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Abstract

In this paper, we consider a discrete time working vacation queue with a utility function
for the reward of receiving the service and the cost of waiting in the system. A more
flexible switching mechanism between low and regular service states is introduced to en-
hance the practical value of the working vacation queue. Under different precision levels
of the system information, namely observable, almost unobservable and fully unobservable
cases, the utility function is studied from both the individual customer’s and the system
administrator’s points of view. By analyzing the steady-state behavior of the system, the
associated optimal joining decisions under different information scenarios are obtained. We
find that for the fully observable queue, the joining threshold for individual optimization
may be less than the one for social optimization in working vacation period. A similar
situation also appears in almost unobservable case. Such phenomenon is not possible for
the classic first come first served queue due to the fact that there is no vacation time and
thus will not cause large fluctuations in customers’ conditional waiting time. Additionally,
we also conduct some numerical comparisons to demonstrate the effect of the information
levels as well as system parameters on customer joining behavior.

Keywords: Queueing; Working vacation; Bernoulli interruption schedule; Joining
strategy; Conditional sojourn time

1. Introduction

In a queueing system, customers arrive at the service facility to get a certain benefit
from the service, but they often encounter the annoyance from waiting. Under normal
circumstances, upon arrival at the system, customers usually observe the existing queue
length and the service fee, and then decide whether or not to join the queue based on the
perceptions of personal benefits. Thus, during the last decades, there exists a widespread
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tendency to investigate decision making problems in the waiting line system from an eco-
nomic viewpoint. Some natural reward-cost structures which incorporate customers’ desires
for service and their unwillingness to wait are imposed on the system. Such an economic
analysis for decision making in the queues can be traced to the pioneering work of Naor [1]
who studied the situation where arriving customers are admitted or not based on the ob-
served queue length. By establishing a queueing cost model which envisages the imposition
of tolls on newly arriving customers, Naor showed that levying tolls is an effective strategy
that might attain social welfare optimization. In the several years following this article, a
number of authors have addressed related issues. Yechiali [2, 3] extended Naor’s results to
GI/M/1 and GI/M/s queues with one customer type and linear holding cost. Stidham [4]
introduced a fixed reward and a waiting cost for each job passing through the system, and
considered the optimal control of admission to a queueing system. Mendelson [5] studied
optimal pricing and capacity decisions for a service facility in a microeconomic framework,
and also investigated the effects of queueing delays and customer’s related costs on the
management of computing systems. These studies invariably assumed that customers can
balk if the expected waiting cost of their jobs is too high. At the same time, they also
demonstrated the inconsistency between the individually and socially optimal joining rules.
Additionally, Edelson and Hildebrand [6] reexamined the work of Naor and introduced a
balking model in which customers do not observe the system state before making an un-
changeable joining decision. They further revealed that revenue maximization and social
optimization occur simultaneously under such a situation.

In recent times, there has been an upsurge of interest towards economic analysis for
decision making in the waiting line system, especially those classified as optimal design and
control of queues. For different precision levels of system information, Burnetas and E-
conomou [7] considered a Markovian single-server queueing system with setup times. They
derived the equilibrium balking strategies for the customers and analyzed the stationary
behavior of the system. Based on the above work, Economou and Kanta [8] further stud-
ied the equilibrium joining behavior in an M/M/1 repairable queue. Following the idea
of Economou and Kanta, by assuming that repair is not provided immediately, Wang and
Zhang [9] reconsidered the customer’s balking strategy in fully and partially observable
queues. Moreover, equilibrium analysis is also conducted on an observable queueing sys-
tem with setup and closedown times by Sun et al. [10], and on a clearing queueing system
in alternating environment by Economou and Manou [11]. Meanwhile, accomplishing the
development of vacation queueing theory, the economic analysis for decision making in
vacation queues has drawn the attention of numerous researchers. Guo and Hassin [12, 13]
studied a Markovian vacation queue with N -policy and exhaustive service. They presented
individually and socially optimal strategies for unobservable and observable queues. An
essential extension to queue with general service and vacation times appeared in the recent
paper written by Economou et al.[14]. Mean value approach was employed by them for
the derivation of the main performance measures. Liu et al.[15] were the first to study
customer’s strategic queueing behavior in discrete time vacation queue. Shortly after the
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publication of this seminal paper, Ma et al.[16] developed this research topic by consider-
ing the Geo/Geo/1 queue with multiple vacation policy, in which customers’ equilibrium
balking strategies were discussed under four different information scenarios. More recently,
inspired by the working vacation mechanism, equilibrium analysis for the M/M/1 queue
with multiple working vacations are conducted simultaneously by Sun and Li [17] and
Zhang et al.[18]. Both individually and socially optimal joining rules are obtained and
compared by them. More interesting extensions about the effect of information on the
strategic behavior in queueing systems can be found in papers Economou and Kanta [19],
Boudali and Economou [20, 21], Wang and Zhang [22] and Li et al.[23], etc.

Based on the above brief literature review, we note that significant progress has been
made in the continuous time queues with customers’ strategic queueing behaviors. But it
still seems that little more than a beginning has been made in their discrete time coun-
terparts. Except a limited number of studies done by several Chinese scholars (see, e.g.
[15, 16]), no work in this direction has come to our notice. Many economic analysis and
decision making problems for discrete time queues have been left unexplored. More im-
portantly, for practical measurement related purpose, time is sometimes considered as a
discrete quantity although it is continuous. We often hear people say a system is observed
every minute, every second, every half a second, etc. Meanwhile, with the development
of digital communication technology, many modern communication systems are operated
based on a time-slot basis, which are naturally and appropriately modeled by discrete time
queues. Thus, the main purpose of this paper is to develop an analytical model that allows
us extensively analyze and explore the strategic queueing behavior arising in Geo/Geo/1
working vacation queue with Bernoulli interruption schedule.

