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ABSTRACT 

The numerical study of nanofluids as a two-phase flow (both as solid nanoparticles and in 

a liquid phase) has brought about a new approach to simulation in this area. Due to the lack 

of hybrid models to fully predict the flow characteristics of nanofluids under different 

conditions, a case can be made for developing homogenous models from numerical 

simulations. In this study, the convective heat transfer and hydrodynamic characteristics of 

nanofluids are investigated by simulation with ANSYS-FLUENT. Accordingly, four 

common types of nanofluids in horizontal turbulent pipe flows have been chosen from 

experimental data available in literature for modelling purposes. These nanofluids are 

Al2O3, ZrO2, TiO2 and SiO2. The simulations are done using the built-in models of 

ANSYS-FLUENT, namely the Mixture model and Discrete Phase Modelling (DPM). 

Comparing various appropriate turbulence models, the Realisable and Standard k-ɛ models 

have provided the same results in most of the simulations. The Reynolds stress model 

(RSM) overestimates pressure drops compared with the other k-ɛ models, while the re-

normalisation group (RNG) model overestimates heat transfer coefficient. The anisotropy 

of instantaneous velocity in the RSM gives higher turbulent kinetic energy, dissipation rate 

and slip velocity between the particles and the main flow, which makes it an essential part 

of simulations. All the DPM results have shown the same trend, but with different 

percentages from measured data, which means that the number of particles plays a key role 

in the simulations. Any small weaknesses in DPM have a significant influence on the 

results due to the higher number of nanoparticles. 
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1. Introduction 

Boundary conditions, flow field characteristics and changing fluid thermal properties 

can affect the enhancement of convection heat transfer with nanofluids. The suspension 

of the nanoparticles in nanofluids creates a larger interaction surface to the volume ratio. 

Therefore, they can be distributed uniformly to bring about the most effective 

enhancement of heat transfer without causing a considerable pressure drop. These 

advantages introduce nanofluids as a desirable heat transfer fluid in the cooling, heating 

and lubrication industries. The thermal effects of nanofluids in both forced and free 

convection flows have been studied to a great extent in the last decade. A number of 

these investigations have been outlined in the review articles [1–3]. 

 

Experimental studies show that the variation in the convection heat transfer coefficient 

for nanofluids is mostly a function of the flow regime, i.e. laminar or turbulent, and the 

volume fraction of the nanoparticles [4–7]. In the turbulent flow, because of a viscose 

sublayer close to the heating wall, the impacts of the nanofluids’ properties on 

enhancing the heat transfer rate are extensive under some circumstances [8]. 

Transporting heat through nanofluids is substantially affected by two principal physical 

properties: viscosity and conductivity. There is no doubt that an increased nanoparticle 

concentration results in a rise in both properties, and the change in viscosity is more 

sensitive than the change in conductivity, as can be expected. Most studies have 

revealed that an increase in nanoparticle volume fraction has positive effects on the 

enhancement of heat transfer in forced convection [9–11]. 

 

The interaction between dispersed particles and continuous phase is important in 

turbulent flow because of the instantaneous fluid velocity, which influences the particle 

trajectory, and affects the flow regime. As a result of a higher order of velocity in 

turbulence and the nanosized diameter of the particles, gravity might not have a 

noticeable influence on the fluid flow. Brownian force, which is the major consequence 

of random motion and collisions with the carrier fluid molecules, also affects particle 

motion. Brownian motion can be more intense with a decreasing Reynolds number [12]. 

The effectiveness drops with an increase in bulk viscosity, while it increases with an 

inflation in temperature [1]. Besides Brownian force, thermophoretic force can be 
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caused by temperature gradients, which are strongly influenced by the particles’ 

diffusion with different time responses. The drag force over a particle, which is caused 

by inertia, is also an apparent force in nanofluids. Buongiorno [8] utilises scale analyses 

to introduce particle time response to each of the forces acting on a particle. Upon 

comparing the time responses, he concludes that the only major forces would be 

Brownian and thermophoretic forces. Furthermore, the impact of particle dispersion on 

turbulent flow and even shear stresses or a fluctuating term of velocity is negligible, and 

particles always follow the eddies and streamlines. Nevertheless, Xuan and Li [13] have 

pointed out that the presence of nanoparticles in the flow may expand the turbulence 

intensity and influence the particle dispersion and turbulence eddy. 

 

Because turbulent flow is more applicable in industry, and turbulence has a larger 

influence on nanoparticles, many researchers have been interested in experimental 

studies of nanofluids and heat transfer correlations. Some correlations for Nusselt 

numbers and friction factors have been investigated for different types of nanoparticles 

[5, 6, 13–16], but there are many more nanofluids that have not yet been investigated. 

