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Abstract 

Desirable effective viscosity behaviour is an essential transport property required for the effective 

utilisation of nanofluids in industrial systems as well as other applications. Viscosity influences 

significantly the pumping power and heat transfer effectiveness in a thermal system since Reynolds and 

Prandtl numbers are functions of viscosity. In this study, the optimum energy required for the preparation 

of MgO-ethylene glycol (MgO-EG) nanofluids was determined by varying the ultrasonication energy 

input into the preparation process. The uniformly dispersed nanofluids were characterised and the 

viscosity measurements were carried out as a function of temperature (20 to 70 oC), nanoparticle volume 

fraction (0 to 5%) and nanoparticles size (~21, ~105 and ~125 nm). Based on the experimental data, the 

effective viscosity of all the samples irrespective of nanoparticle size or volume fraction, decreases 

exponentially with increase in temperature and the trend is similar to that of the base fluid, but in 

different magnitude. Increasing the volume fraction of the MgO nanoparticles showed a corresponding 

increase in the effective viscosity of the nanofluid. It was also noticed that the samples containing 21 nm 

MgO showed higher effective viscosity compared to samples containing 105 and 125 nm MgO when the 

volume fraction is constant. The viscosity values in the present study quite differ from the values 

predicted by the existing prominent viscosity models as well as the existing models do not consider all 

the variables of present data (temperature, nanoparticle volume fraction and nanoparticles size). 

Therefore, new correlation is proposed using the method of dimensional analysis and considering 

essential factors, including nanoparticle size, volume fraction temperature, capping layer thickness, 

viscosity of the base fluid, the density of base fluid and the density of nanofluid as input parameters. 

Furthermore, genetic algorithm-polynomial neural network (GA-PNN) and fuzzy C-means clustering-

based adaptive neuro-fuzzy inference system (FCM-ANFIS) was used to model the effective viscosity of 

the MgO-EG nanofluids considering the parameters mentioned above. The results of all the modelling 

techniques showed good agreement with the experimental data. 
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1. Introduction 

In recent times, energy efficient systems have shared features which are portability, compactness and 

lightness in weight. These systems, such as mobile electronics, microelectromechanical systems 

(MEMs), nanoelectromechanical systems (NEMs) and power generating systems/devices are commonly 

used in major industries such as the electronics, energy, and transportation. Moreover, these systems are 

designed to perform more efficiently and have higher throughput than the previous systems which are 

massive, non-portable and heavy. The ratio of the increased throughput/efficiency to size is accompanied 

with thermal management challenges due to their high power density. The classic methods of improving 

heat transfer include an increase in heat transfer surface area (adding fins) and/or increasing convective 

heat transfer coefficient which they both have limitations. Other emerging methods such as geometric 

optimization of heat exchangers and the use of functionally graded materials, also have major setbacks. 

For instance, using extended surface increases the bulkiness of heat exchangers which contradicts the 

new design philosophy of attaining sustainable development and global energy sustainability. On the 

other hand, the use of functionally graded materials raises economic concerns because of the high price 

of functionally graded materials. 

Nanofluid is a modified heat transfer fluid produced by homogenizing nanoparticles in conventional 

heat transfer fluids such as water or ethylene glycol (EG). Research findings have shown that nanofluids 

have improved thermal properties such as thermal conductivity, heat capacity and convective heat 

transfer coefficient [1, 2]. Heat transfer fluid that possesses higher thermal conductivity provides better 

heat removal capacity and also could support the reduction of the size and weight of heat exchanger in 

line with the global sustainable development and energy sustainability. Therefore, as the next-in-line heat 

transfer fluid, nanofluid has received a considerable interest from the time when its thermal properties 

were first reported. Eastman et al. [3] investigated the thermal conductivity of Cu-EG nanofluids. They 

dispersed Cu nanoparticles having a mean diameter less than 10 nm in EG using a single-step procedure. 

Their results showed up to 40% enhancement in thermal conductivity of the Cu-EG nanofluid compared 

to the base fluid (EG) for a Cu volume fraction of 0.3% and thioglycolic acid was used as a pH modifier 

in order to improve the stability of the Cu-EG nanofluids. Kang et al. [4] showed that the enhancement 

obtainable from the dispersion of ultra-dispersed diamond nanoparticles (UDD) with 30-50 nm size in 

EG was up to 50% at 1% volume fraction. They also showed that for 8-15 nm silver (Ag) dispersed in 

water at 0.4% volume fraction, there was enhancement of 10% in thermal conductivity. Similar results 

for other types of nanofluids were reported by Murshed et al. [5] and Das et al. [6]. 

The presence of particles in a fluid medium creates increased resistance to flow of nanofluids due to 

intensified energy dissipation rate arising from the interactions between the particles and particle-fluid. 