For evaluating the performance measures of gateway router in fiber communication
networks, the concept of working vacation policy was first introduced by Servi and Finn
[24] in 2002. A major difference between working vacation queue and classical vacation
queue is that during a vacation period, customers in the former can be served in a lower
service rate; however, customers in the latter can impossibly be served and depart the
system. Due to the strong application background in optimal design of stochastic service
systems, working vacation queues have received considerable attention in the past ten
years. Many fruitful theoretical results and interesting applications are presented in this
area (see, e.g. [25-37]). On the other hand, in both single and multiple working vacation
policies, server resumes fast service rate only when the system is non-empty at the end
of a vacation. Obviously, such assumption might not be tenable in many occasions. For
example, when a batch of patients who are injured badly in a car accident need surgery,
idle surgeons may temporarily interrupt their vacations and return to the hospital for doing
emergency surgery. In addition to the above, it is generally known that virus scan is an
important maintenance activity for the terminal server which helps keep its functioning
well. This type of maintenance could be performed when the system load is relatively
light. Although running a virus scan will consume some system resources and result in a
slow processing speed, the terminal server could still provide his service with a lower rate.
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Further, if there are some tasks that require special treatment, the process of virus scan
can be interrupted, and the server can resume his original service speed depending on the
time-delay sensitivity of these tasks. Thus, it seems that the introduction of the Bernoulli
vacation interruption schedule into working vacation queue is very reasonable and necessary
for some practical situations. So, investigating individually and socially optimal joining
rules for this system would be an interesting and significant research topic. At the same
time, it is worth mentioning here that one of the complexities in the analysis of discrete
time queues is the occurrences of simultaneous arrivals and departures at the boundary
epochs of a slot. The analysis becomes further complicated in the case of working vacation
queue with Bernoulli interruption schedule as there exist many directly accessible states
for each system state.

The rest of this paper is organized as follows. The next section describes the mathemat-
ical model. Sections 3, 4, and 5 are devoted to the fully observable, the almost unobservable
and the fully unobservable queues, respectively. We demonstrate how to obtain the indi-
vidually and socially optimal joining strategies for each type of queues. Some numerical
results are also presented and discussed in these sections. This paper ends with Section 6
where conclusions and future scope are given.

2. Model description

We consider a discrete time multiple working vacation queue with Bernoulli interrup-
tion schedule, whose service will not completely remain inactive during the server vaca-
tion period. In our model, the inter-arrival times {Tr, r ≥ 1} of customers are indepen-
dent and identically distributed random variables with probability mass function (p.m.f.)
Pr {Tr = k} = λλ̄k−1, k ≥ 1, where we use symbol x̄ = 1−x, for any real number x ∈ (0, 1).
The service time Sb in a regular busy period follows geometric distribution with parameter
µb, namely, Pr {Sb = k} = µbµ̄

k−1
b , k ≥ 1. The server commences a working vacation of

random length at the epoch when the system becomes empty. The working vacation time
V is geometrically distributed with p.m.f. Pr {V = k} = θθ̄k−1, k ≥ 1. It is an operating
period with a lower service rate, the service time Sv in working vacation period follows a ge-
ometric distribution with parameter µv(0 < µv < µb < 1), namely, Pr {Sv = k} = µvµ̄k−1

v ,
k ≥ 1. After serving a customer in working vacation period, if the server finds any customer
waiting in the queue, the vacation either is interrupted with probability p(0 ≤ p ≤ 1) or
continues with probability p̄. If there are no customers in the queue, the working vacation
continues. Furthermore, after completing a working vacation, if the system is non-empty
at that moment, the server switches its service rate from µv to µb and starts a regular
busy period immediately; otherwise, the server takes another working vacation. The low
speed service interrupted at the end of working vacation restarts from the beginning. In
order to give an economical sense to the queueing management, we also assume that each
customer who joins the queue receives a reward R from service and experiences a delay cost
of C per unit time. To avoid triviality, we impose two conditions on the current model:
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(1) Customers are risk neutral and maximize their expected net benefit in equilibrium.
Under favorable circumstance, namely when the server stays idle, a customer will desire to
queue up for receiving the completion of service. This also means that we always restrict
ourselves in the non-trivial case where some customers have an incentive to join the queue.
This assumption ensures that the reward for service exceeds the expected cost for a cus-
tomer who finds the system empty; (2) To facilitate the analysis, we suppose that various
stochastic processes involved in the system are independent of each other.

In discrete time queueing system, the time axis is divided into equal intervals called
slots and all queueing activities occur at the slot boundaries. Traditionally, there are two
types of systems in the discrete time case (see, e.g.[38, 39]), one is the late arrival with
delayed access (LAS-DA) and the other is the early arrival system (EAS). In this paper,
we consider the model for the early arrival system and therefore, a potential arrival occurs
in (t, t+), and a potential departure takes place in (t−, t), for t = 0, 1, 2, . . .. To make it
clear, the various time epochs at which events occur are shown in a self-explanatory figure
(see Figure 1).

∙: Departure epoch ∘: Arrival epoch ▲: Beginning or ending of the working vacation

!
−

∙ ▲

!

Arrival

Departure

!

!

∘

!
+ (!+1)−

∙ ▲

!Departure

!+1

!

∘

Arrival

(!+1)+

Figure 1. Various time epochs in an early arrival system.

To obtain the state space of the queueing system, in the sequel we use the following
random variables. Let N(t) be the number of customers in the system at time t. The
different states of the server at time t are defined as follows:

Y (t) =

{
0, if the server is on working vacation,
1, if the server is in regular busy period.

It is readily seen that the process {(N(t), Y (t)) , t ≥ 0} is a Discrete Time Markov Chain
(DTMC) whose state space Ω = Ω0 ∪ Ω1, where Ω0 = {(i, j)| i = 0, 1, 2, . . . , j = 0} and
Ω1 = {(i, j)| i = 1, 2, . . . , j = 1}.

3. Analysis of the fully observable queue

In this section, we focus our attention on the fully observable case, where the state of the
server and the existing queue length is communicated to the customers upon their arrival.
Under such situation each customer makes a decision based on the number of customers
in the system. We will prove that a threshold type individual optimal strategy exists, in
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the sense that this strategy maximizes the expected net reward of a customer. Next, to
determine the pure threshold strategy, the analysis is carried out from two perspectives,
namely individual and social optimization.