 

Recently, Heyhat, Kowsary, Rashidi, Esfehani, Alem and Amrollahi [17] investigated 

the thermal and hydrodynamical effects of Al2O3 nanoparticles in a fully developed 

turbulent flow with a constant temperature on the wall in a horizontal tube. Despite the 

low nanoparticle volume fraction (2%), a 23% increase in heat transfer coefficient was 

achieved compared with pure water (the base fluid). Changes in the Reynolds number 

showed no significant effects on heat transfer. The findings of Heyhat et al. [17] 

illustrated that the pressure drop can be calculated with the traditional correlations that 

are introduced for pipe flow without nanoparticles. Williams, Buongiorno and Hu [18] 

also note this about Nusselt number and pressure drop. 

 

There are various models [19, 20] to characterise the improvement of heat transfer in a 

flow field with nanoparticles injected numerically and theoretically. In a two-phase 

numerical approach, there are some common methods, including Eulerian-Eulerian and 

Eulerian-Lagrangian interactions. The Mixture and Eulerian models are two important 

models of Eulerian-Eulerian interaction. Both the base fluid and particles are considered 
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to be continuous in the Eulerian model, and governing equations are solved separately 

for each phase. The Mixture model is like the Eulerian model, which has its own 

velocity field in each phase and occupies a certain fraction of each specified control 

volume. This excludes a set of mixture equations that solve iteratively for two phases 

with a strong coupling. On the other hand, Discrete Phase Modelling (DPM) is the most 

popular model of Eulerian-Lagrangian interaction for multiphase flows. In this model, 

the base fluid phase behaves as a continuous phase, and time-averaged Navier-Stokes 

equations will be solved. The solid phase is estimated by tracking a number of particles 

into the determined fluid flow by solving the related equation of motion. The exchange 

of energy, mass and momentum between the continuous and dispersed phases is also 

predictable. Some researchers explain that it seems unavoidable to neglect the slip 

velocity between the base fluid and particles due to extra forces, such as Brownian 

force, in nanofluid flow [13, 21, 22]. Consequently, the two-phase approach may be 

prescribed for the nanofluid simulations. 

 

A comparison between the single and Mixture models conducted by Bianco, Manc and 

Nardini [23] and Lotfi, Saboohi and Rashidi [24] in turbulent flow through a circular 

tube explains that the Mixture model achieves a better agreement with experimental 

correlation when compared with the single approach. They declared that both the single 

and Mixture models deliver the same results for a lower volume fraction of 

nanoparticles, but the difference begins to increase as the particle loading increases. 

Nonetheless, these studies demonstrated that accurate findings of the model could be 

reached by improving better correlations for the thermal properties of nanofluids, either 

experimentally or mathematically. Choosing the right model from literature is another 

challenge [25]. 

 

Huilier [26] compared different auto-correction functions for determining the 

instantaneous velocity of turbulence and showed that these functions influence the 

turbulence dispersion of the particles. It is also important to understand which function 

can properly interpret the real effect of the fluctuating term of the velocity on the 

particles. Therefore, it is essential to implement a model that captures the effects of 
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particle dispersion in three directions, although the auto-correlation functions provide 

the same value for small particles in all directions. 

 

Laín and Sommerfeld [22] employed DPM to calculate the effects of particles with an 

average diameter of 130 µm for turbulent flow in a pipe. They implemented all the 

forces that interact between the fluid and the particles. These forces consist of particle 

inertia, slip-shear lift, slip-rotational lift forces and gravity buoyancy. Laín and 

Sommerfeld [22] illustrated that reaching a given amount of normalised residuals of 

velocity or thermal balance is not a proper criterion of convergence solution for Euler-

Lagrange calculations. Particle motion equation is solved after a specified number of 

iterations, and source terms in momentum and energy equations are then updated. 

Therefore, the residuals iteratively jump to a new amount to again achieve a converged 

solution for the base fluid flow. Hence, Laín and Sommerfeld [22] compared the 

changes in velocity and turbulent kinetic energy at a specific place for various steps of 

given iterations.  

 

Literature shows that most of the numerical studies have focused on a Eulerian-Eulerian 

approach to nanofluid research and only a few studies have focused on a Lagrangian 

model of particle flow that considers the interaction between two phases, especially in 

nanofluids. In this study, two multiphase models, i.e. the Mixture model and DPM, are 

employed to simulate the thermal enhancement and pressure drop of nanofluid flow in a 

horizontal tube. To achieve this aim, commercial computational fluid dynamics code 

FLUENT 15 is operated to solve the governing equations. The geometry and flow 

conditions of three experimental works (Williams et al. [18], Azmi, Sharma, Sarma, 

Mamat, Anuar and Rao [27] and Teng, Hung, Jwo, Chen and Jeng [28]) have been 

considered. The flow in all these works is a turbulent flow in horizontal tubes. The 

hydrodynamic and heat transfer characteristics of the nanofluids are discussed in the 

first two studies, as the last study is only concerned with the pressure drop of the 

nanofluid. 
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2. Numerical modelling 

 

Four different tube sizes are simulated that are similar to the geometry constructed in 

