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OPTIMAL COINCIDENCE BEST APPROXIMATION SOLUTION

IN NON-ARCHIMEDEAN FUZZY METRIC SPACES

N. SALEEM, M. ABBAS AND Z. RAZA

Abstract. In this paper, we introduce the concept of best proximal contrac-

tion theorems in non-Archimedean fuzzy metric space for two mappings and

prove some proximal theorems. As a consequence, it provides the existence of
an optimal approximate solution to some equations which contains no solu-

tion. The obtained results extend further the recently development proximal

contractions in non-Archimedean fuzzy metric spaces and famous Banach con-
traction principle.

1. Introduction and Preliminaries

Let K be any nonempty subset of a metric space X and T : K → X be a nonself
mapping. A fixed point problem is to find a point x∗ in K such that d(x∗, Tx∗) = 0.
A point x∗ in K where inf{d(y, Tx∗) : y ∈ K} is attained, that is, d(x∗, Tx∗) =
inf{d(y, Tx∗) : y ∈ K} holds is called an approximate fixed point of T or an
approximate solution of an equation Tx = x. In case, if it is not possible to solve
fixed point problem, it could be interesting to study the conditions that assure
existence and uniqueness of approximate fixed point of a mapping T.

A well-known best approximation theorem due to Ky Fan [2], states that if K is
a nonempty compact convex subset of a Hausdorff locally convex topological vector
space E and T : K → E is a continuous mapping, then there exists an element
x∗ in K such that d(x∗, Tx∗) = infy∈K d(Tx∗, y) = d(Tx∗,K).

The problem of finding an optimal best approximation solution is also of great
interest in optimization theory.

Let A and B be two nonempty subsets of X and T : A → B. Suppose that
4AB = d(A,B) = inf({d(a, b) : a ∈ A, b ∈ B}) is the measure of a distance
between two sets A and B. A point x∗ is called a best proximity point of T if
d(x∗, Tx∗) = 4AB , which is a solution of the following optimization problem

f(x) = d(x, Tx)← min

subject to the constraint

x ∈ A.

Indeed, if T is a multifunction from A to B, then the following

f(x) = d(x, Tx) ≥ dist(A,B),
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always hold. So, the most optimal solution to the problem of minimizing the real
valued function x→ d(x, Tx) over the domain A of the multifunction T will be one
for which the value

4AB = dist(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}

is attained. If A = B, best proximity point problem reduces to a fixed point
problem. In this way, best proximity point problem can be viewed as a natural
generalization of a fixed point problem. Furthermore, results dealing with existence
and uniqueness of best proximity point of certain mappings are more general than
the ones dealing with fixed point problem of those mappings ( [1, 9, 11, 12, 13]). A
coincidence best proximity point problem is defined as follows: find a point x∗ in A
such that d(gx∗, Tx∗) = 4AB where g is a self mapping on A. This is an extension
of a best proximity point problem.

On the other hand, Zadeh [16] introduced the concept of a fuzzy set. Kramosil
and Michalek [8] defined fuzzy metric spaces. George and Veeramani [4, 5] modified
and studied the notion of fuzzy metric spaces with the help of continuous t−norm
and generalized the concept of a probabilistic metric space to fuzzy situation.

In this paper, we prove the existence and uniqueness of an optimal coincidence
best approximation of a solution of a function M(gx, Tx, t) over a nonempty subset
of non-Archimedean fuzzy metric space, where g is a self mapping on A and T is a
nonself mapping. Our results extend and strengthen various known results in [10].

Consistent with [6], [14] and [15], the following definitions and results will be
needed in the sequel.

Definition 1.1. [14] A binary operation ∗ : [0, 1]2 −→ [0, 1] is said to be a
continuous t− norm if the following conditions hold:

(1): ∗ is associative and commutative;
(2): ∗ is continuous;
(3): a ∗ 1 = a for all a ∈ [0, 1];
(4): a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

The most commonly used continuous t − norms in fuzzy logic are minimum
t−norm ∧, product t−norm· and Lukasiewicz t−norm∗L, where a∧b = min{a, b},
a · b = ab, and a ∗L b = max{a+ b− 1, 0}. It is easy to check that ∗L ≤ · ≤ ∧.