3.1. Optimal joining threshold for individual optimization

Let us take an arbitrary arriving customer as the tagged one. If the tagged customer
enters the system, the total delay cost is determined by his mean sojourn time. Then,
his expected net benefit after service completion can be expressed as U = R − CE [Wi,j],
where E [Wi,j] ((i, j) ∈ Ω) is the tagged customer’s mean conditional sojourn time given
that he finds the queueing system at state (i, j) just before his arrival. Thus the tagged
customer will join the queue if and only if U = R−CE [Wi,j] ≥ 0. The above linear utility
function allows us to compute exactly the individual net benefit of the tagged customer for
any value of (i, j) and to finally get the optimal joining rule for individual optimization.
From the cost structure, we may see that the expected conditional sojourn time plays an
important role in solving the optimal joining threshold under individual optimization. It
is clear that if the tagged customer finds the queueing system is in state (i, 1) just before
his arrival epoch, then his sojourn time is the sum of i + 1 regular service times, namely,
for i = 1, 2, . . . ,

E [Wi,1] =
i+ 1

µb
. (1)

Since after each transition there exist many directly accessible states for state (i, 0), the
calculation of E [Wi,0] is much more difficult than E [Wi,1]. Here, we will first use a first-step
argument to derive the generating function of Wi,0. Then, differentiating the generating
function and doing some algebraic manipulations we can directly obtain the mean value
of Wi,0. Let Ṽ denote the residual working vacation time. By conditioning on the events
that may occur in the next step, for i ≥ 1, E

[
zWi,0

]
can be decomposed as

E
[
zWi,0

]
=E

[
zWi,0

∣∣ Ṽ >Sv

]
Pr
{
Ṽ >Sv

}
+E
[
zWi,0

∣∣ Ṽ <Sv

]
Pr
{
Ṽ <Sv

}

+E
[
zWi,0

∣∣ Ṽ =Sv

]
Pr
{
Ṽ =Sv

}
(2)

The first term on the right hand side of Eq.(2) means that the remaining working vacation
time is greater than a residual service time with low service rate. According to the Bernoulli
vacation interruption schedule, upon completion of the current service, the server will
terminate his vacation and resume regular busy period with probability p or continue his
vacation and remain low service state with probability p̄. Thus, we have

E
[
zWi,0

∣∣ Ṽ >Sv

]
Pr
{
Ṽ >Sv

}

=
∞∑

k=1

∞∑

n=k+1

E
[
zk+Wi−1,0

]
p̄θθ̄n−1µvµ̄

k−1
v +

∞∑

k=1

∞∑

n=k+1

E
[
zk+Wi−1,1

]
pθθ̄n−1µvµ̄

k−1
v
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where we define W0,1 = Sb. The second term on the right hand side of Eq.(2) indicates that
the remaining working vacation time is less than a residual service time with low service
rate. Further noting that the remaining working vacation time is at least one time slot and
the residual service time is at least two time slots, we obtain

E
[
zWi,0

∣∣ Ṽ <Sv

]
Pr
{
Ṽ <Sv

}
=

∞∑

k=2

k−1∑

n=1

E
[
zṼ+Wi,1

]
θθ̄n−1µvµ̄

k−1
v .

Since the probability of occurrence of the event Ṽ = Sv is not equal to zero in discrete
time queueing model, we must not ignore the discussion of this case. Applying some simple
probabilistic arguments, the third term on the right hand side of Eq.(2) can be expressed
as follows

E
[
zWi,0

∣∣ Ṽ =Sv

]
Pr
{
Ṽ =Sv

}
=

∞∑

n=1

E
[
zn+Wi−1,1

]
θθ̄n−1µvµ̄

n−1
v .

As an immediate consequence of these results, after some algebraic manipulations, we have

E
[
zWi,0

]
=E
[
zWi−1,0

] µvp̄θ̄z

1−µ̄vθ̄z
+E
[
zWi−1,1

] µvpθ̄z + θµvz

1−µ̄vθ̄z
+E
[
zWi,1

] θµ̄vz

1−µ̄vθ̄z
, i ≥ 1.

Similarly, for i = 0,

E
[
zW0,0

]
=E

[
zW0,0

∣∣ Ṽ ≥Sv

]
Pr
{
Ṽ ≥Sv

}
+E
[
zW0,0

∣∣ Ṽ <Sv

]
Pr
{
Ṽ <Sv

}

=
∞∑

k=1

∞∑

n=k

zkθθ̄n−1µvµ̄
k−1
v +

∞∑

k=2

k−1∑

n=1

E
[
zṼ+Sb

]
θθ̄n−1µvµ̄

k−1
v

=
zµv

1−zµ̄vθ̄
+

∞∑

k=2

k−1∑

n=1

E
[
zSb
]
znθθ̄n−1µvµ̄

k−1
v

=
zµv

1−zµ̄vθ̄
+

zµb

1−zµ̄b

zθµ̄v

1−zθ̄µ̄v
. (3)

Employing Eq.(1) and evaluating
dE[zWi,0 ]

dz at z = 1, we can obtain

E [W0,0]=
µb+θµ̄v

µb

(
1−µ̄vθ̄

) , (4)

E [Wi,0]=
1

1−µ̄vθ̄
+

µvp̄θ̄

1−µ̄vθ̄
E[Wi−1,0]+

i

µb

(
µvpθ̄+θµv

1−µ̄vθ̄

)
+
i+ 1

µb

θµ̄v

1−µ̄vθ̄
, i=1, 2, . . . . (5)

From Eq.(5), we should be able to derive the following relationship

E [Wi,0]−E [Wi−1,0]−
1

µb
=

µvp̄θ̄

1−θ̄µ̄v

(
E [Wi−1,0]−E [Wi−2,0]−

1

µb

)
, i = 2, 3, . . . . (6)

Using Eqs.(4) and (5) in Eq.(6), we have

E [Wi,0]−E [Wi−1,0]=
µvp̄θ̄ (µb − µv)

µb

(
1−µ̄vθ̄

)2

(
µvp̄θ̄

1−µ̄vθ̄

)i−1

+
1

µb
, i=1, 2, . . . . (7)
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Noting that E [Wi,0]−E [W0,0]=
i∑

k=1
(E [Wk.0]−E [Wk−1,0]), we finally obtain

E [Wi,0]=
µvθ̄p̄ (µb − µv)

µb

(
1−µ̄vθ̄

)(
1−µ̄vθ̄−µvp̄θ̄

)
[
1−
(

µvp̄θ̄

1−µ̄vθ̄

)i
]
+

i

µb
+

µb+θµ̄v

µb

(
1−θ̄µ̄v

) , i=0, 1, 2, . . . .