Williams et al. [18], Azmi et al. [27] and Teng et al. [28]. Two of these tubes are 

insulated and only measure the nanofluid pressure drop. The first tube has an inside 

diameter of 0.01026 m and is 3 m in length [18]. The second tube has an inside diameter 

of 0.0035 m and is 0.6 m in length [28]. The other two tubes encountered constant heat 

flux over the outside of the tube. The third tube has an outside diameter of 0.0127 m, an 

inside diameter of 0.0094 m and is 3 m in length [18]. The fourth tube has an outside 

diameter of 0.016 m, an inside diameter of 0.019 m and is 1.5 m in length [27]. To 

produce nanofluids, four different nanoparticles have been suspended in water. These 

nanoparticles consist of Al2O3 [18], ZrO2 [18], SiO2 [27] and TiO2 [28]. The size of the 

nanoparticles is 46 nm for Al2O3, 60 nm for ZrO2, 20 to 30 nm for TiO2 (rectangular) 

and 22 nm for SiO2. The tests were carried out in turbulent flow up to a Reynolds 

number of 63 000. In order to ensure the existence of a parabolic axial velocity profile 

at the entrance of the test section, an extra entrance region similar to the actual physical 

structure was added to the numerical models as a hydrodynamical section. Mixture 

models and DPM are employed to solve the effects of nanoparticles in the base fluids. 

 

2.1 Mixture model 

The main assumption in the Mixture model is that the robust coupling between particles 

and fluid, as well as the slip velocity, is not so high. Nevertheless, each phase is 

assumed to have its own velocity field and to behave as a continuum. Each control 

volume contains a volume fraction of the primary and secondary phase. The governing 

equations of this model have been explained in some previous numerical studies [23, 

24, 29 and 30]. 

 

The mixture continuity, momentum and energy equations are given as follows: 
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where mq  and Tq  are diffusion flux due to conduction and turbulence respectively. It is 

noted that all the thermophysical properties of the Mixture model are borrowed from 

experimental work used in this study [18, 27 and 28]. The required constitutive 

equations are illustrated as follows: 
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where f  is the friction factor (drag function) [31], with the definition of the relative 

Reynolds number as
c

slipcp

p
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Re , where dp, c ,uslip and µm are particle diameter, 

fluid density, relative velocity between particle and fluid, and fluid viscosity 

respectively. The drift velocity pmu


 in the binary mixture is given as: 
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The continuity equation of the particle phase provides the distribution of concentration 

in the fluid as: 
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2.2 Discrete phase modelling 

In this model, the base fluid is only treated as a continuous phase and the momentum 

and energy equations are solved, while the secondary phase is tracked by a large 

number of particles, and the exchange of momentum, energy and mass with the 

continuous phase can influence the fluid flow. The force balance equation acting on the 

particle is expressed in a differential form to estimate the trajectory of the particles in 

the Lagrangian frame: 
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

 . By 

comparing only the drag force and inertia of the particle, as well as assuming the order 

of  
du

dt
~

U

t
, one finds: 

 

uslip~
τ

f t
U,               (13) 

τ=
ρ

p
dp

2

18μ
c

,               (14) 

t=
L

U
 ,               (15) 

 



9 
 

where L and U are the characteristic length and velocity of the fluid [32]. In this study, 

inlet velocity and tube diameter were chosen as U and L respectively. By defining the 

Stokes number as the ratio of particle relaxation time τ to fluid response time and the 

fact that friction factor is at the order of unity f~ O(1) from previous sections, or even 

for the case of the Stokes regime f=1, it can find: 

 

uslip~ O(StU)          (16) 

 

Since all the parameters were available from experimentation in literature [18, 27 and 

28], it was revealed that the order of slip velocity is 10-5 as uslip~ O(10-5). 

 

In this approach, the friction factor is redefined as: 
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Drag coefficient DC  is presented for smooth spherical particles [33]: 
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where constant values 1a , 2a  and 3a  are used for a wide range of Reynolds numbers. 

For rectangular particles, dp and shape factor are defined. Therefore, the drag coefficient 

is as follows [34]: 
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where bi (i=1, 2, 3 and 4) constants are a function of shape factor   as: 
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where a and A are the surface of a spherical particle with the same volume as the actual 

particle and surface area of the particle respectively. 

 

Other forces that affect the particle include the following: 

 Gravity force  

 Virtual mass caused by the acceleration of the fluid around the particle  

 Force due to pressure gradient  

 Brownian force caused by the random motion of particles through the base fluid 

(this usually has a weak effect on flows with higher velocity)  

 Lift force due to shear stress and thermophoretic force due to a temperature 

gradient [32] 

 

Virtual mass force: 
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Pressure gradient force: 
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Brownian force: 
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where 
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 is the Gaussian random vector function with zero mean value and t  

Lagrangian time step. The key factor to use this correlation is the assumption of 

continuum in the fluid medium. Considering that the mean free path of water is about 

λ=0.3 nm and the particle diameter is 22 to 60 nm in this study, the Knudsen number 

Kn= λ/dp results to Kn<0.1, which is valid for the continuum medium. 