Definition 1.2. (compare [5]) Let X be a nonempty set, and ∗ a continuous
t−norm. A fuzzy set M on X ×X × [0,+∞) is said to be a fuzzy metric if for any
x, y, z ∈ X, the following conditions hold:

(i): M(x, y, t) > 0,
(ii): x = y if and only if M(x, y, t) = 1 for all t > 0,
(iii): M(x, y, t) = M(y, x, t),
(iv): M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0,
(v): M(x, y, ·) : [0,+∞)→ [0, 1] is left continuous.
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The triplet (X,M, ∗) is called a fuzzy metric space. Since M is a fuzzy set on
X × X × [0,+∞), the value M(x, y, t) is regarded as the degree of closeness of x
and y with respect to t.

It is well known [6], and easy to see, that for each x, y ∈ X, M(x, y, .) is a
non-decreasing function on [0,+∞).

If we replace (iv) by

(vi): M(x, z,max{t, s}) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0.

Then triplet (X,M, ∗) is said to be a non-Archimedean fuzzy metric space.
As (vi) implies (iv), each non-Archimedean fuzzy metric space is a fuzzy metric

space. Further, if we take s = t, then (vi) becomesM(x, z, t) ≥M(x, y, t)∗M(y, z, t)
for all t > 0 and M is said to be strong fuzzy metric.

Each fuzzy metric (M, ∗) on a set X induces a Hausdorff topology τM on X
which has a base the family of open balls {BM (x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0},
where BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.

Observe that a sequence {xn}n∈N converges to x ∈ X (with respect to τM ) if
and only if limn→∞M(x, xn, t) = 1 for all t > 0.

If (X, d) is a metric space and we define Md : X ×X × [0,+∞)→ [0, 1] by

Md(x, y, t) =
t

t+ d(x, y)
,

then (X,Md, ·) is a fuzzy metric space and (Md, ·) is called the standard fuzzy
metric induced by d ([4]). The topologies τMd

and τd ( the topology induced by
the metric) on X are the same. Note that if d is a metric on a set X, then the
fuzzy metric (Md, ∗) is strong for every continuous t − norm “∗” such that for all
∗ ≤ ·, where Md is defined by Md(x, y, t) = t

t+d(x,y) , for all x, y ∈ X and t > 0 ( for

further details [3] ).
A sequence {xn}n∈N in a fuzzy metric space (X,M, ∗) is said to be a Cauchy

sequence if for each t > 0 and ε ∈ (0, 1) there exists n0 ∈ N such thatM(xn, xm, t) >
1− ε for all n,m ≥ n0. A fuzzy metric space (X,M, ∗) is said to be complete [5] if

every Cauchy sequence converges in (X,M, ∗). A subset A ⊆ X is said to be closed
if for each convergent sequence {xn} with xn ∈ A and xn −→ x, implies x ∈ A.
A subset A ⊆ X is said to be compact if each sequence in A has a convergent
subsequence.

Lemma 1.3. [6] M is a continuous function on X2 × (0,∞).

Definition 1.4. [15] Let A and B be two nonempty subsets of a fuzzy metric
space (X,M, ∗). Define;

A0(t) = {x ∈ A : M(x, y, t) = M(A,B, t) for some y ∈ B},
B0(t) = {y ∈ B : M(x, y, t) = M(A,B, t) for some x ∈ A},

where M(x,A, t) = supa∈AM(x, a, t) is the distance of a point x ∈ X from a
nonempty set A for t > 0 and M(A,B, t) = sup{M(a, b, t) for a ∈ A and b ∈ B}.

Let Ω = {η : [0, 1]→ [0, 1] such that η is continuous and decreasing on [0, 1] and
η(t) = 0 if and only if t = 1}.
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2. Optimal Solutions Using Best Proximity Point Theorems in
Non-archimedean Fuzzy Metric Space

Definition 2.1. Let A be a nonempty subset of a non-Archimedean fuzzy met-
ric space (X,M, ∗). A self mapping f : A → A is said to be fuzzy isometry if
M(fx, fy, t) = M(x, y, t) holds for all x, y ∈ A and t > 0.

Example 2.2. Let X = [0, 1]×R, and d : X×X → R be a usual metric on X. Let
A = {(0, x) : x ∈ R}. Note that (X,Md, ·) is non-Archimedean fuzzy metric space,
where Md is standard fuzzy metric induced by d. Define the mapping f : A→ A by
f(0, x) = (0,−x). Clearly, Md(w, u, t) = t

t+|x−y| , where w = (0, x), u = (0, y) ∈ A.