(8)
From Eqs.(1) and (8), we see that in the fully observable queue, the optimal joining strategy
for individual optimization can be established in a fashion which finds out a pair of integers
(Ie(0), Ie(1)), satisfies the following four inequalities,

R−C

{
µvθ̄p̄ (µb−µv)

µb

(
1−µ̄vθ̄

)(
1−µ̄vθ̄−µvp̄θ̄

)
[
1−
(

µvp̄θ̄

1−µ̄vθ̄

)Ie(0)
]
+
Ie(0)

µb
+

µb+θµ̄v

µb

(
1−θ̄µ̄v

)
}
≥0, (9)

R−C

{
µvθ̄p̄ (µb−µv)

µb

(
1−µ̄vθ̄

)(
1−µ̄vθ̄−µvp̄θ̄

)
[
1−
(

µvp̄θ̄

1−µ̄vθ̄

)Ie(0)+1
]
+
Ie(0)+1

µb
+

µb+θµ̄v

µb

(
1−θ̄µ̄v

)
}
<0, (10)

R− C

(
Ie(1) + 1

µb

)
≥ 0, (11)

R− C

(
Ie(1) + 2

µb

)
< 0. (12)

Here, inequalities (9) and (11) correspond to the cases where the customer is supposed to
join the system and then receives the service to reap the reward. On the other hand, when
inequalities (10) and (12) hold, arriving customer balks without joining. Incorporating the
inequalities (11) and (12) in one expression, we have

Ie(1) =

⌊
Rµb

C

⌋
− 1,

where the symbol &x' denotes the largest integer not exceeding x.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
8

9

10

11

12

13

14

15

16

17

18

µb

i = 1

i = 0

Ie(i)

Figure 2. Optimal joining threshold under individual

optimization for the different values of µb.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
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8

9
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12

13

14

 

 

p = 0

p = 0.5

µb

Ie(0)

Figure 3. Compare the threshold value Ie(0)

for p=0 with p=0.5.
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Figure 4. Dependence of individually optimal joining threshold Ie(0) on µb and p.

Due to the high non-linear and complex nature of inequalities (9) and (10), it is ex-
tremely difficult to develop an analytic solution of Ie(0) symbolically. However, we can
get the value of Ie(0) through some effective numerical methods. To illustrate the applica-
tion of theoretical results, we investigate several numerical examples by selecting R = 30,
C = 1.5, µv = 0.2, θ = 0.1, p = 0.5 and letting µb vary from 0.55 to 0.95. From Figure 2,
we observe that an increase in the parameter µb implies an increase in two kinds of joining
thresholds, and Ie(1) is always greater than Ie(0) with the increase of µb. This numerical
result is entirely consistent with the actual situation since an arriving customer is more
likely to enter the system when the server is in regular busy period. Moreover, we notice
that if p = 0 this model becomes Geo/Geo/1 multiple working vacation queue without
vacation interruptions. The values of Ie(0) for p = 0 and p = 0.5 are graphically presented
in Figure 3. We can see that the joining threshold value for the working vacation queue
with Bernoulli interruption schedule is greater than the one without vacation interruptions.
This is exactly what we had expected, since vacation interruption mechanism can attract
more customers to join the queue. Additionally, letting p vary from 0.1 to 0.5, the effect of
Bernoulli schedule control probability p on the joining threshold Ie(0) is depicted together
with the change of parameter µb in Figure 4. It can be seen that when the value of µb is
smaller, the change of Ie(0) is not sensitive to the value of p.

3.2. Optimal joining threshold for social optimization

In this subsection, we change our viewpoint from the individual customer to the whole
system, where the queueing system is composed of a server, all potential customers and an
administrator who has the authority to control the queue length. If the control of adminis-
trator is exercised by setting an entrance fee imposed on the entering customers, then the
form of the social optimal policy is the same as the individual optimal policy and only the
values of specific parameters change. Since the individual optimal policies are threshold
policies, it suffices to seek social optimal policies within the family of threshold polices.
Thus, By restricting the number of entering customers, we will discuss how to achieve the
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maximal system expected profit, namely the so-called social welfare optimization. Here,
we assume that when the server is on working vacation, administrator restricts I(0) + 1
customers in the system. That is to say, the service facility has a limited waiting room of
size I(0)+ 1 in working vacation period. Similarly, if the number of customers has already
reached I(1) + 1 in regular busy period, then any newly arriving customers will simply
be rejected. In addition, since the server works at a lower rate than in a regular busy
period, it is reasonable to assume that I(0) is smaller than I(1). On the other hand, if the
administrator charges an entrance fee for customer who joins the queue, then the reward
of customer is reduced and everything else still remains the same, so we only have imposed
restrictions on balking threshold. According to the above assumptions, it is easily seen
that the two-dimensional process {N(t), Y (t), t ≥ 0} is a finite DTMC with state space

Ωob = {(i, 0) : i ∈ {0, 1, . . . , I(0) + 1}} ∪ {(i, 1) : i ∈ {1, . . . , I(1) + 1}} .

In order to calculate the social welfare per unit time, we first need to obtain the steady-
state queue length distribution at time t. Toward this end, let us define the following
stationary probability distributions for the DTMC:

Pi,0 = lim
t→∞

Pi,0(t) = lim
t→∞

Pr {N(t) = i, Y (t) = 0} , i = 0, 1, . . . , I(0) + 1,

Pi,1 = lim
t→∞

Pi,1(t) = lim
t→∞

Pr {N(t) = i, Y (t) = 1} , i = 1, 2, . . . , I(1) + 1.

Relating the state of the system at time t and t + 1, and using simple probabilistic
arguments, we can get a set of Kolmogorov-type difference equations as follows:

P0,0λµ̄v = P1,0λ̄µv + P1,1λ̄µb, (13)

Pi,0

[
1−θ̄

(
λ̄µ̄v+λµvp̄

)]
= Pi−1,0λµ̄vθ̄ + Pi+1,0λ̄µvp̄θ̄, i = 1, 2, . . . , I(0)− 1, (14)

PI(0),0

[
1−θ̄

(
λ̄µ̄v+λµvp̄

)]
= PI(0)−1,0λµ̄vθ̄ + PI(0)+1,0µvp̄θ̄, (15)

PI(0)+1,0

(
1− µ̄vθ̄

)
= PI(0),0λµ̄vθ̄, (16)

P1,1

(
λ̄µb+λµ̄b

)
=P2,1λ̄µb+P0,0λµ̄vθ+P1,0

[
λ̄µ̄vθ+λµv

(
pθ̄+θ

)]
+P2,0λ̄µv

(
θ+pθ̄

)
, (17)

Pi,1

(
λ̄µb+λµ̄b

)
=Pi+1,1λ̄µb+Pi−1,1λµ̄b+Pi−1,0λµ̄vθ+Pi,0

[
λ̄µ̄vθ+λµv

(
pθ̄+θ

)]

+Pi+1,0λ̄µv

(
θ+pθ̄

)
, i = 2, 3, . . . , I(0)− 1, (18)

PI(0),1

(
λ̄µb+λµ̄b

)
=PI(0)+1,1λ̄µb+PI(0)−1,1λµ̄b+PI(0)−1,0λµ̄vθ+PI(0),0

[
λ̄µ̄vθ+λµv

(
pθ̄+θ

)]

+PI(0)+1,0µv

(
θ+pθ̄

)
, (19)