 

Lift force with ijd  as deformation tensor: 
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A correlation for thermophoretic velocity is available from the experimental work of 

McNab and Meisen [35]. The use of this correlation in this study raises some doubt, as 

it has been presented for particles with the order of µm diameters. However, this is the 

only available correlation for the binary of liquid and solid particles. With the definition 

of thermophoretic velocity, the thermophoretic force can be derived by Stokes’s drag 

force as follows: 
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where Tu , FT and DT are thermophoretic velocity, force and coefficient respectively; p  

is particle thermal conductivity, and c , c  and c  are fluid viscosity, density and 

thermal conductivity respectively. The balance of heat transfer for each particle is: 

 

)( pc

p

pp TThA
dt

dT
cm   (32) 

 

The heat transfer coefficient of flow over a particle is available by the following 

correlation [36]: 
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where Pr is the Prandtl number of the base fluid. 

 

The influence of particle motion on the base fluid can be seen in the momentum and 

energy equations of two source terms. The momentum source term consists of the drag 

and other exchange forces, and the energy source term is computed from the energy 

balance for a particle in each computational cell. 

 

Momentum source term as a force: 
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It is noted that the amount of particle mass flow rate pm  is preserved in each 

Lagrangian iteration. The energy source term is computed as: 

 

)(
celloutcellin pppps TTcmQ


  , (35) 



13 
 

 

where 
cellinpT


 and 

celloutpT


 are the particle temperature at the inlet and outlet of each 

computational cell. 

 

2.3 Turbulence modelling 

Due to the ultrafine size of the nanoparticles, it could be claimed that the instantaneous 

fluctuation of the velocity field affects particle trajectories, which eventually changes 

the pressure and velocity field in turbulent flow. Therefore, the Discrete Random Walk 

(DRW) model [37] is employed as a stochastic method to simulate the impacts of a 

fluctuating term of velocity. Some researchers have successfully employed this model 

[38, 39]. However, in this study, the turbulence dispersion of the particles and the 

effects of this dispersion on flow field are taken into account simultaneously as the two-

coupling. Gaussian probability density function (pdf) is used to introduce the random 

fluctuating value of velocity iV   during eddy lifetime as:  

2

ii uu   ,  (36) 

where   is the randomly distributed number from the Gaussian pdf and 2

iu   is the 

root mean square of fluctuating velocity in each direction. The amount of fluctuating 

velocity can be defined [40] as kui
3

22  , where k is the kinetic energy of 

turbulence. The assumption of isotropy is only applicable in the k  turbulence 

model, while the Reynolds stress model (RSM) presents different fluctuating velocities 

in each direction. There are two characteristic times that the fluctuating velocity value is 

constant, with the minimum difference being during the  lifetime of the eddy and during 

the particle eddy crossing time. The interaction between the eddy and the particle occurs 

during this period. At the end of the period, a new location for the particle and a new 

amount of   are set to obtain the new particle velocity by using the new local 

fluctuating fluid velocity.  
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Three different k  turbulence models have been employed to simulate the fluid 

flows that are appropriate for the smooth tubes of the chosen experimental works [27 

and 41]. They consist of Standard [42], re-normalisation group (RNG) [43] and 

Realisable [44] k models. On the other hand, the roughness value of the tube used 

in the experimental work of Teng et al. [28] is 4.6 × 10-5 m, which affects the flow and 

pressure drop. The k turbulence model involves the effect of roughness in the 

boundary layer. Therefore, the k Shear Stress Transport (SST) [45] turbulence 

model is employed in this case. Assuming the same fluctuating velocity value in all 

directions (or isotropy assumption) in the DRW model by k models may produce 

some errors in the calculation of instantaneous velocity, especially in the boundary 

layer. Consequently, the RSM or Large Eddy Simulation (LES) can be more accurate 

[46 and 47]. Thus, the RSM has been employed to simulate turbulence in this study as 

well. 

2.4 Model geometry, boundary conditions and numerical method 

All the geometries have extra entrance (>30D) to ensure the existence of fully 

developed flow at the test section. The study of both two-dimensional (2D) 

axisymmetric and three-dimensional (3D) models seems essential to understand the 

abilities of the turbulence models, especially in the Lagrangian approach. Therefore, the 

results of both simulations are briefly discussed to present an appropriate geometry 

model. Due to a clear discrepancy between fine and coarse mesh results in the vicinity 

of the wall, a standard wall function model cannot properly capture the influences of the 

viscous sublayer in the velocity field.  

On the other hand, the influence of the intense gradient on mean velocity and 

fluctuating velocity in each direction in the boundary layer on particles is inevitable.  

As a result, an enhanced wall treatment model has been chosen for all models, with fine 

mesh at the entrance and six to ten nodes in the viscous boundary layer [48]. FLUENT 

15 [49] was employed to solve the governing equations with the control volume 

approach. The SIMPLE method was used to couple pressure and velocity in equations. 