Therefore, the problem of viscosity increase with an increase in the suspended volume fraction of 

nanoparticles is a major challenge that requires extensive investigations experimentally, besides, there 

exist the lack of models that can accurately predict the viscosity of nanofluids. If this problem is not 

properly understood and tackled, it may diminish the efficacy of nanofluids in practical applications [7]. 
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In the past, the influence of nanoparticles dispersion on the viscosity of nanofluids has been investigated 

for some nanofluids as summarised below. Chandrasekar et al. [8] used microwave assisted technique to 

synthesise Al2O3 nanoparticles having an average particle size (APS) of 43 nm. They dispersed 0.33 to 

5% volume fractions of the Al2O3 in deionized water (DI-water) and investigated their viscosity 

enhancement at room temperature. Their results showed a staggering viscosity increase of 136% at the 

suspension of 5% Al2O3. Fedele et al. [9] investigated the effective viscosity of DI-water based TiO2 

nanofluid with TiO2 % weight between 1 to 35 %wt and temperature range of 10-70 oC. They also 

observed a very high viscosity increase of 243% at 35 %wt of TiO2 suspended.  

To improve the viscosity of nanofluids, stability of nanoparticles in the base fluid must be ensured 

and there are about three effective methods that have been used viz: (i) addition of surfactant (ii) pH 

modification (iii) ultrasonic vibration. Timefeeva et al. [10] showed that modifying the pH of α-

SiC/water nanofluid provided good stability for the 29 nm SiC nanoparticles in the base fluid and 

eventual reduction in the effective viscosity up to 34%. Zhao et al. [11] also observed that the viscosity of 

SiO2-water nanofluid is significantly influenced by the pH value of the suspension. Li et al. [12] 

stabilised 25 nm Cu-water nanofluids using pH and/or sodium dodecylbenzensulfonate (SBDS) chemical 

surfactant. Although, they only measured thermal conductivity, the influence of surfactant was such that 

it reduced the nanoparticles agglomerate size when applied in right proportion [13]. Song and Youn [14] 

showed that poor dispersion can increase the effective viscosity of carbon nanotube (CNT)-epoxy 

nanocomposite and as a result, they used ultrasonic vibration to aid proper dispersion and minimise 

viscosity enhancement. Yang et al. [13] varied the energy of ultrasonication applied to the dispersion of 

multiwall carbon nanotubes (MWCNTs) in poly (α-oleifin) oil in order to obtain proper homogenisation 

of the MWCNTs at which point the viscosity was minimised. 

A good nanofluid is supposed to have high thermal conductivity to be very efficient in thermal 

management (heat removal), and minimum viscosity in order to minimise pressure drop and pumping 

costs. Viscosity plays a major role in determining pumping power requirement of any heat exchanger, 

thus, precise knowledge of the nanofluids’ viscosity behaviour is important [15]. Also, a key problem 

with nanofluid’s research is the estimation of the effective viscosity of nanofluids. Einstein’s model [16] 

showed that the viscosity of colloidal suspensions of spherical particles increases as the volume fraction 

of suspended particle increases, however the Einstein’s model just involve the volume fraction and base 

fluid viscosity. Brinkman [17], Krieger and Dougherty [18] and Batchelor [19] all modified Einstein’s 

model to show the effect of particle-particle interactions and concentrated volume fraction on the 

effective viscosity of suspension of solid spheres. However, the effect of size and temperature are not 

included in the above mentioned models. Therefore, these models have underperformed in most cases 

when used for predicting the viscosity of nanofluids [20]. 

Xie et al. [20] discovered that MgO-EG nanofluids formulated from 20 nm MgO have higher thermal 

conductivity and lower viscosity enhancements than those of ZnO-EG, SiO2-EG, Al2O3-EG and TiO2-EG 

all formulated from a similar particle size of their respective nanoparticles. Recently, Hemmat Esfe et al. 
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[21] investigated the influence of different MgO nanoparticles sizes (20, 40, 50 and 60 nm), temperatures 

(25-55 oC) and volume fractions (0.25-5%) on the thermal conductivity of MgO-EG nanofluids and 

proposed a correlation for predicting the thermal conductivity of the nanofluids. To the best knowledge 

of the authors there is no study on the viscosity of ethylene glycol based nanofluids containing MgO, 

which proposes new correlations including particle size, temperature and volume fraction as parameters. 

In view of this, the viscosity of MgO-EG nanofluids is investigated experimentally considering various 

particle sizes, volume fractions and temperatures. The measured data are compared with the predictions 

of different prominent models existing in the literature which show no agreement. Therefore, an 

empirical-based correlation is developed using the method of dimensional analysis. Furthermore, fuzzy 

C-means clustering-based adaptive neuro-fuzzy inference system (FCM-ANFIS) and genetic algorithm-

polynomial neural network (GA-PNN) modelling techniques [22] are applied for modelling and 

predicting the effective viscosity of MgO-EG nanofluids as a function of nanoparticle diameter, 

temperature and nanoparticle volume fraction. 