PI(0)+1,1

(
λ̄µb+λµ̄b

)
=PI(0)+2,1λ̄µb + PI(0),1λµ̄b + PI(0),0λµ̄vθ + PI(0)+1,0µ̄vθ, (20)

Pi,1

(
λ̄µb + λµ̄b

)
= Pi+1,1λ̄µb + Pi−1,1λµ̄b, i = I(0) + 2, I(0) + 3, . . . , I(1)− 1, (21)

PI(1),1

(
λ̄µb + λµ̄b

)
= PI(1)+1,1µb + PI(1)−1,1λµ̄b, (22)

PI(1)+1,1µb = PI(1),1λµ̄b. (23)

We note that Eq.(14) is a second order linear homogeneous difference equation with
coefficients independent of i. So, the stationary probability Pi,0 (i = 0, 1, . . . , I(0)) can be

10



determined by finding the general solution of the following difference equation

λ̄µvp̄θ̄xi+1−
[
1−θ̄

(
λ̄µ̄v+λµvp̄

)]
xi+λµ̄vθ̄xi−1 = 0, i = 1, 2, . . . , I(0)− 1. (24)

According to the theory of linear difference equation with constant coefficients (see [40]),
the general solution of Eq.(24) may be written as

xLH
i = A1σ

i
1 +B1σ

i
2, i = 0, 1, . . . , I(0), (25)

where A1 and B1 are constants to be determined, σ1 and σ2 are the roots of quadratic
characteristic equation

λ̄µvp̄θ̄x
2−
[
1−θ̄

(
λ̄µ̄v+λµvp̄

)]
x+λµ̄vθ̄ = 0.

Clearly,

σ1,2 =

[
1−θ̄

(
λ̄µ̄v+λµvp̄

)]
±
√[

1−θ̄
(
λ̄µ̄v+λµvp̄

)]2−4λ̄µvp̄λµ̄vθ̄2

2λ̄µvp̄θ̄
.

To find the constants A1 and B1, substituting Eq.(25) into Eqs.(13), (15) and (16) gives
{
A1

(
λµ̄v−σ1λ̄µv

)
+B1

(
λµ̄v−σ2λ̄µv

)
= P1,1λ̄µb,

A1

(
σI(0)1 − ψσI(0)−1

1

)
+ B1

(
σI(0)2 − ψσI(0)−1

2

)
= 0,

where ψ =
λµ̄vθ̄

(
1− µ̄vθ̄

)

1− µ̄vθ̄ − θ̄
(
λ̄µ̄v + λµvp̄

)
+ λ̄µ̄2

vθ̄
2
. After solving the above system of equations,

we can obtain A1 and B1, respectively. Having calculated the constants A1 and B1, Pi,0

can be expressed in terms of P1,1 as follows

Pi,0 =






A1σi1 +B1σi2, i = 0, 1, . . . , I(0),
λµ̄vθ̄

1− µ̄vθ̄

(
A1σ

I(0)
1 +B1σ

I(0)
2

)
, i = I(0) + 1.

(26)

Here, we do not list the expressions for A1 and B1 due to the space restrictions. Further,
employing Eq.(26), we can rewrite Eq.(18) as

λ̄µbPi+1,1−
(
λ̄µb+λµ̄b

)
Pi,1+λµ̄bPi−1,1=−A1

[
λ̄µv

(
θ+pθ̄

)
σ21+
(
λ̄µ̄vθ+λµv

(
θ+pθ̄

))
σ1+λµ̄vθ

]
σi−1
1

−B1

[
λ̄µv

(
θ+pθ̄

)
σ22+
(
λ̄µ̄vθ+λµv

(
θ+pθ̄

))
σ2+λµ̄vθ

]
σi−1
2 ,

i = 2, 3, . . . , I(0)− 1. (27)

Eq.(27) indicates that the stationary probability Pi,1(i = 0, 1, . . . , I(0)) is the solution of
the following linear nonhomogeneous difference equation

λ̄µbyi+1−
(
λ̄µb+λµ̄b

)
yi+λµ̄byi−1=−A1

[
λ̄µv

(
θ+pθ̄

)
σ21+
(
λ̄µ̄vθ+λµv

(
θ+pθ̄

))
σ1+λµ̄vθ

]
σi−1
1

11



−B1

[
λ̄µv

(
θ+pθ̄

)
σ22+
(
λ̄µ̄vθ+λµv

(
θ+pθ̄

))
σ2+λµ̄vθ

]
σi−1
2 ,

i = 2, 3, . . . , I(0)− 1. (28)

The general solution of Eq.(28), denoted by yLNH
i , has the following structure

yLNH
i = yLHi + yPi , i = 1, 2, . . . , I(0),

where yLHi = A21i + B2αi, α = λµ̄b

λ̄µb
is the general solution of the associated homogeneous

equation λ̄µbyi+1−
(
λ̄µb+λµ̄b

)
yi+λµ̄byi−1 = 0, and yPi represents a particular solution of

Eq.(28). Since the nonhomogeneous term is not a solution of the associated homogeneous
equation, we set yPi = C1σi1+D1σi2. Substituting y

P
i into Eq.(28), the values of the constants

C1 and D1 can be determined accordingly. Since it is only a routine and straightforward
calculation, the explicit expressions for C1 and D1 are also omitted here.

The next step is to find the values of A2 and B2 in the general solution yLNH
i . Taking

into account Eq.(17) and noting that P1,1 = yLNH
1 , we have






P1,1

(
λ̄µb+λµ̄b

)
=(A2+B2α2+C1σ21+D1σ22)λ̄µb+(A1+B1)λµ̄vθ
+(A1σ1+B1σ2)

(
λ̄µ̄vθ+λµv

(
pθ̄+θ

))
+(A1σ21+B1σ22)λ̄µv

(
pθ̄+θ

)
,

P1,1=A2+B2α+C1σ1+D1σ2.

Solving the two simultaneous equations algebraically gives A2 and B2. However, their
expressions are too cumbersome and lengthy, detailed results are not shown here due to
page limitation. Also, employing A2, B2, C1 and D1, Pi,1 is given as

Pi,1 = A2 +B2α
i + C1σ

i
1 +D1σ

i
2, i = 1, 2, . . . , I(0). (29)

With the help of Eqs.(26) and (29), we can obtain PI(0)+1,1 from Eq.(19)

PI(0)+1,1=A2+B2α
I(0)+1+C1σ

I(0)
1

[
1+α

(
1−σ−1

1

)]
+D1σ

I(0)
2

[
1+α

(
1−σ−1

2

)]

−
(
A1σ

I(0)
1 γ1 +B1σ

I(0)
2 γ2

)
.

where

γi =
λµ̄vθ

λ̄µbσi
+

(
λ̄µ̄v+λµv

)
θ+λµvpθ̄−λ̄µ̄2

vθθ̄

λ̄µb

(
1−µ̄vθ̄

) , i = 1, 2.