Also, M(fw, fu, t) = t
t+|−x+y| , which shows that f is a fuzzy isometry.

Definition 2.3. Let A be a nonempty subset of non-Archimedean fuzzy metric
space (X,M, ∗). A self mapping f : A→ A is said to be fuzzy expansive if for any
x, y ∈ A, and t > 0, we have M(fx, fy, t) ≤M(x, y, t).

Note that every fuzzy isometry is fuzzy expansive but converse does not hold in
general.

Example 2.4. Let X = R, and d : X × X → R be a usual metric on X. Let
A = [0, 4]. Note that (X,Md, ·) is a non-Archimedean fuzzy metric space, where
Md is standard fuzzy metric induced by d. Define the mapping f : A → A by
fx = 100x. If x = 0 and y = 4, then M(x, y, t) = t

t+4 , and M(fx, fy, t) = t
t+400 ,

which shows that f is fuzzy expansive but not a fuzzy isometry.

Definition 2.5. Let A,B be nonempty subsets of a non-Archimedean fuzzy metric
space (X,M, ∗). A set B is said to be fuzzy approximately compact with respect
to A if for every sequence {yn} in B and some x ∈ A, M(x, yn, t) −→ M(x,B, t)
imply that x ∈ A0(t).

Definition 2.6. [7] A sequence {tn} of positive real numbers is an s−increasing
sequence if there exists n0 ∈ N such that tn+1 ≥ tn + 1 for all n ≥ n0.

Definition 2.7. A fuzzy metric space (X,M, ∗) is said to satisfy the property−T if

for an s− increasing sequence, there exists some n0 in N such that
∞∏

n≥n0

M(x, y, tn) ≥

1− ε, for all n ≥ n0.

Theorem 2.8. Let (X,M, ∗) be non-Archimedean complete fuzzy metric space, A
and B are two nonempty closed subsets of X such that B is approximately compact
with respect to A and T : A→ B. Suppose that there exists η ∈ Ω such that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒ η[M(u, v, t)] ≤ ω(t)η[(M(x, y, t)],

for all x, y, u, v ∈ A and t > 0, where ω : (0,+∞) → (0, 1) is any function.
If g : A → A is a fuzzy expansive mapping, T (A0(t)) ⊆ B0(t) 6= φ and φ 6=
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A0(t) ⊆ g(A0(t)) for each t > 0. Then, there exists an element x ∈ A such that
M(gx, Tx, t) = M(A,B, t). Further, for any fixed element x0 ∈ A0, the sequence
{xn} defined by M(gxn+1, Txn, t) = M(A,B, t), converges to the unique element
x.
Proof. Let x0 be a given point in A0(t). Since T (A0(t)) ⊆ B0(t) and A0(t) ⊆
g(A0(t)), we can choose an element x1 ∈ A0(t) such that

M(gx1, Tx0, t) = M(A,B, t).

Also since Tx1 ∈ T (A0(t)) ⊆ B0(t), and A0(t) ⊆ g(A0(t)), it follows that there
exists an element x2 ∈ A0(t) such that M(gx2, Tx1, t) = M(A,B, t). Continuing
this way, we can obtain a sequence {xn} in A0(t) such that it satisfies :

M(gxn+1, Txn, t) = M(A,B, t) and M(gxn, Txn−1, t) = M(A,B, t), (1)

for each positive integer n. Now by given assumption, we have

η[M(gxn+1, gxn, t)] ≤ ω(t)η[M(xn, xn−1, t)]

for all n ≥ 0. As g is fuzzy expansive and η is a decreasing mapping on [0, 1], we
have

η[M(xn+1, xn, t)] ≤ η[M(gxn+1, gxn, t)] ≤ ω(t)η[M(xn, xn−1, t)].

Put M(xn+1, xn, t) = τn+1(t) for all t > 0, n ∈ N ∪ {0}. So

η(τn+1(t)) ≤ ω(t)η(τn(t)) < η(τn(t)). (2)

Consequently, τn+1(t) > τn(t) and hence {τn(t)} is an increasing sequence for all
t > 0. Thus limn→+∞ τn(t) = τ(t). Now we show that τ(t) = 1 for all t > 0. If not,
then there exists t0 > 0 such that 0 < τ(t0) < 1. Taking limit as n→∞ in (2), we
have

η(τ(t0)) ≤ ω(t0)η(τ(t0)) < η(τ(t0)),

a contradiction. Now we show that {xn} is a Cauchy sequence. If not, then there
exist ε ∈ (0, 1) and t0 > 0 such that for all k ∈ N, there are mk, nk ∈ N, with
mk ≥ nk ≥ k such that

M(xmk
, xnk

, t0) ≤ 1− ε.
Assume that mk is the least such integer exceeding nk, then we have

M(xmk−1, xnk
, t0) > 1− ε.