2.  Experimental 

The two-step method was employed to prepare the MgO-EG nanofluid samples used in the present 

work. The nanoparticles APS is ~21, ~105 and ~125 nm, to be represented as MgO-I, MgO-II and MgO-

III respectively. The transmission electron microscopy (TEM) image and particle size distribution (PSD) 

of the MgO nanoparticles are as shown in Fig. 1. Presented in Fig. 2 is the X-ray diffraction (XRD) and 

energy-dispersive spectroscopy (EDS) characterisations for the three nanoparticle samples. The EG used, 

was procured from Merck Millipore and has 99.5% purity, and viscosity of 16.9 mPa.s at 25 oC. No 

surfactant or pH modifier was added in the samples used for viscosity investigations since they were all 

stable. 

To achieve good dispersions in the present study, the required optimum energy density (to form 

homogeneous nanofluids) was investigated by using Hielscher UP200S ultrasonicator. The energy 

densities of 2.183×106 kJ/m3 to 13.092×106 kJ/m3 were applied to the samples and the nanofluids 

consistency were monitored by viscosity measurements. This is a well-known procedure, to use rheology 

to characterise the state of dispersion of nanostructures in base fluids [14]. Programmable constant 

temperature thermal bath (LAUDA ECO RE1225) was used to vary the temperature of the samples 

within the experimental range (20 to 70 oC). The viscosity of the samples was measured with a vibro-

viscometer (SV-10, A&D, Japan) with 5.0% uncertainty at full range. The viscometer was calibrated 

using pure EG at 25 oC and benchmark test were carried out between 20-70 oC. The result of the 

benchmark test as presented in Fig. 3 shows good agreement with values reported by Xie et al. [20] and 

Pastoriza-Gallego et al. [23] within the present experimental uncertainty. A more detailed step-by-step 

experimental procedure can be found in Adio et al. [24].  

The dispersion process and the stability of nanofluid were also characterised by UV-visible 

spectrophotometer (Model 7315 from Jenway) and zeta potential measurement using Zetasizer Nano ZS 

(Malvern Instrument Inc., London, UK). The UV-visible analysis is one of the convenient ways to 
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characterise the dispersion of nanofluid. Using the Beer Lambert law (Eq. 1), the light absorbency ratio 

index of the nanofluid can be calculated. 

lc
I

I
A o

b  log        (1) 

In Eq. (1), Ab is the absorbance, Io is the intensity of the UV-visible light through the blank, I is the 

intensity of the UV-visible light through the samples,  is the molar absorptivity, l is the length of the 

light passes through the solution (optical path) and c is the molar concentration of the particles in 

suspension. The equation shows that for a fix optical path and molar absorptivity, the absorbency of a 

suspension is proportional to the concentration of the particles present in the suspension. Therefore, a 

good dispersion will follow the Beer’s law [25]. In the UV-visible investigation, volume fraction up to 

0.025% was used as higher volume fraction does not allow both UV and visible light to penetrate the 

sample. Regarding the zeta potential, the equipment (Zetasizer Nano ZS) measures the electrophoretic 

mobility of the particles using capillary cells with electrodes at either end to which electric potential is 

applied. The measured electrophoretic mobility of the particle is then used to calculate the zeta potential 

using the Henry’s function. The zeta potential was measured at room temperature (25 oC) with applied 

voltage of 10 V. Due to equipment limitation a dilute concentration of 0.05% was used for measurements 

as higher concentrations were beyond the equipment’s range. 

3. Results and discussion 

The experimental results of the characterisation, and the influence of ultrasonication energy, 

temperature, volume fraction and particle size on the viscosity of the prepared nanofluids are presented 

below. Subsequently, the results of modelling with dimensional analysis, FCM-ANFIS and GA-PNN 

techniques are offered, including comparison with the available viscosity models from the literature. 