The QUICK scheme was employed for volume fraction and Second Order Upwind for 

other parameters to discretise the governing partial differential equations. Several kinds 



15 
 

of structured non-uniform grids were generated to ensure the accuracy of grid 

independency. For all of them, the amount of y+ in the first node (adjacent to the wall) 

was between 0.7 and 1.2, which is the appropriate y+ for the enhanced wall treatment 

model. The source terms of momentum and energy are renewed in DPM after a 

specified number of iterations. Therefore, the residuals jump to reach a converged 

solution again. The evolution of velocity profile and pressure drop at a reference 

location in each case was considered as a convergence criterion. Because of the length 

of the tube (which is relatively long), it is important to ensure that all the particles have 

escaped from the outlet by setting a proper maximum number of time steps, which is 

more than 104 in this study. 

In order to include the impact of instantaneous velocity on particles, a statistical 

distribution of particle trajectories is computed in each computational cell or parcel, 

especially in the case of a higher volume fraction. This distribution is presented as the 

number of tries in which no change in the results is observed when it is set to more than 

15 for the highest particle loading in this study. 

Due to a high number of nanoparticles in each parcel (in the order of 1010), there is a 

major difference between the injection of nanoparticles and the injection of other kinds 

of particles. Because of boundary layer formation, there is considerable slip velocity 

between the base fluid and particles at the beginning of the calculations in the entrance 

region, which produces noticeable force in the momentum source term. The forces are 

calculated for a single particle and then multiplied by the number of particles in each 

parcel. Thus, it is crucial to reduce the source term relaxation factor and update it many 

times.  

3. Results and discussion 

A comparison between 2D and 3D results reveals that, with the exception of the RSM, 

two-equation turbulence models exhibit almost similar trends and values of findings in 

both 2D and 3D results, with the difference being less than 6%. On the other hand, a 

gap between RSM results in 2D and 3D with DPM was observed. It showed that the 

assumption of anisotropy in 3D has non-negligible effects on particle dispersion and 

flow field. Thus, the 3D model is employed as a general geometry for all the 
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simulations. The Standard and Realisable models have shown the same behaviour in 

calculations, while the RNG model shows similar results in the calculation of pressure 

drop and overestimates heat transfer coefficient. 

At the beginning of this section, the amount of uncertainty from the experimental works 

is presented for further discussion in Table 1. There are only some doubts about the 

uncertainty of heat transfer coefficient calculated by Azmi et al. [27]. They stated the 

precision of the thermocouples as ±0.1 oC. Regarding the temperature difference 

between wall and fluid bulk from 1.5 oC to 2.5 oC in their tests, the uncertainty may go 

beyond 9%. 

Table 1: Uncertainty analysis of measured pressure drop and heat transfer 

 Williams et al. [18] Azmi et al. [27] Teng et al. [28] 

Pressure drop 0.5% 1%  

<6% 

 

Heat transfer coefficient  <10% 0.8% 

Reynolds number <1% <1% 

 

The comparison of the pressure losses and heat transfer coefficient of the turbulence 

models with experimental measurement is shown in Figure 1. On the other hand, the 

abilities of two multiphase models, i.e. the Mixture model and DPM, have to be studied. 

As a result, the application of both the turbulence and multiphase models are discussed 

at the same time. Also, 10% error bars were added to the experimental results to provide 

a better understanding of the difference with numerical simulations. 

The pressure drop and heat transfer coefficient for heated tubes without nanoparticles 

are illustrated in Figure 1. All the k-ɛ models are in good agreement with experimental 

results for predicting pressure drop. However, the RSM prediction for pressure loss 

indicates a 14 to 16% difference from experimental results (lower to higher Reynolds 

numbers). The RSM estimates the heat transfer coefficient with high precision. Despite 

good prediction of pressure loss by the RNG model, this model overestimated heat 

transfer coefficient by 12%. 
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a) 

 

b) 

Figure 1: a) Pressure loss and b) heat transfer coefficient in the heated tube without 

nanoparticles. 
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a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

Figure 2: A DPM prediction of pressure drop in an insulated tube with a), b) and c) 

Al2O3 and d), e) and f) ZrO2 nanofluid flow with a different particle loading. 
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a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

Figure 3: A DPM prediction of pressure drop in a heated tube with a), b) and c) Al2O3 

and d), e) and f) ZrO2 nanofluid flow with a different particle loading. 
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a) 

 

b) 

 

c) 

Figure 4: A DPM prediction of pressure drop through a heated tube flow with SiO2 

nanoparticles with a different particle loading. 
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The DPM estimation of pressure drop in both adiabatic and diabatic tubes is presented 

in figures 2 to 5. In order to provide a comparison between the graphs, three orders of 

magnitude for the Reynolds number can be recognised as a higher Reynolds number 

above 18 000 [18], an intermediate Reynolds number between 12 000 and 18 000 [27] 

and a lower Reynolds number less than 12 000 [28]. 

 

a) 

 

b) 

Figure 5: A DPM prediction of pressure drop through an isolated tube flow with TiO2 

nanoparticles with a different particle loading. 