So for all k,

1− ε ≥ M(xmk
, xnk

, t0)

≥ M(xmk−1, xmk
, t0) ∗M(xmk−1, xnk

, t0)

> τmk
(t0) ∗ (1− ε). (3)

On taking limit as k →∞ on both sides of (3), we have

lim
k→+∞

M(xmk
, xnk

, t0) = 1− ε.
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Also

M(xmk+1, xnk+1, t0) ≥M(xmk+1, xmk
, t0) ∗M(xmk

, xnk
, t0) ∗M(xnk

, xnk+1, t0),

and

M(xmk
, xnk

, t0) ≥M(xmk
, xmk+1, t0) ∗M(xmk+1, xnk+1, t0) ∗M(xnk+1, xnk

, t0),

we get limk→+∞M(xmk+1, xnk+1, t0) = 1− ε. From (1), we have

M(gxmk+1, Txmk
, t0) = M(A,B, t0) and M(gxnk+1, Txnk

, t0) = M(A,B, t0).

Hence

η[M(xmk+1, xnk+1
, t0)] ≤ η[M(gxmk+1, gxnk+1

, t0)] ≤ ω(t0)η[M(xmk
, xnk

, t0)].

On taking limit as k →∞ on both sides of the above inequality, we get η(1− ε) ≤
ω(t0)η(1−ε). If η(1−ε) = 0, then by the definition of η, we have ε = 0, which gives
a contradiction. If η(1 − ε) > 0, then ω(t0) ≥ 1, which is again a contradiction,
since 0 < ω(t0) < 1. Thus {xn} is a Cauchy sequence in a closed subset A of a
complete fuzzy metric space (X,M, ∗). Hence there exists some x ∈ A such that
limn→+∞M(xn, x, t) = 1, for all t > 0. Now

M(gx,B, t) ≥ M(gx, Txn, t)

≥ M(gx, gxn+1, t) ∗M(gxn+1, Txn, t)

= M(gx, gxn+1, t) ∗M(A,B, t)

≥ M(gx, gxn+1, t) ∗M(gx,B, t).

Thus

M(gx,B, t) ≥M(gx, Txn, t) ≥M(gx, gxn+1, t) ∗M(gx,B, t).

As g is continuous and the sequence {xn} converges to x, the sequence {gxn}
converges to g(x), M(gx, Txn, t) → M(gx,B, t). Since {Txn} ⊆ B, and B is a
fuzzy approximately compact with respect to A, {Txn} has a subsequence which
converges to some y in B, therefore M(gx, y, t) = M(A,B, t), and hence gx ∈ A0(t).
Now A0 ⊆ g(A0) implies that gx = gu for some u ∈ A0(t). From

η[M(x, u, t)] ≤ η[M(gx, gu, t)] = η(1) = 0,

we have M(x, u, t) = 1 which implies that u = x. Thus x ∈ A0(t). As T (A0) ⊆
B0, so M(z, Tx, t) = M(A,B, t) for some z in A. By given assumption, we have
η[M(gxn+1, z, t)] ≤ ω(t)η[M(xn, x, t)] which on taking limit as n→∞ gives

lim
n→∞

M(gxn, z, t) = 1.

This further implies that gx = z. So M(gx, Tx, t) = M(z, Tx, t) = M(A,B, t).Now
we show that x is the unique fuzzy best proximity point of T. If not, then there is
another point w such that 0 < M(x,w, t) < 1 for all t > 0 and M(gw, Tw, t) =
M(A,B, t). Then it follows that

η[M(x,w, t)] ≤ η[M(gx, gw, t)] ≤ ω(t)η[M(x,w, t)] < η[M(x,w, t)].