3.1. Nanofluids characterisation 

Fig 4 shows the UV-visible spectra for the nanofluid at different particle concentrations. The spectra 

patterns show maximum absorption at about 260 nm. As seen in Fig. 4 (a, b and c), the spectra patterns 

are similar but the absorbance value at a given wavelength increases with increase of MgO nanoparticle 

concentration. The plots between absorbance and MgO concentration at 260 nm as presented in Fig. 4 (d, 

e and f) show that the absorbance depends linearly on the MgO nanoparticle concentration and the data 

obeyed the Beer’s law. A zeta potential value of (±30 mV) is the acceptable threshold value for a stable 

suspension [26]. Therefore, nanofluid sample with zeta potential value (absolute value) greater than or 

equal to the threshold is considered stable. The zeta potential of all MgO-EG nanofluid samples in the 

present experiments were above the threshold without modifying their pH values. Here, zeta potential 

values of 38.5, 46.5 and 30.3 mV were recorded for MgO-I, MgO-II and MgO-III respectively. For the 

sake of studying the influence of change in pH on zeta potential, the pH of the sample was adjusted using 

0.5M KOH and/or HCl before the measurement was made with at least 4 repeated measurements. The 

average of the repeated measurement was taken as the measured value. Fig. 5 shows the zeta potential 
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behaviour of nanofluid at different pH. The inset was taken 5 days after preparation and it can be seen 

that the samples used in this experiment are stable as there was little or no sedimentation even without 

pH modification or surfactant addition. 

3.2. Influence of ultrasonication energy density 

Due to the large surface area of nanoparticles, aggregation of nanoparticles often occurs especially 

when the nanofluid is prepared using the two-step method. The application of ultrasonic vibration during 

this preparation method have been confirmed to enhance proper homogenisation of the nanoparticles in 

liquid given that the bonding interaction between the particles that form the aggregates are not always 

strong [27]. Proper dispersion is very essential to achieving a satisfactory stability and reduced viscosity 

in the nanofluids. Applying proper ultrasonication to the dispersion process have been shown to reduce 

the size of aggregates that are usually formed, increase the thermal conductivity and reduce the viscosity 

of nanofluids [28–30]. Presented in Fig. 6 are the plots of the effective viscosity against the energy 

density applied for the preparation of the MgO-EG nanofluids for 1% and 3% MgO volume fractions. 

The results show that at 4.364106 kJ/m3 energy density, the nanofluid samples are all uniformly 

dispersed (corresponding to 60 min ultrasonication time, with 80% pulse-to-pulse, 75% amplitude 

settings on the ultrasonic vibrator for 85 ml samples). Similar trends were obtained for other volume 

fractions except volume fractions 0.1% and 0.5% that were uniformly homogenised at an energy density 

of 2.183106 kJ/m3 which is due to the smaller volume fraction of the nanoparticles. Xie et al. [20] 

applied ultrasonication for three hours to disperse 20 nm MgO in EG for volume fraction up to 5% 

Comparing their results with the results obtained on MgO-I (21 nm in size) in the present investigation 

gave good agreement as shown in Fig. 7. While the energy density applied in their experiment was not 

mentioned and no data were provided for possible recalculation of their energy input, they applied 

ultrasonication three times of the period of the present experimental work. Therefore, selecting a 

predefined value of time for nanofluids preparation, especially in two-step method is counterproductive. 

Further to the above results, other results presented below are therefore based on the uniformly 

homogenised nanofluids. 

3.3. Influence of temperature on effective viscosity 

The effective viscosity of the MgO-EG samples decreases exponentially with increasing temperature 

as presented in Fig. 8 (a)-(c). At all the volume fractions and irrespective of the particle size, the 

temperature dependence of the effective viscosity of the MgO-EG nanofluid is similar to the dependence 

exhibited by the base fluid. However, the viscosity of the nanofluid is higher depending on the 

concentration of MgO contained in the nanofluid. At higher temperatures (50-70oC) the change in 

effective viscosity from one volume fraction to the other reduces as overlaps of data points were obvious. 

This is primarily due to the increase in the influence of temperature in weakening of the intermolecular 

bonding which drastically reduced the shear resistance of the nanofluids. Interestingly, the relative 

viscosity when plotted against the working temperature for all volume fractions and nanoparticle sizes 
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presented nearly a flat line, indicating not much change in relative viscosity with temperature as shown in 

Fig. 8 (d)-(f). 

3.4. Influence of volume fraction and size of MgO nanoparticles 

The dispersion of MgO nanoparticles into the base fluid shows that the viscosity of the resulting fluid 

is higher than that of the ordinary base fluid as presented in Fig. 9 (a). Trends having similar 

characteristics have been reported in the past on other types of nanofluid [31,32]. Having nanoparticles 

suspended in the base fluid leads to shear resistance of the nanoparticles on the base fluid layers, and 

increasing the volume concentration gives a corresponding increase in the shear resistance which is 

relative to the viscosity of the nanofluid. Therefore, the higher the volume fraction, the more the viscosity 

enhancement of the nanofluid. The MgO-I samples displayed the highest effective shear viscosity when 

compared to MgO-II and MgO-III and this is because the particle size of MgO-I is smaller. At the same 

volume fraction, smaller particle size translates into higher number density of particles present in the 

suspension, thereby increasing the effective volume fraction [33]. When nanoparticles are uniformly 

homogenised with reduced aggregate size, the Brownian theory indicates that smaller nanoparticle will 

