
c2
3

, then,

dV (t)
dt |

(15),(16)
≤ −c1LV1(t)− c1L

3V3(t)− c1LV2(t) + c2LV1(tk)
≤ −c1LV (t) + c2LV (tk), t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0.

Let α1 = c1L, β1 = c2L, and (ε(t, t0, ε0, z0), z(t, t0, ε0, z0)) denote the solution of (15)-
(16). Then, Tmin − τ > c2

c1(c1−c2)L
implies that there exists ρ1 > 0 such that η1 =

max{e−α1(Tmin−τ)(1 + ρ1),
β1(1+ρ1)

α1ρ1
} < 1. Using the same methods as in Theorem 1, we obtain

that V (ε(t)) ≤ e
t

Tmax+τ ln η1η
−t0−τ0
Tmax+τ−1

1 [V (ε(t0 + τ0, t0, ε0, z0) + ρ1V (ε(t0, t0, ε0, z0))], t ≥ t0.
Then, ‖x̂(t)− x(t)‖ ≤ e

t
Tmax+τ ln η1N1 and ‖x̂(t)‖ ≤ e

t
Tmax+τ ln η1N2, t ≥ t0, where N1 =

L2(n−1)

(β2+1)λ2
η
−t0−τ0
Tmax+τ−1

1 [V (ε(t0 + τ0, t0, ε0, z0) +ρ1 V (ε(t0, t0, ε0, z0))] and N2 = L2(n−1)

λ4

η
−t0−τ0
Tmax+τ−1

1 [V (ε(t0 + τ0, t0, ε0, z0) +ρ1V (ε(t0, t0, ε0, z0))].
Next, we will prove that any solutions of (10) don’t finite-time escape on the interval

[t0, t0 + τ0]. In fact, from (13), we have u(t) = u0 = −[Lnk1x̂1(t0) + Ln−1k2x̂2(t0) +
· · ·+ Lknx̂n(t0)] for t ∈ [t0, t0 + τ0]. Let f̃(x(t)) = [x2(t) + f1(x1(t)), · · · , xn(t) +
fn−1(x1(t), · · · , xn−1(t)), fn(x1(t), · · · , xn(t))]T + ũ, where ũ = [0, · · · , 0, u0]T . Then, the
system (10) with the control u(t) = u0 on [t0, t0 + τ0] can be expressed as

ẋ(t) = f̃(x(t)) + ũ, t ∈ [t0, t0 + τ0]. (28)

Integrating the differential equation (28) from t0 to t yields,

x(t) = x0 +
∫ t

t0

(f̃(x(s)) + ũ)ds, t ∈ [t0, t0 + τ0].
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Moreover, it follows from (11) that there exists a constant l2 > 0 such that ‖f̃(x(t))‖ ≤ l2‖x(t)‖.
Therefore,

‖x(t)‖ ≤ ‖x0‖+
∫ t

t0

(‖f̃(x(s))‖+ |u0|)ds ≤ ‖x0‖+
∫ t

t0

(l2‖x(s)‖+ |u0|)ds, t ∈ [t0, t0 + τ0].

By Gronwell Lemma [31], we have

‖x(t)‖ ≤ (‖x0‖+ τ0|u0|)el2τ0 , t ∈ [t0, t0 + τ0].

The proof is completed.
From Theorem 2, we also have the following results.

Corollary 3
There exists an output feedback control law in the form of (12) which globally exponentially
stabilizes the system (10) with the condition (11), if ai > 0 and ki > 0 (i = 1, · · · , n) are selected
such that there exist two symmetric positive definite matrices P , Q and a constant L ≥ 1 such
that (17), (18), (19) and

τ < 1
ρ2L ( 1

c3
− 1

c4
), Tmax < 1

c3L − 1
ρ2L ( 1

c3
− 1

c4
), Tmin > 1

c4L + 1
ρ2L ( 1

c3
− 1

c4
), (29)

are satisfied, where ρ2 > 2, c4 = (c1−c2)c1
c2

, c1, c3, c2 and κ1 are given in Theorem 2.

Proof: Note that c2 = κ1
c2
3

. Then c3 > κ1
c1

implies that c1 > κ1
c3

= κ1
c2
3
c3 = c2c3 > 8c2. Therefore,

c4 > 0. On the other hand, from c3 >
κ1+

√
κ2
1+4c3

1κ1

2c2
1

, we have c2
1c

2
3 − c3κ1 − c1κ1 > 0. Then,

c3 <
c1(c1c2

3−κ1)
κ1

= c1( c1
c2
− 1). Therefore, c3 < c1(c1−c2)

c2
= c4. Thus, 1

c3
− 1

c4
> 0. Moreover, it is

easy to check that the conditions (29) imply that the conditions (20) are satisfied. The proof is
completed.

Remark 4
In this paper, Tmax, τ and Tmin depend on the high gain L ( c2, c3, c4, ρ2 are constants which are
independent on L). If the high gain L is large, Tmax and τ will be small to ensure the convergence. In
fact, if the nonlinear terms fi(x1, · · · , xi) change dramaticly, which means that l1 is very large, then,
L will be given larger to dominate the nonlinear terms. Since e1(tk) = x1(tk)− x̂1(tk) is a constant
on the interval [tk + τk, tk+1 + τk+1), then, Tk and τ will be very small to ensure exponential
convergence.