Thus η[M(x,w, t)] < η[M(x,w, t)], a contradiction. Hence M(x,w, t) = 1 for all
t > 0, that is w = x. �
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Example 2.9. Let X = [0, 1] × R, and d : X × X → R an Euclidean metric on
X. Let A = {(x, 1) : x ∈ R} and B = {(x,−1) : x ∈ R}. Note that (X,Md, ·) is
a non-Archimedean complete fuzzy metric space, where Md an is standard fuzzy

metric induced by d. Note that Md(A,B, t) =
t

t+ 2
, A0(t) = A and B0(t) = B.

Define a mapping T : A → B by T (x, 1) = (x2 ,−1) and g : A → A by
g(x, 1) = (2x, 1). Clearly g is fuzzy expansive mapping, T (A0(t)) ⊆ B0(t) and
A0(t) = g(A0(t)).

Let us consider u = (x1, 1), v = (x2, 1) ∈ A, then there exists x = (x3, 1) and
y = (x4, 1) ∈ A such that

M(u, Tx, t) = M(A,B, t),

M(v, Ty, t) = M(A,B, t),

are satisfied. Solving the above two equations we have x1 = x3

2 and x2 = x4

2 .
Assume that

η(t) = 1− t and ω(t) =
t

t+ 1
.

By condition (ii) of the above theorem,

η(M(u, v, t)) ≤ ω(t)η(M(x, y, t)),

holds true, So all conditions of the Theorem (2.8) are satisfied. Moreover (0, 1) is
the unique element satisfying the conclusion of the theorem.

Following the similar arguments to those given in Theorem (2.8), we can prove
the following result.

Corollary 2.10. Let (X,M, ∗) be a non-Archimedean complete fuzzy metric space,
A and B two nonempty closed subsets of X such that B is approximately compact
with respect to A and T : A→ B. Suppose that there exists η ∈ Ω such that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒ η[M(u, v, t)] ≤ ω(t)η[(M(x, y, t)],

for all x, y, u, v ∈ A and t > 0, where ω : (0,+∞) → (0, 1) is any function. If
g : A → A is a fuzzy isometry, T (A0(t)) ⊆ B0(t) 6= φ and φ 6= A0(t) ⊆ g(A0(t))
for each t > 0. Then, there exists an element x ∈ A such that M(gx, Tx, t) =
M(A,B, t). Further, for any fixed element x0 ∈ A0, the sequence {xn} defined by
M(gxn+1, Txn, t) = M(A,B, t), converges to the unique element x.

Example 2.11. Let X = [0, 1] × R, and d : X ×X → R an Euclidean metric on
X. Let A = {(x, 1) : x ∈ R} and B = {(x,−1) : x ∈ R}. Note that Md(A,B, t) =
t

t+ 2
, A0(t) = A and B0(t) = B.

Define the mapping T : A → B by T (x, 1) = (−x2 ,−1) and g : A → A by
g(x, 1) = (−x, 1). Clearly g is a fuzzy isometric mapping, T (A0(t)) ⊆ B0(t) and
A0(t) = g(A0(t)).
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Let us consider u = (x1, 1), v = (x2, 1) ∈ A, then there exists x = (x3, 1) and
y = (x4, 1) ∈ A such that

M(u, Tx, t) = M(A,B, t),

M(v, Ty, t) = M(A,B, t),

are satisfied. Using above two equations we get x1 = −x3

2 and x2 = −x4

2 . If

η(t) = 1− t and ω(t) =
t

t+ 1
,

then by the condition (ii) of the above theorem, we obtain that

η(M(u, v, t)) ≤ ω(t)η(M(x, y, t)).

All conditions of the Corollary (2.10) are satisfied. Moreover (0, 1) is the unique
element satisfying the conclusion of the corollary.

Corollary 2.12. Let (X,M, ∗) be non-Archimedean complete fuzzy metric space, A
and B are two nonempty closed subsets of X such that B is approximately compact
with respect to A and T : A→ B. Suppose that there exists η ∈ Ω such that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒ η[M(u, v, t)] ≤ ω(t)η[(M(x, y, t)],

for all x, y, u, v ∈ A and t > 0, where ω : (0,+∞) → (0, 1) is any function. If
A0(t) 6= φ and T (A0(t)) ⊆ B0(t) 6= φ for each t > 0. Then, there exists an el-
ement x ∈ A such that M(x, Tx, t) = M(A,B, t). Further, for any fixed element
x0 ∈ A0, the sequence {xn} defined by M(xn+1, Txn, t) = M(A,B, t), converges to
the unique element x.