have higher dissipation energy and increased particle-particle interactions due to increased particles 

random motion (higher velocity compared to bigger particles). This phenomenon will increase the 

viscosity of nanofluid prepared from the smaller particle size compared to those prepared from big 

particle size [34]. At higher temperature, the volume fraction and size dependence of the viscosity are not 

dominant as shown in Fig. 9 (a). When the temperature is 70 oC the effect of increase in volume fraction 

and change in particle size appear to have disappeared, which further buttressed the fact that the 

influence of temperature is dominant (Fig. 9 (a)). Also obvious in the relative viscosity plot of Fig. 9 (b) 

is the level of harmony in the relative viscosity of MgO-II and MgO-III samples for all the volume 

fractions. This is basically a function of their nanoparticle sizes. From the size analysis presented in Fig. 

1 (d), the size of MgO-II and MgO-III are of the same order of magnitude. In addition, unlike other 

reported results for some types of nanofluids [35], the relative viscosity of the MgO-EG nanofluid 

appears to increase linearly with volume fraction increase. 

3.5. Theoretical models 

The established theoretical models that may be used for predicting the viscosity of nanofluids are 

very limited. Virtually all of these models were derived considering only the influence of particle 

concentration in suspension [16–19,36] while neglecting the effect of temperature and particle size. 

Nanofluids are colloidal suspensions which can be treated as a two-phase fluid of solid-liquid mixture 

and it may be expected that their thermophysical properties would follow the conventional colloids 

containing micrometric and millimetric particles. However, the applicability of the prominent classical 

models (designed for micrometric suspensions) to nanofluids is still uncertain [35]. Presented in Table 1 

are some of the prominent classical models that are used for the viscosity of nanofluids. 
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Heyhat et al. [37] proposed an empirical model (Eq. 2) considering both temperature and volume 

fraction of nanoparticles for Al2O3-water nanofluids. Their model was developed with data obtained from 

0.1 to 2% Al2O3 volume fraction, particle size of 40 nm and temperature range of 20 to 60 oC. 

 
5.989

0.278
nf o T Exp


 



 
  

 
       (2) 

Chandreasekar et al. [8] only considered volume fraction of Al2O3 in water nanofluid to derive an 

empirical correlation that is only valid for predicting the viscosity at room temperature (25 oC) and for 

volume fraction of 0.33 to 5%. Their model was developed based on the mean free path between 

nanoparticles and it is given as: 

1
1

n
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

 


  
       

       (3) 

In the Eq (3), A and n is taken as 5200 and 2.8 respectively. Chen et al. [38] also considered only the 

volume fraction of nanoparticle to propose an empirical correlation (Eq. 4) of the form of Batchelor’s 

model [19]. Corcione [39] on the other hand considered nanoparticles size, particle volume fraction and 

base fluid properties such as molecular mass and density to derive the empirical correlation of Eq. (5). 

The recent review of Meyer et al [40] gave a comprehensive coverage of the different viscosity models 

available for nanofluids and other suspensions alike. 
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where 
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6
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M
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N 

 
   

 
 is the base fluid molecular diameter. 

3.5.1. Dimensional analysis 

In the present study, essential parameters which are nanoparticle size, volume fraction temperature, 

capping layer thickness, viscosity of the base fluid, the density of base fluid and the density of nanofluid 

are considered as input parameters These parameters are normalised to produce the following non-

dimensional parameters (π’s) as presented below: 

1 2 3 4 5

0

, , ,
eff p nf

o o

dT
f

T h

 
     

 

 
      

 
    (6) 

In the Eq. (6) above, T is the working temperature, 
0T is the reference temperature taken as 20 oC, dp is 

the particle diameter, h is the thickness of the capping layer (nanolayer) taken as 1 nm [41], 
o  is the 

density of base fluid and nf  is the density of nanofluid. The densities of the nanofluids were calculated 

based on the mixture model [42] and correlation matrix was run on 198 data points with each data point 

containing all the four independent non-dimensional parameters. The result of the correlation matrix 
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shows that 3  and 5  are highly correlated with over 99% correlation index. Preference is given to 3  

over 5  since it is part of the input parameters that is considered in the present experiment. Therefore, 

Eq. (6) is reduced to Eq. (7). 