A pressure drop trend in both heated and adiabatic tubes with Al2O3 and ZrO2 nanofluids 

is evident in figures 2 and 3. The discrepancy will be particularly noticeable with the 

expanding Reynolds number. With a lower particle volume fraction in the adiabatic tube 

in Figure 2, RSM overestimates pressure loss with a difference of almost 17% in both 

Al2O3 and ZrO2 nanofluids. By increasing the particle loading, k-ɛ models start 
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underpredicting pressure drops, especially at a volume fraction of 3.6% in Al2O3 and 

0.9% in ZrO2 nanofluids. At this volume fraction, the experimental pressure drops are at 

the maximum difference with simulation results by k-ɛ models and closer to RSM (22% 

by k-ɛ models and 4% by RSM in average). The trend is almost the same in the heated 

tube, which is shown in Figure 3. This means that, at a lower volume fraction, the k-ɛ 

models are capable of more accurately predicting pressure drops. This might come from 

the fact that k-ɛ models and RSM have different points of view of turbulence. The 

former assumes the same amount of Reynolds stresses in all directions, while the latter 

applies different values in each direction. In other words, the effects of the anisotropy of 

fluctuating velocity on particles needs to be properly captured by RSM. This anisotropy 

may present some poor prediction in lower particle volume fractions and higher 

Reynolds numbers. 

Pressure drops in the range of intermediate Reynolds numbers (12 000 to 18 000) are 

presented in Figure 4 under constant heat flux. The changes of RSM results in respect of 

the increase in particle volume fraction are more sensible than k-ɛ model predictions. 

This proves that RSM can capture the influences of an increase in particle volume 

fraction better than k-ɛ models. A similar explanation can be stated for the experimental 

study of Teng et al. [28] in the low range of particle loading and lower Reynolds 

numbers (3 000 to 6 500), as shown in Figure 5. The impact of roughness used in the k-

ω model is also important and, at a lower particle loading, the k-ω model predictions are 

in better agreement with experimental data. 

Pressure drop predicted by the Mixture model in adiabatic and diabatic tubes for 

different nanoparticles is presented in figures 6 to 9. Since the thermophysical 

properties implemented in the Mixture model come from the experimental 

measurements, a good agreement between simulation results and data from the tests is 

anticipated in most of the cases, especially for the Reynolds numbers less than 18 000 in 

figures 6 and 7. Pressure losses estimated by k-ɛ models and RSM have shown a good 

match with experimental data for Reynolds numbers less than 18 000 in figures 6 and 7, 

whereas for higher Reynolds numbers, RSM overestimates the results. This can also be 

observed in the range of intermediate Reynolds numbers for heated tubes with SiO2 

nanoparticles in Figure 8. In this range of Reynolds numbers, the entire simulation 
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results and measured data have provided almost the same value for various amounts of 

particle loading.  

 

a) 

 

b) 

Figure 6: A Mixture model prediction of pressure drop through a) an isolated and b) a 

heated tube with Al2O3 nanofluid flow. 

It seems that the effect of roughness in experimental work by Teng et al. [28] is 

appreciable, as predicted by the k-ω model in Figure 9. The physical properties of the 

TiO2 nanofluid are employed from the measured data [28]. The difference between the 

simulation and the experimental results is 7% for k-ɛ models and 4% for k-ω models 

and RSM. 
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a) 

 

b) 

Figure 7: A Mixture model prediction of pressure drop through a) an isolated and b) a 

heated tube with ZrO2 nanofluid flow. 

The results of the simulation for heat transfer coefficients are described in figures 10 to 

13. The figures show a similar pattern in DPM estimations for Al2O3, ZrO2 and SiO2 

nanofluids. In all the simulations, the RNG model overestimated the heat transfer 

coefficient. Therefore, it is not appropriate for characterising heat transfer parameters. 
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a) 

 

b) 

 

c) 

Figure 8: A Mixture model prediction of pressure drop through a heated tube flow with 

SiO2 nanoparticles. 
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a) 

 

b) 

Figure 9: A Mixture model prediction of pressure drop through a heated tube flow with 

TiO2 nanoparticles. 

The k-ɛ Standard and Realisable models, as well as RSM, have shown good agreement 

with measured data in the low volume fraction of Al2O3 and ZrO2 nanoparticles in 

Figure 10. With regard to experimental results, the difference between those models 

rises with an increase in nanoparticle loading and reaches 35% for Al2O3 and 30% for 

ZrO2 for 3.6% and 0.9% volume fraction respectively. The SiO2 nanofluid in Figure 11 

exhibits a similar trend, and the difference is 20% for 4% volume fraction, which 

indicates that the error will be less for lower Reynolds numbers. Nonetheless, the 

numerical results are in the range of 10% uncertainty, except for %2p  in Al2O3, 

%5.0p  in ZrO2 and %2p  in SiO2 nanofluids. 