Proof. The result follows from Theorem (2.8), if g = IA ( an identity mapping on
A). �

Theorem 2.13. Let (X,M, ∗) be a non-Archimedean complete fuzzy metric space,
such that for each ε > 0 and an s− increasing sequence {tn} satisfying property−T ,
A and B are two nonempty closed subsets of X such that B is approximately com-
pact with respect to A and T : A → B. Suppose that there exists α ∈ (0, 1) such
that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒M(u, v, t) ≥M(x, y,

t

α
),

for all u, v, x, y ∈ A, and t > 0. If g : A → A is a fuzzy expansive mapping,
T (A0(t)) ⊆ B0(t) 6= φ and φ 6= A0(t) ⊆ g(A0(t)) for each t > 0. Then, there ex-
ists an element x ∈ A such that M(gx, Tx, t) = M(A,B, t). Further, for any fixed
element x0 ∈ A0(t), the sequence {xn} defined by M(gxn+1, Txn, t) = M(A,B, t),
converges to the unique element x.
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Proof. Let x0 be a given point in A0(t). As in the proof of Theorem (2.8), we can
obtain a sequence {xn} in A0(t), such that

M(gxn, Txn−1, t) = M(A,B, t), and M(gxn+1, Txn, t) = M(A,B, t) (4)

hold for each positive integer n. By given assumption, it follows that

M(gxn, gxn+1, t) ≥M(xn−1, xn,
t

α
).

Thus, we have

M(xn, xn+1, t) ≥ M(xn−1, xn,
t

α
) ≥M(xn−2, xn−1,

t

α2
) ≥

· · · ≥ M(x0, x1,
t

αn
).

So for each t > 0 and for all m,n ∈ N with m ≥ n, we have

M(xn, xm, t) ≥ M(xn, xn+1, t) ∗M(xn+1, xn+2, t) ∗ · · · ∗M(xm−1, xm, t)

≥ M(x0, x1,
t

αn
) ∗M(x0, x1,

t

αn+1
) ∗ · · · ∗M(x0, x1,

t

αm−1
)

≥
∞∏
i=n

M(x0, x1,
t

αi
) =

∞∏
i=n

M(x0, x1, ti),

where ti =
t

αi
. Since limn→∞(tn+1 − tn) = ∞, therefore {tn} is an s−increasing

sequence and satisfying property−T, there exist some n0 in N and ε > 0 such that
∞∏
n=1

M(x0, x1, tn) ≥ 1 − ε for all n ≥ n0, and hence M(xn, xm, t) ≥ 1 − ε for all

n,m ≥ n0. Thus {xn} is a Cauchy sequence in X. Thus {xn} is a Cauchy sequence
in a closed subset A of a complete fuzzy metric space (X,M, ∗). Hence there exists
some x ∈ A such that limn→+∞M(xn, x, t) = 1, for all t > 0. Now

M(gx,B, t) ≥ M(gx, Txn, t)

≥ M(gx, gxn+1, t) ∗M(gxn+1, Txn, t)

= M(gx, gxn+1, t) ∗M(A,B, t)

≥ M(gx, gxn+1, t) ∗M(gx,B, t).

On taking limit as n → ∞, we have M(gx, Txn, t) → M(gx,B, t). Since B is a
fuzzy approximately compact with respect to A, {Txn} has a subsequence which
converges to some y in B, so M(gx, y, t) = M(A,B, t), and hence gx ∈ A0. Using
A0 ⊆ g(A0), we have gx = gu for some u ∈ A0(t). Now M(x, u, t) ≥M(gx, gu, t) =
1 implies that x = u and x ∈ A0(t). Now T (A0(t)) ⊆ B0(t) gives that

M(z, Tx, t) = M(A,B, t), (5)

for some z in A. From (4) and (5), we have

M(gxn+1, z, t) ≥M(xn, x,
t

α
).
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On taking limit n→∞, we get limn→∞M(gxn+1, z, t) ≥ limn→∞M(xn, x,
t
α ) = 1,

and hence limn→∞M(gxn+1, z, t) = 1. Also, limn→∞M(gxn+1, gx, t) = 1. Hence
gx = z and

M(gx, Tx, t) = M(A,B, t) = M(z, Tx, t). (6)

If there is another element x∗ such that

M(gx∗, Tx∗, t) = M(A,B, t). (7)