0

, ,
eff p
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dT
f

T h






 
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             (7) 

Using nonlinear regression modelling, the function f in Eq. (7) is expressed as follows: 
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     (8) 

where 0 7a a  are empirical constants given as 0a  = 7.0764, 1a  = -1.4334, 2a  = -0.0346, 3a = 1.3090, 

4a = -0.0024, 5a  = -1.2357, 6a  = 53.6946 and 7a =0.0436. This correlation is valid for volume fraction 

of MgO ≤ 5%, temperature between 20-70 oC and particle size between 21 and 125 nm. The coefficient 

of determination (R2) of this model is 0.9524 and other statistics on the goodness of the fit such as the 

sum of square error (SSE), means square error (MSE) and root mean square error (RMSE) are 0.1564, 

0.0008 and 0.0287 respectively. In Fig. 10 the relative viscosity of the MgO-EG nanofluids predicted by 

using Eq. (8) is compared with the predictions made by some of the prominent models that are used for 

nanofluid viscosity. It is obvious that the presented correlation performed better than the other models. 

The models of Einstein [16], Brinkman [17] and Batchelor [19] all predicted almost similar results, 

which fell short of the present results. The deviation from the experimental results becomes more 

pronounced as the nanoparticle size gets smaller. On the other hand the empirical models of Kitano et al. 

[36] which considered particle volume fraction and agglomeration, and Corcione [39] which considered 

particle size, base fluid properties and volume fraction, both over predicted the present experimental data. 

In the prediction made by Corcione [39], it can be seen that for the smaller nanoparticle size the deviation 

from experimental data is also higher than for samples with bigger nanoparticle size. When the 

correlation in Eq. (8) was used to estimate the temperature dependence of the effective viscosity of MgO-

EG nanofluid containing MgO-I nanoparticle sample, it gave very good agreement (Fig. 11). Similar 

results were obtained for MgO-II and MgO-III samples. 

3.5.2. FCM-ANFIS modelling technique and GA-PNN hybrid system 

An efficient approach for modelling various systems can be created through the combination of fuzzy 

techniques and artificial neural network (ANN). The deficiencies in either of the two methods can be 

minimised by the other method, thereby increasing the efficiency of the system (neuro-fuzzy). There are 

numerous arrangements that have been proposed for the establishment of an efficient neuro-fuzzy 

system, however, the adaptive neuro-fuzzy Inference system (ANFIS) technique [43] is one of the most 

important techniques wherein integrated learning approaches and learning algorithms coincides. 

Modelling through the use of ANFIS system uses the combination of both fuzzy logic and neural network 

to achieve accurate results. The fuzzy logic algorithm computes the best membership functions that allow 
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the inference system to model the input-output relationship of the data. The membership functions are 

adjusted (adaptive) based on the structure of the data, using the simulation capability of the neural 

network. The adaptive nature allows the neuro-fuzzy system to learn from the data that is being 

modelled. The ANFIS architecture is divided into the introductory part (which consist of the input, input 

characteristics and input membership functions) and the concluding part (which consist of the output 

characteristics, output membership functions and output). The introductory and the concluding parts are 

connected together by rules. ANFIS consists of 5 major layers with each layer comprised of 

nodes/neurons that are of the same functional family. The first layer is an adaptive layer in which the 

fuzzy formation takes place. The second layer comprised of fixed nodes and here is where fuzzy rules are 

performed. In the third layer the nodes are fixed and the output of this layer is normalised membership 

functions. The fourth layer is made up of adaptive nodes, which perform the concluding part of the fuzzy 

rules and in the fifth layer is a fixed single node that computes the overall network output. A more 

detailed information on ANFIS network architecture can be found in Mehrabi et al. [44,45]. ANFIS 

structure can be generated using either of the following structure identification techniques; fuzzy C-mean 

clustering, subtractive clustering and grid partitioning. Each of these identification techniques follows the 

steps of mapping the input variables to the input space partitioning, then choosing the appropriate input 

membership functions, followed by the creation of the fuzzy rules, selection premise and creation of the 

concluding part of the fuzzy rules and lastly selection of the initial parameters for the membership 

functions. 

Regarding the GA-PNN hybrid system which has also been applied for modelling of the effective 

viscosity for MgO-EG nanofluid in the present work. The GA-PNN hybrid system was created by a 

combination of genetic algorithm and the group method of data handling (GMDH)-type polynomial 

neural network (PNN) approaches. This hybrid system instructs the PNN network using GMDH learning 

algorithm. In the GA-PNN hybrid system, the GMDH learning algorithm applied to the PNN network 

introduced the GMDH-PNN for the eventual GA-PNN hybrid system. On the other hand, the hidden 

layers and the appropriate bias coefficient of the GMDH-PNN (which are necessary for achieving 

optimal structure and minimising training error) are generated by GA algorithm. Further information 

regarding GMDH-PNN architecture and GA-PNN hybrid system is given in Pesteei and Mehrabi [46] 

and Mehrabi et al. [22,47] respectively. 