27 
 

 

a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

Figure 10: A DPM prediction of heat transfer coefficient through a heated tube with a), 

b) and c) Al2O3 and d), e) and f) ZrO2  nanofluids with a different particle loading. 
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a) 

 

b) 

 

c) 

Figure 11: A DPM prediction of heat transfer coefficient of SiO2 nanofluid through a 

heated tube with a different particle loading. 
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Simulation results of heat transfer coefficient by the Mixture model are illustrated in 

figures 12 and 13. The Mixture model is more accurate in predicting heat transfer 

characteristics. It seems that the thermophysical properties introduced for mixture fluid 

are appropriate for nanofluid as well. Again, the RNG model cannot be recommended 

for estimating heat transfer coefficient. 

 

a) 

 

b) 

Figure 12: A Mixture model prediction of heat transfer coefficient through a heated tube 

with a) Al2O3 and b) ZrO2 nanofluids.  
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a) 

 

b) 

 

c) 

Figure 13: A mixture model prediction of heat transfer coefficient of SiO2 nanofluid 

through a heated tube with a different particle loading. 
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In summary, it can be concluded that the Mixture model can estimate pressure drop and 

heat transfer characteristics in nanofluid flow in most of the cases if accurate 

thermophysical properties of the nanofluids are available. Moreover, most of the 

available nanofluid properties are measured in static situations, while the effects of 

convective nanofluid have to be considered to determine their thermophysical properties 

[50]. 

On the other hand, DPM simulation results show that there is a reasonable trend for all 

the predictions that come from some weaknesses in the model, especially in the 

directional distribution of fluctuating terms of velocity. It is worth mentioning that the 

most important advantage of DPM is the simulation of nanofluid without any extra 

details from experiments. With the aim of better understanding the capabilities of DPM, 

the major changes of flow calculated by DPM are discussed in the following section. 

3.1 Discussion of DPM predictions 

In this section, the other aspects of the DPM simulations are explained. In the first step, 

it is imperative to understand that the main feature of nanoparticles is the number of 

particles in each parcel. This implies that, even though the slip velocity and consequent 

forces between the fluid and the particles are very small, they could nonetheless affect 

flow field due to the large number of particles in each cell, which is in the order of 1010 

in this study. All the particles in each computational cell are divided into a number of 

groups, called parcels, and one particle in each parcel represents all the particles in that 

parcel. The number of particles in each parcel is available from the following: 

p

pparticle
m

t
mN


   (37) 

The order of particle mass in this correlation is mp~ O(10
-23

). 

It has been revealed that all the forces, including gravity, virtual mass, pressure 

gradient, thermophoretic, Brownian and lift forces, have no impact on mean flow field 

or the instantaneous components of the flow. This was found by comparing the 

hydrodynamic and thermal characteristics of the flow in the presence and absence of 

those forces in 2D and 3D. Therefore, the only influencing force is the drag force over 
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the particles, which stemmed from the inertia of the particles. The effects of particles’ 

drag force in the flow are provided in tables 2 and 3. ∆P and ∆h are the differences 

between the pressure drops and heat transfer coefficients in the presence and absence of 

drag force respectively. P and h are pressure drop and heat transfer coefficient in the 

presence of drag force. Simulation results explain that the percentage of changes is more 

sensitive to the increase in particle loading than the Reynolds number value. Therefore, 

it is expected that the lower limit of the percentage occurs in a lower particle loading. 

Consequently, the upper limit occurs in higher particle loadings. Because of the 

anisotropy assumption, the effects of drag force are more visible by RSM predictions, 

while the k-ω model presented the minimum changes for pressure drop in TiO2 

nanofluid. Due to the lower Reynolds number, the turbulence intensity, which is defined 

as 
u

u
I


 , will be reduced. As a result, the Reynolds stress values, in other words, the 

influences of fluctuating velocity, reduce in comparison to the mean flow velocity. 

Since TiO2 nanofluid takes place at the lowest nanoparticle loading and Reynolds 

number in comparison to the other nanofluids, the drag force shows small effects on 

pressure drops. Furthermore, the main influences of particles’ drag force are excluded 

from pressure losses and, in fact, the presence of nanoparticles shows no significant 

impact on heat transfer coefficient in most of the simulations. 

It is important to notice that the instantaneous component of velocity plays an 

outstanding role in nanofluid simulations. Actually, it has been observed that all the 

changes in pressure and heat transfer in tables 2 and 3 exist if only the effects of 

fluctuating velocity over the particles are considered by the DRW model. Figure 14 

describes the changes in turbulent kinetic energy at the outlet for Al2O3 nanofluid on Re 

= 9 000 in the presence (3.6%) and absence of nanoparticle loading. The higher values 

and changes for turbulent kinetic energy are expected for RSM compared with the k-ɛ 

model because of the anisotropy assumption.   

A comparison between particles and flow in axial velocity at the outlet (in Figure 15) 

indicates that there is a small slip velocity, which mainly happens in the fully turbulent 

region. The total impacts may not be negligible in the momentum equation because of 

the large number of nanoparticles in each cell (in the order of 1010). Moreover, the 

increase in mean flow velocity with the presence of particles by RSM clearly shows that 
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RSM can capture some of the effects of nanoparticles on mean flow velocity as opposed 

to the k-ɛ model. 