Then from Eq.(20), we get

PI(0)+2,1=A2+B2α
I(0)+2+C1σ

I(0)
1

[
α
(
1−σ−1

1

)
(1+α)+1

]
+D1σ

I(0)
2

[
α
(
1−σ−1

2

)
(1+α)+1

]

−A1σ
I(0)
1

[
γ1(1+α)+

λµ̄vθ

λ̄µb

(
1−µ̄vθ̄

)
]
−B1σ

I(0)
2

[
γ2(1+α)+

λµ̄vθ

λ̄µb

(
1−µ̄vθ̄

)
]
.

We find that the Eq.(21) is also a linear homogenous difference equation of order two,
having for its characteristic equation λ̄µbui+1−

(
λ̄µb+λµ̄b

)
ui+λµ̄bui−1 = 0. Thus, for i =
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I(0) + 3, I(0) + 4, . . . , I(1), Pi,1 can be expressed as Pi,1 = A3 + B3αi. Using Eqs.(21)-
(23) and noting that PI(0)+3,1 = (1 + α)PI(0)+2,1 − αPI(0)+1,1, we have A3 = 0, and B3

is also a constant expressed in terms of A1, B1, A2, B2, C1 and D1. Consequently, for
i = I(0) + 3, . . . , I(1) + 1, Pi,1 be presented in the following simplified form:

Pi,1 =






B3αi, i = I(0) + 3, I(0) + 4, . . . , I(1),
λµ̄b

µb
B3α

I(1), i = I(1) + 1.

Up to now we get the stationary probability Pi,j((i, j) ∈ Ωob) in terms of P1,1. Using the
normalization condition

∑
(i,j)∈Ωob

Pi,j = 1, we can find P1,1 so that all Pi,j are completely
determined. Once the stationary probabilities are calculated, the social welfare per u-
nit time under threshold policy (I(0), I(1)) can be given based on BASTA property (i.e.
Bernoulli arrivals see time averages)

Us (I(0), I(1)) = λR
(
1− PI(0)+1,0 − PI(1)+1,1

)
− C




I(0)+1∑

i=1

iPi,0+
I(1)+1∑

i=1

iPi,1



 .
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Figure 5. Comparisons of socially and individually optimal joining thresholds for the fully observable case.

In practice, for the system administrator, the decision problem is to impose a socially
optimal threshold strategy, denoted by (I∗(0), I∗(1)), so that the social welfare can be
maximized. Since I(0) and I(1) are discrete decision variables, we may use the direct
search method to find the joint optimal values (I∗(0), I∗(1)). In Figure 5, the numerical
results on (Ie(0), Ie(1)) and (I∗(0), I∗(1)) are presented for R = 30, C = 1, λ = 0.78,
µb = 0.8, µv = 0.12, θ = 0.01 and p = 0.1. Here, an interesting phenomenon is worthy
of our attention. As for classic M/M/1 queue, an essential point illustrated by Naor is
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that the threshold for individual optimization is larger than the one for social optimization.
However, through the above numerical experiments we may find that Naor’s conclusion does
not still hold in server’s working vacation period. From Figure 5, we see that when the
working vacation period is relatively long and vacation interruption probability is relatively
small, I∗(0) will be greater than Ie(0). Some intuitive explanations of this phenomenon are
given as follows. When a working vacation ends, if there are no customers in the queue, the
server will take another working vacation. That is to say, the server will continue to provide
services at a lower speed. This is abound to affect the sojourn time of future customers.
Thus, in order to reduce the expected delay of future customers, the administrator should
actively encourage customers to join the queue and try to avoid repeated working vacations,
and resume normal working level as soon as possible. On the other hand, for creating
additional service completion epoch in working vacation period and ending the low-speed
period as quickly as possible, socially optimal strategy accepts more customers than those
who join individually. In other words, under such a situation, the type of externalities that
a joining customer brings to the system is positive.

4. Analysis of the almost unobservable queues

We now turn our interest to the almost unobservable case in which only the state of
the server Y (t) is communicated to the customers upon their arrival, and the information
about the queue length is not being told. Since all customers are assumed indistinguish-
able, an equivalent way to describe customer’s strategic queueing behavior is by a pair of
probabilities (q0, q1), where qi(i = 0, 1) denotes the customer’s joining probability when
the server is in state i. Thus, in this section our main objective is to obtain the mixed
strategies (q0, q1) under individual and social optimization, respectively.

4.1. Mixed strategy for individual optimization

To determine the mixed strategy for individual optimization, denoted by (qe0, q
e
1), we first

try to get the stationary queue length distribution of the system. Because each customer
can balk with probability q̄i(i = 0, 1), the effective arrival rates under such a situation
are Bernoulli with parameter λqi. Arranging the elements of Ω in lexicographic order,
the transition probability matrix of the vector-valued DTMC {(N(t), Y (t)), t ≥ 0} has the
block tridiagonal matrix form in which three diagonal blocks repeat after a certain level.
We write the matrix as

P =





A0,0 A0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .




,
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where

A0,0 =
(
λq0µv + λq̄0 + λ̄

)
,A0,1 =

(
λq0µ̄vθ̄ λq0µ̄vθ

)
,B1,0 =

(
(1− λq0)µv

(1− λq1)µb

)
,

A0 =

(
λq0µ̄vθ̄ λq0µ̄vθ

0 λq1µ̄b

)
,

A1 =

(
(1−λq0)µ̄vθ̄+λq0µvp̄θ̄ (1−λq0) µ̄vθ+λq0µv

(
pθ̄ + θ

)

0 (1− λq1)µ̄b + λq1µb

)
,

A2 =

(
(1− λq0)µvp̄θ̄ (1− λq0)µv

(
θ + pθ̄

)

0 (1− λq1)µb

)
.

Moreover, because the one step transitions from a state are restricted to the same level
or to the two adjacent levels, vector-valued DTMC {(N(t), Y (t)), t ≥ 0} is called a quasi
birth and death chain. In order to have a stable system, the DTMC should be positive
recurrent. The condition for the stability is represented by the following relationship (see
[41,42]):

πA0e < πA2e,

where e denotes a column vector of 1’s of appropriate dimension and π is the invariant
probability vector of matrix A, i.e. πA = π, πe = 1 and A = A0 +A1 +A2. In other
words, the rate of moving down one level in the DTMC must exceed the rate of moving
up one level. Since the vector π can be obtained explicitly, the stability condition of this
queueing system is also simplified as follows:

ρ =
λq1µ̄b

(1− λq1)µb
< 1.