The present experimental data consisting of 198 input-output data points are used in order to predict 

the effective viscosity for MgO-EG nanofluid. The experimental data were divided into two, with 154 

data points (78%) for training and 44 data points (22%) for testing purposes. The root mean square errors 

(RMSE), mean relative error (MRE) and mean absolute error (MAE) as given in Eqs. (9) to (11) are used 

as statistical criteria for selecting the optimal model. These criteria show the accuracy of the models used 

for the prediction of the effective viscosity of MgO-EG nanofluid for various values of input variables. 

1

1 n

pr a

i

MAE X X
n 

          (9) 
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1

100
(%)

n
pr a

ai

X X
MRE

n X

 
 
 
 

       (10) 

 
2

1

1 n

pr a

i

RMSE X X
n 

         (11) 

where Xpr, is the predicted value, Xa is the experimental value and n is the number of data points. The 

network architecture of the GA-PNN model for predicting the effective viscosity of MgO-EG nanofluid 

is shown in Fig. 12, and corresponds to the genome representation of 3333111222223313, in which 1, 2 

and 3 stand for average particle diameter dp (nm), volume concentration ϕ (%) and Temperature T (oC) 

respectively. The equivalent grand polynomial model for the effective viscosity of MgO-EG nanofluid 

based on the network architecture is presented in Appendix A. 

Fig. 13 (a) shows the comparison between the present experimental results, FCM-ANFIS model, 

GA-PNN model and the present correlation presented in (Eq.8) for the viscosity of MgO-EG nanofluid 

with MgO-I sample at 1% volume fraction and various temperatures between 20 and 70 oC. All the 

models for the effective viscosity of MgO-EG nanofluid agree with the experimental data and they 

present very good degrees of accuracy. The following statistics on the goodness of the predictions were 

obtained: RMSE = 0.095, MRE = 0.87% and MAE = 0.073 for the correlation (Eq. 8); RMSE = 0.529, 

MRE = 2.67% and MAE = 0.359 for the GA-PNN model; and RMSE = 0.207, MRE = 1.32% and MAE = 

0.148 for FCM-ANFIS model. In Figs. 13 (b)–(d) similar comparisons are made between the results of 

the three modelling techniques presented in this paper and the experimental results of MgO-II and MgO-

III samples respectively. It can be seen that for the temperature regime and the different volume fractions 

the three models performed very well. Fig. 13 (b and c) contains experimental data for MgO-II sample at 

0.5% and 2% volume fractions respectively while Fig. 13 (d) contains experimental data for MgO-III 

sample at 3% volume fraction. The statistics on the goodness of these fits are very similar to those presented 

for Fig. 13 (a). 

4. Conclusion 

MgO nanoparticles of varying sizes between 21 to 125 nm have been dispersed in EG base fluid and 

were uniformly homogenised using ultrasonication method. The dispersion and stability of the nanofluid 

samples were characterised using UV-visible spectrophotometry and zeta potential measurement, 

respectively. Temperature, volume fraction and particle size dependence of the viscosity of the MgO-EG 

nanofluids were investigated. The values obtained from some of the prominent classical and empirical 

models were different from the present experimental data Therefore, new viscosity correlations were 

developed using dimensional analysis, GA-PNN and FCM-ANFIS modelling techniques. The following 

conclusions are obtained from the study: 

i. The absorbance of the nanofluid followed the Beer’s Law, showing that the preparation 

method gave good dispersion. Also, the nanofluid samples are stable without pH 
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modification as the zeta potential values surpass the stability threshold and there was no sign 

of sedimentation days after the preparation. 

ii. The viscosity of both the base fluid and the nanofluids reduced exponentially with increasing 

temperature. Also, as particle size increases, the effective viscosity of the nanofluid reduced. 

iii. The viscosity of the MgO-EG nanofluids increased linearly with increasing volume fraction. 

This trend was observed for all the particle sizes investigated. 

iv. The prominent theoretical and empirical models were unable to predict the viscosity of the 

MgO-EG nanofluids. Consequently, correlations based on dimensional analysis, GA-PNN 

and FCM-ANFIS were proposed to estimate the viscosity of the nanofluid based on 

experimental data. 

v. The proposed dimensional analysis correlation (Eq. 8), GA-PNN and FCM-ANFIS models 

all perform with a good level of agreement with the experimental data. 

vi. Lastly, this work showed the capability of artificial intelligence techniques for modelling 

engineering problems based on the input-output experimental data. 
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Appendix A 

Grand GA-PNN model: 

2 2
11 1,0 1,1 1,2 1,3 1,4 1,5

2 2
21 2,0 2,1 2,2 2,3 2,4 2,5

2 2
12 3,0 3,1 3,2 11 3,3 11 3,4 3,5 11

2
22 4,0 4,1 4,2 21 4,3 21 4,4

. . . . . .

. . . . . .

. . . . . .