Remark 5
In [11], the authors described a class of continuous nonlinear systems at the sampled points by a
discrete-time equation. Then, they considered multirate sampled-data output feedback control of
the nonlinear systems without considering transmission delay. It should be noted that in some cases,
it will be difficult to obtain an exact discrete time model for a nonlinear system. Not to mention
that it is almost impossible to get an accurate approximation when there exist unknown nonlinear
functions. In [17, 19], a state feedback law has been constructed to achieve global asymptotic
stabilization for the nonlinear system (10) under sampled and delayed measurements, and with
inputs subject to delay and zero-order hold. The nonlinear terms fi(·) considered in [17, 19] are
Lipschitz. The sampled-data feedback is based on a predictor mapping, which can be constructed
inductively. In [13], a sampled-data output feedback stabilizer was presented to ensure that the
closed-loop system is globally stable based on a hybrid system method. However, the closed-loop
system is required to transformed into the hybrid system introduced in [20]. Whereas, the systems
considered in this paper are in lower-triangular form with sampled and delayed measurements, and
the nonlinear functions fi(x1, · · · , xi) are unknown. The proposed output feedback stabilizer is
continuous and hybrid. It has a simple and explicit form and can be derived without discretization.

Based on Theorem 2 and Corollary 3, an algorithm sketch to set the design parameters is presented
as follows.
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Step 1: We set the values of ai and ki such that (17) and (18) hold;
Step 2: We select L such that the condition (19) is satisfied;
Step 3: Calculate c1, select ρ2 > 2 and c3 such that c3 > max{8, 16nā1(λ2

1(β2 + 1) + λ2
3) +

c1,
κ1
c1

,
κ1+

√
κ2
1+4c3

1κ1

2c2
1

}, then calculate c2 and c4.

4. Numerical simulation

In this section, we use an example to show the effectiveness of our output feedback stabilization for
nonlinear systems with sampled and time delay measurements.

Example 1
A single-link robot arm system can be modeled by [26] or [27]





ż1(t) = z2(t),
ż2(t) = K

J2N z3(t)− F2(t)
J2

z2(t)− K
J2

z1(t)− mgd
J2

cos(z1(t)),
ż3(t) = z4(t),
ż4(t) = 1

J1
u(t) + K

J1N z1(t)− K
J2N z3(t)− F1(t)

J1
z4(t),

y = z1(t),

(30)

where J1, J2, K, N , m, g, d are known parameters, F1(t) and F2(t) are viscous friction coefficients
that are not precisely known. Suppose F1(t) and F2(t) are bounded by an unknown constant C > 0.
We introduce the change of coordinates x1 = z1, x2 = z2, x3 = K

J2N z3 − mgd
J2

, x4 = K
J2N z4 and

the pre-feedback υ = K
J2N

(
1
J1

u− mgd
J2

)
, which transforms (30) into





ẋ1(t) = x2(t),
ẋ2(t) = x3(t)− F2(t)

J2
x2(t)− K

J2
x1(t)− mgd

J2
(cos(x1(t))− 1),

ẋ3(t) = x4(t),
ẋ4(t) = υ + K2

J1J2N2 x1(t)− K
J2N x3(t)− F1(t)

J1
x4(t),

y(t) = x1(t).

Construct the following output feedback controller





˙̂x1(t) = x̂2(t) + a1L(y(tk)− x̂1(tk)),
˙̂x2(t) = x̂3(t)− F2(t)

J2
x̂2(t)− K

J2
x̂1(t)− mgd

J2
(cos(x̂1(t))− 1) + a2L

2(y(tk)− x̂1(tk)),
˙̂x3(t) = x̂4(t) + a3L

3(y(tk)− x̂1(tk)),
˙̂x4(t) = υ + K2

J1J2N2 x̂1(t)− K
J2N x̂3(t)− F1(t)

J1
x̂4(t) + a4L

4(y(tk)− x̂1(tk)),
u(t) = −[k1L

4x̂1(t) + k2L
3x̂2(t) + k3L

2x̂3(t) + k4Lx̂4(t)], t ∈ [tk + τk, tk+1 + τk+1),
x̂i(tk+1 + τk+1) = limt→tk+1+τk+1

− x̂(t), i = 1, · · · , 4, k ≥ 0.

In the following simulation, we apply the system parameters: K/J2 = 5, mgd/J2 = 4,
K2/(J1J2N

2) = 2, K/(J2N) = 3, F1(t)/J1 = 10, F2(t)/J2 = 10 and L = 2. The control gain
k1 = 40, k2 = 78, k3 = 49, k4 = 12 and the observer gain a1 = 4, a2 = 6, a3 = 4, a4 = 1. The
initial conditions of the whole system are (x1(0), x2(0), x3(0), x4(0), ) = (−5,−1, 4, 20) and
(x̂1(0), x̂2(0), x̂3(0), x̂4(0), ) = (5, 3,−1,−4). The sampling period Tk and the delay τk are given
as Tk = 0.1s and τk = 0.05s, respectively. The simulation results are shown in Fig. 1.
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Fig. 1. Trajectories of the states xi(t) (1 ≤ i ≤ 4) with the output feedback stabilizer.

5. Conclusion

In this paper, we addressed the problem of output feedback stabilization for nonlinear systems
with sampled and delayed output measurements. Firstly, sufficient conditions were proposed to
ensure that a class of hybrid systems are globally exponentially stable. Then, based on the sufficient
conditions and a dedicated construction continuous observer, an output feedback control law was
presented to globally exponentially stabilize the nonlinear systems. The output feedback stabilizer
was continuous and hybrid, and could be derived without discretization. The maximum allowable
sampling period and the maximum delay were also given.
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