Table 2: Impact of the presence of nanoparticles’ drag force in flow on pressure drop 
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)( OAl
P

P
 

2
)( ZrO

P

P
 

2
)( SiO

P

P
 

2
)( TiO

P

P
 

All k-ɛ models 2%–5% 1%–3.5% 1.5%–4% 0.1%–1.3% 

RSM 7%–24% 3%–12% 2.5%–12% 1.4%–6% 

k-ω - - - 0.1%–0.5% 

 

Table 3: Impact of the presence of nanoparticles’ drag force in flow on heat transfer 

coefficient 

 
32

)( OAl
h

h
 

2
)( ZrO

h

h
 

2
)( SiO

h

h
 

All k-ɛ models 2%–5% 1%–1.2% 1%–5% 

RSM 6%–8% 1%–3% 1%–6% 

 

 

Figure 14: The effects of nanoparticles on turbulent kinetic energy at flow outlet for 

Al2O3 nanofluid on Re = 9000 with 3.6% volume fraction by RSM and k-ɛ Standard 

model.  
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a) 

 

b) 

Figure 15: The profile of flow and particle axial velocity at the outlet for Al2O3 

nanofluid on Re= 9000 with 3.6 % volume fraction predicted by a) k-ɛ standard model 

and b) RSM. 

 

4. Conclusions 

The abilities and points of weakness of two multiphase flow models were investigated 

in this research. The simulation results were compared with experimental data available 

in literature. The k-ɛ Realisable and Standard models provided the same results in all 

the simulations. The Mixture model predictions were reasonable for pressure drop in 

most of the cases in both diabatic and adiabatic tubes, although the results are not 

satisfactory in some simulations. With the exception of the k-ɛ RNG model, the heat 

transfer coefficient predictions of the other turbulence models by the Mixture model 

showed good agreement with experimental data. 

With the DPM approach, the RSM overestimates pressure drop in comparison with k-ɛ 

models with higher Reynolds numbers, but both DPM and the RSM model agree with 

the experimental data with lower Reynolds numbers. Furthermore, there are no changes 

in the pressure results of the two-equation turbulence model for a TiO2 nanofluid with a 

low Reynolds number and an increased nanoparticle loading. Only RSM can predict the 

rise in pressure drop in a low nanoparticle loading. On the other hand, a similar pattern 

was revealed for the estimation of heat transfer coefficient. The k-ɛ RNG model 

provides poor prediction of the heat transfer coefficient in all simulations. The 

assumption of anisotropy of fluctuating velocity plays a key role in nanofluid 
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simulations, as the amount of turbulent kinetic energy and slip velocity between 

nanoparticles and the main flow by RSM is more in comparison with the k-ɛ Realisable 

model. 

In summary, it is still challenging to choose the appropriate nanofluids’ thermophysical 

properties for each case, which highly depends on the nanoparticles and base fluids. The 

mixture model was not able to capture the slip velocity and temperature gap between 

solid and liquid phases either. Characterising the nature of the thermal and 

hydrodynamic behaviour of nanofluids is important. Depending on the type and 

diameter of nanoparticles, DPM provided reliable results for both heat transfer and 

pressure drop in many cases regarding the uncertainty (such as less than 1.8% for Al2O3 

and 0.5% for ZrO2 nanofluids). Furthermore, DPM has shown good abilities to capture 

slip velocity between phases. Hence, it is highly recommended for these cases. On the 

other hand, it has to be noted that the nature of nanofluid flow becomes more 

complicated in higher volume fractions and Reynolds numbers due to the existence of 

other phenomena like clustering and rapid growth in turbulent perturbations. Therefore, 

a new study is required for this area as a separate field of nanofluid flow in future 

works.  
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Nomenclature 

A particle surface area P pressure 

DC  drag coefficient  mq  Conduction diffusion flux 

pc  particle specific heat Tq  Turbulence diffusion flux 

pd  particle diameter  Qs energy source term 

D tube diameter Rep Particle Reynolds number 

DT Thermophoretic coefficient St Stokes number 

f  friction factor t  Lagrangian time step 

BF  Brownian force T temperature 

LF  Lift force t  Particle time step 

pF  Pressure gradient force   

Fs momentum source term Greek symbols  

FT Thermophoretic force   volume fraction 

vmF  Virtual mass force λ mean free path 

H enthalpy   viscosity 

h heat transfer coefficient   density 

  thermal conductivity 


 Gaussian random noise function 

KB Boltzmann constant   particle relaxation time 

Kn Knudsen number 
m  mixture shear stress tensor 

k kinetic energy   

L Characteristic length Subscripts  

mp particle mass c continuous or liquid phase 

m  mass flow rate in-cell inlet of a cell 

particleN
 

number of particles k phase k 

U characteristic velocity m mixture 

u  fluctuating velocity out-cell outlet of a cell 

pmkm uu ,  drift velocity p  particle 

slipu  relative or slip velocity   

Pr Prandtl number    
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