. . . . .

p p p

p p p

p p p

L a a d a a d a d a

L a a T a d a T d a T a d

L a a d a L a d L a d a L

L a a a L a L a

  

  

     

     

     

      2
4,5 21

2 2
13 5,0 5,1 5,2 12 5,3 12 5,4 5,5 12

2 2
23 6,0 6,1 6,2 22 6,3 22 6,4 6,5 22

2 2
7,0 7,1 13 7,2 23 7,3 13 23 7,4 13 7,5 23

.

. . . . . .

. . . . . .

. . . . . .

a L

L a a T a L a T L a T a L

L a a a L a L a a L

EV a a L a L a L L a L a L

  

     

     

     

 

Coefficient matrix: 

,

13.04471101 0.23643914 0.07431895

43.42309576 0.02706623 1.12543872

14.36973131 0.09765461 1.28875574

13.73583221 0.12049393 0.48

26.50248649 0.77882891

0.14756145 0.08250359

0.47357046 0.07974226

  

 

 

 

 



 





ai j

0.00173761 0.36614326 0.01084868

0.00001994 0.00819309 0.00044192

0.00050633 0.09269148

198892 0.00026002 0.04173937

1.07065759 0.00695986 0.00836354

0.96488446 0.00870994 0.00369486

0.96704951 0.07986601 0.05545359









0.00280595

0.00491979

0.01844119

0.05667468

0.13097044

 
 
 
 
 
 
 
 
 
 
 


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Table 1 Summarised list of the available classical models 

 

  

Investigator Classical Model Remark 

Einstein [16]  1 2.5eff o     

Established on extremely dilute suspension of rigid 

solid spheres and non-interacting medium. Volume 

fraction of  ≤ 0.02. From the model, it is clear that 

viscosity is a linear function of volume fraction. 

Brinkman [17]  
2.5

1eff o  


   
This is an extension of [16] and for a volume fraction, 

 ≤ 0.04. 

Krieger and 

Dougherty [18] 

 

1

m

eff o

m

 


 



 

  
 

 

Covers virtually the whole spectrum of nanoparticles. 

m  is the maximum concentration at which flow can 

occur, and its value for high shear rate is 0.605.  is 

the intrinsic viscosity with a typical value of 2.5. 

Batchelor [19]  21 2.5 6.5eff o       

Effect of interactions between particles was 

considered in the development of this model. Within 

the limits of a very low particle volume concentration, 

this model approaches model [16]. 
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Figure Caption 

Fig.1. TEM image of MgO and particle size distribution (a) MgO- I (b) MgO-II (c) MgO-III (d) 

particles size distribution. 

Fig. 2. XRD and EDS spectral patterns of MgO nanoparticles (a) XRD spectral of MgO-I, MgO-II 

and MgO-III respectively, (b, c and d) EDS spectral of MgO-III, MgO-II and MgO-I respectively. 

Fig. 3. Plot of the benchmark tests with the base fluid (EG) and comparison with experimental data 

from the literature. 

Fig. 4 UV-visible of MgO-EG nanofluid at different concentation (a)-(c) UV-visible spectra between 

230-900 nm (d)-(f) relationships between the absorbance and concentration of the nanofluid at 260 

nm. 

Fig. 5 Influence of change in pH on the zeta potential of MgO-EG nanofluid. 

Fig. 6. Effect of energy density on the viscosity of MgO-EG nanofluid (a) 1% volume fraction (b) 3% 

volume fraction. 

Fig. 7. Comparison between the present MgO-I experimental data literature data of Xie et al. [20]. (a) 

1% volume fraction (b) 3% volume fraction. 

Fig. 8. Effect of temperature on the effective viscosity and relative viscosity at various volume 

fractions (a)-(c) effective viscosity vs. temperature for MgO-I, MgO-II and MgO-III respectively, and 

(d)-(f) relative viscosity vs. temperature for MgO-I, MgO-II and MgO-III respectively. 

Fig.9. Viscosity against volume fraction (a) effective viscosity at 20 and 70 oC (b) normalised 

effective viscosity. 

Fig 10. Comparison between the present experimental data, proposed correlation (Eq. 8) and other 

prominent viscosity models. 

Fig. 11 Comparison between experimental data (effective viscosity of MgO-EG) and the proposed 

correlation (Eq.8) for different temperatures and various volume fractions, in the case of 21 nm 

particles size.  

Fig. 12 Structure of the GA-PNN hybrid system for the effective viscosity of MgO-EG nanofluid 

modelling. 

Fig. 13 Comparison of the experimental data with the GA-PNN model, FCM-ANFIS model and 

proposed model for the effective viscosity of MgO-EG nanofluid (a) MgO-I at 1% volume fraction (b) 

MgO-II sample at 0.5% volume fraction (c) MgO-II at 2% volume fraction and (d) MgO-III at 3% 

volume fraction. 
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