Then from (6) and (7), we obtain

M(x, x∗, t) ≥M(gx, gx∗, t) ≥M(x, x∗,
t

α
),

which further implies that

M(x, x∗, t) ≥M(x, x∗,
t

α
),

a contradiction. Hence the result follows. �

Example 2.14. Let X = [0, 1]× R, and d : X ×X → R is a metric on X defined
below. Let A = {(0, x) : x ∈ R} and B = {(1, x) : x ∈ R}. Let (X,M, ∗) is a
complete non-Archimedean fuzzy metric space, where M(x, y, t) = t

t+d(x,y) for all

t > 0, under product t− norm. Where

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| .

Note that M(A,B, t) = t
t+1 , A0(t) = A and B0(t) = B. Define T : A → B

by T (0, x) = (1, x5 ). Obviously T (A0(t)) ⊆ B0(t). Define g : A → A by g(0, x) =
10(0, x). Then g is a fuzzy expansive mapping and A0(t) = g(A0(t)). If u =
(0, x1), v = (0, x2), x = (0, x3) and y = (0, x4) are such that the following equations
are satisfied:

M(u, Tx, t) = M(A,B, t),

M(v, Ty, t) = M(A,B, t),

then we get x1 = x3

5 and x2 = x4

5 . Note that the condition

M(u, v, t) ≥M(x, y,
t

α
)

in Theorem (2.13) holds true for all α > 1
5 . In particular choose α = 2

5 . Moreover
(0, 0) is the unique element satisfying the conclusion of the theorem.

Corollary 2.15. Let (X,M, ∗) be a non-Archimedean complete fuzzy metric space,
such that for each ε > 0 and an s− increasing sequence {tn} satisfying property−T ,
A and B are two nonempty closed subsets of X such that B is approximately com-
pact with respect to A and T : A → B. Suppose that there exist α ∈ (0, 1) such
that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒M(u, v, t) ≥M(x, y,

t

α
),

for all u, v, x, y ∈ A, and t > 0. If g : A → A is a fuzzy isometry, T (A0(t)) ⊆
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B0(t) 6= φ and φ 6= A0(t) ⊆ g(A0(t)) for each t > 0. Then, there exists an element
x ∈ A such that M(gx, Tx, t) = M(A,B, t). Further, for any fixed element x0 ∈
A0, the sequence {xn} defined by M(gxn+1, Txn, t) = M(A,B, t) converges to the
unique element x.

Example 2.16. Let X = [0, 1]×R, and d : X ×X → R is usual metric on X. Let
A = {(0, x) : x ∈ R} and B = {(1, x) : x ∈ R}.

Note that M(A,B, t) = t
t+1 , A0(t) = A and B0(t) = B. Define T : A → B

by T (0, x) = (1, x5 ). Obviously, T (A0(t)) ⊆ B0(t). Define g : A → A by g(0, x) =
(0,−x). Then g is a fuzzy isometry and A0(t) = g(A0(t)). If u = (0, x1), v =
(0, x2), x = (0, x3) and y = (0, x4) satisfy

M(u, Tx, t) = M(A,B, t),

M(v, Ty, t) = M(A,B, t).

Then x1 = x3

5 and x2 = x4

5 . Also

M(u, v, t) ≥M(x, y,
t

α
)

holds true for all α > 1
5 . In particular choose α = 2

5 . Moreover (0, 0) is the unique
element satisfying the conclusion of the theorem.

Corollary 2.17. Let (X,M, ∗) be non-Archimedean complete fuzzy metric space,
such that for each ε > 0 and an s− increasing sequence {tn} satisfying property−T ,
A and B are two nonempty closed subsets of X such that B is approximately com-
pact with respect to A and T : A → B. Suppose that there exist α ∈ (0, 1) such
that

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
⇒M(u, v, t) ≥M(x, y,

t

α
),

for all u, v, x, y ∈ A, and t > 0. If T (A0(t)) ⊆ B0(t) 6= φ and A0(t) 6= φ for each t >
0. Then, there exists an element x ∈ A such that M(x, Tx, t) = M(A,B, t). Further,
for any fixed element x0 ∈ A0(t), the sequence {xn} defined by M(xn+1, Txn, t) =
M(A,B, t), converges to the unique element x.

Proof. The result follows from Theorem (2.13), if g = IA ( an identity mapping on
A). �
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