Let P̃ , partitioned as P̃ =
(
P̃0,0, P̃ 1, P̃ 2, . . .

)
and P̃ i =

(
P̃i,0, P̃i,1

)
, denote the steady

state probability vector of P. That is to say, P̃ satisfies P̃ (P− I) = 0 and P̃ e = 1, where
I and 0 are identity matrix and zero column vector respectively. According to the matrix
geometric method, we see that under the stability condition, P̃ i is obtained as

P̃ k =
(
P̃k,0, P̃k,1

)
= P̃ 1R

k−1 =
(
P̃1,0, P̃1,1

)
Rk−1, k = 1, 2, . . . . (30)

where R is the minimal nonnegative solution to the matrix-quadratic equation (see [42]).
Clearly, in order to obtain the stationary probability vector P̃ , one should thus determine
the rate matrix R. In most applications, R needs to be computed by using an iterative
algorithm. However, in our current model, the rate matrix R can be determined explicitly.
Based on the structures of matrices, A0, A1 and A2 which are upper triangular matrices,
the matrix solution R is also an upper triangular matrix. So we assume that

R =

(
r11 r12
0 r22

)
.
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Substituting R into the matrix-quadratic equation and after some algebraic manipulation,
the explicit expression for rate matrix R is given by

R =

(
r ∆

µb(1−λq1)(1−r)

0 ρ

)
,

and

Rk =



 rk ∆
µb(1−λq1)(1−r)

k−1∑
j=0

rjρk−1−j

0 ρk



 , k = 1, 2, . . . ,

where

r=
[ξ+λq0µ̄v+(1−λq0)µvp̄]−

√
[ξ+λq0µ̄v+(1−λq0)µvp̄]

2−4 (1−λq0)µvµ̄vp̄λq0

2 (1− λq0)µvp̄
,

ξ =
θ + θ̄µvp

θ̄
,

∆= p̄−1
(
θ+pθ̄

)
{rξ+r[λq0µ̄v+(1−λq0)µvp̄]−λq0µ̄v}+r

[
λq0µv

(
θ+pθ̄

)
+(1−λq0)µ̄vθ

]
+λq0µ̄vθ.

To start the recursive relation Eq.(30), the following boundary equation must be solved

to obtain
(
P̃0,0, P̃1,0, P̃1,1

)
under the usual normalization condition P̃0,0+

∞∑
k=1

P̃k,0+
∞∑
k=1

P̃k,1 =

1, namely
(
P̃0,0, P̃1,0, P̃1,1

)
B [R] =

(
P̃0,0, P̃1,0, P̃1,1

)(A0,0 A0,1

B1,0 RA2 +A1

)
=
(
P̃0,0, P̃1,0, P̃1,1

)
,

where

B[R]=




λq0µv+λ̄+λq̄0 λq0µ̄vθ̄ λq0µ̄vθ

(1−λq0)µv θ̄[1−µv(1−λq0p̄)]−ξθ̄r
1−r θ

[
1−µv(1−λq0p̄)+µvλq0

p
θ

]
+ ξθ̄r

1−r

(1−λq1)µb 0 1−(1−λq1)µb



 .

Taking P̃0,0 as constant, from above equation, P̃1,0 and P̃1,1 can be conveniently expressed
in terms of P̃0,0,

P̃1,0 =
λq0µ̄vθ̄ (1−r)

θ + θ̄µv(1−λq0p̄)(1− r)+θ̄µvpr
P̃0,0, (31)

P̃1,1 =
λq0µ̄v

(1−λq1)µb

θ+θ̄µvp [λq0+(1−λq0)r]
θ+θ̄µv(1−λq0p̄)(1− r)+θ̄µvpr

P̃0,0. (32)

Substituting Eqs.(31), (32) and Rk−1 into Eq.(30), we have

(
P̃k,0, P̃k,1

)
=

P̃0,0

θ + θ̄µv (1−λq0p̄) (1−r)+θ̄µvpr
×
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(
λq0θ̄µ̄v(1−r)rk−1, λq0µ̄v

µb(1−λq1)

{
θ̄∆

k−2∑
j=0

rjρk−2−j+ρk−1
[
θ+θ̄µvp[λq0+(1−λq0)r]

]
})

.

Employing the usual normalization condition and performing some algebraic manipulation,
we get





P̃0,0=H
[
θ+θ̄µv(1−λq0p̄)(1−r)+θ̄µvpr

]
,

P̃k,0=Hλq0θ̄µ̄v (1−r) rk−1, k = 1, 2, . . . ,

P̃k,1=H
λq0µ̄v

µb(1−λq1)

{
θ̄∆

k−2∑
j=0

rjρk−2−j+ρk−1
[
θ+θ̄µvp [λq0+(1−λq0) r]

]
}
, k=1, 2, . . . ,

(33)

where

H=µb(1−λq1)(1−r)(1−ρ)
{
µb(1−λq1)(1−r)(1−ρ)

[
θ+θ̄µv(1−λq0p̄)(1−r)+θ̄µvpr+λq0θ̄µ̄v

]

+λq0θ̄µ̄v∆+λq0µ̄v(1−r)
[
θ+θ̄µvp[λq0+(1−λq0)r]

]}−1
.

Let E [Ls|i] be the average number of customers in the system seen by an arrival, given
that the server is at state i(i = 0, 1). By the definition of conditional expectation, we have

E [Ls| 0] =

∞∑
k=1

kP̃k,0

Pr {The server is on working vacation} =

∞∑
k=1

kP̃k,0

∞∑
k=0

P̃k,0

,

E [Ls| 1] =

∞∑
k=1

kP̃k,1

Pr {The server is in regular busy period} =

∞∑
k=1

kP̃k,1

∞∑
k=1

P̃k,1

.

Thus, the explicit expressions for E [Ls| 0] and E [Ls| 1] can be derived from Eq.(33)

E [Ls| 0] =
λq0θ̄µ̄v[

θ+θ̄ (1−λq0p̄)(1−r)+θ̄µvpr+λq0θ̄µ̄v

]
(1−r)

, (34)

E [Ls| 1] =
θ̄∆(2−ρ−r)+(1−r)2

[
θ + θ̄µvp [λq0+(1−λq0) r]

]

(1−ρ)(1−r)
{
θ̄∆+(1−r)

[
θ+θ̄µvp [λq0+(1−λq0) r]

]} . (35)

Then, from Eq.(35), the expected conditional sojourn time of a customer who arrives during
regular busy period is given by

E [W1] =
θ̄∆(2−ρ−r)+(1−r)2

[
θ+θ̄µvp [λq0+(1−λq0) r]

]

µb(1−ρ)(1−r)
{
θ̄∆+(1−r)

[
θ+θ̄µvp [λq0+(1−λq0) r]

]}+ 1

µb
. (36)
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Similarly, let W0 denote the conditional sojourn time of a customer who arrives during
working vacation period. In order to determine the expected value of W0, we need to use
Eq.(8) described in Subsection 3.1. Clearly,

E [W0] =

∞∑
k=0

P̃k,0E [Wk,0]

Pr {The server is on working vacation} . (37)

Substituting Eq.(8) into Eq.(37), E [W0] can be expressed as

E [W0] =
µb+µ̄vθ

µb

(
1−µ̄vθ̄

)+ λq0θ̄µ̄v

µb

[
θ+θ̄µv(1−λq0p̄)(1−r)+θ̄µvpr+λq0θ̄µ̄v

]×
[

ξµvθ̄2p̄(µb−µv)(
1−µ̄vθ̄

)(
1−µ̄vθ̄−µvp̄θ̄

)(
1−µ̄vθ̄−µvp̄θ̄r

)+ 1

1− r

]
. (38)

Let U e
au (0; q0) and U e

au (1; q0, q1) be the utility function of a joining customer in state 0
and 1, respectively. With the notations introduced above, we can write

U e
au (0; q0) = R− CE [W0] and U e

au (1; q0, q1) = R− CE [W1] .

In light of the complexity of the expressions for E [W0] and E [W1], we only perform some
numerical calculations to illustrate the existence and uniqueness of the mixed strategy for
individual optimization. In all the numerical experiments considered below, several system
parameters are taken as µv = 0.2, µb = 0.6, p = 0.2, λ = 0.5, and all the calculation results
are reported here in the form of tables. By changing the values of the parameters R, C
and θ, we demonstrate six possible cases for the mixed strategy (qe0, q

e
1) in Table 1. As can

be seen from the table, there is an interesting phenomenon worthy of our attention. In
working vacation queue, we always suppose that µv < µb. Such assumption usually causes
us to mistakenly believe that qe0 should be smaller than qe1. However, Table 1 shows that in
some cases qe0 is not definitely smaller than qe1 (see Cases a, d and e in Table 1). Actually,
if a tagged customer is given the information that the server is on working vacation, then
he knows that he must go through a semi-dormant period (i.e. server provides service at a
lower rate during vacation). On the other hand, he expects that few customers are ahead
of him, because the mean vacation time is small and the vacation can be interrupted at a
service completion instant in semi-dormant period. Cases a, d and e of Table 1 show that
the first factor prevails, thus it is optimal for the tagged customer to enter. Furthermore,
when the mean vacation time is moderate (Case b) or high (Case c), things are totally
different.
Table 1. Individually optimal joining probabilities for different values of R, C and θ.

qe0 qe1 qe0 qe1

Case a (R = 20, C = 5.5, θ = 0.3) 0.3287 0 Case d (R = 32, C = 9, θ = 0.5) 1 0

Case b (R = 20, C = 3, θ = 0.1) 0.5489 0.8423 Case e (R = 30, C = 3.8, θ = 0.15) 1 0.8837

Case c (R = 35, C = 4, θ = 0.015) 0.3334 1 Case f (R = 30, C = 3, θ = 0.15) 1 1
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4.2. Mixed strategy for social optimization

On the other hand, employing Eq.(33), the unconditional expected number of customers
in the system equals

E [Ls] =
Hλq0µ̄v

(1−r)

{
θ̄+

(2−ρ−r) θ̄∆+(1−r)2
[
θ+θ̄µvp[λq0+(1−λq0) r]

]

µb(1− λq1)(1−ρ)2(1−r)

}
. (39)

Applying Eq.(39), the social benefit per unit time for the joining strategy (q0, q1) can now
be easily computed as

U s
au (q0, q1) = λeffR− CE [Ls] , (40)

where

λeff = λ

(
q0

∞∑

k=0

P̃k,0 + q1

∞∑

k=1

P̃k,1

)

=λq0H

[
θ+θ̄µv(1−λq0p̄)(1−r)+θ̄µvpr+λq0θ̄µ̄v

+
λq1µ̄v

{
θ̄∆+

[
θ+θ̄µvp[λq0+(1−λq0) r]

]
(1−r)

}

µb(1−λq1)(1−ρ)(1−r)

]
. (41)

Here, our main purpose is to find the optimal mixed strategy, denoted by (q∗0, q
∗
1), that

will yield the system’s maximal expected profit, to reach the so-called social (or overall)
optimization. However, when we substitute Eqs.(39) and (41) into the right hand side of
Eq.(40), we may see that the form of the function U s

au (q0, q1) becomes too complicated.
Thus, trying to get the optimal values of q0 and q1 analytically would have been an ex-
tremely difficult task. In spite of that, we can still obtain the optimal solution to meet the
precise requirements by steepest descent algorithm. To demonstrate the validity and effec-
tiveness of the steepest descent method in our optimization problem, a numerical example
is provided by considering the following system parameters:

R = 30, C = 1, θ = 0.01, µv = 0.1, µb = 0.8, p = 0.05, λ = 0.79.

Further, with the same parameter settings, Figure 6 compares the mixed strategies for
individual and social optimization. From the numerical results, we may reveal that for the
almost unobservable working vacation queue the joining probability for social optimization
is not always lower than the one for individual optimization. Thus, the positive externalities
that a joining customer brings to the system still exist in such case. These results are
entirely consistent with the conclusions of Subsection 3.2.
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Figure 6. Comparisons of individually and socially optimal mixed strategies under the partially observable case.

5. Analysis of the fully unobservable queues

Finally, employing the results in the previous section, we analyze the customer’s optimal
response in the case of unobservable, where arriving customers do not observe the state
of the server and the actual length of the queue, but system parameters are common
knowledge to all arriving customers. Applying these parameters, customers are able to
postulate the average sojourn time and waiting cost. Based on these limited available
information, they may choose to balk or join with an appropriate probability. In other
words, their decision is equivalent to select a joining probability q(0 ≤ q ≤ 1) that satisfies
some specified conditions. Thus, our main purpose in this section is to determine the
joining probability q, so as to optimize the individual and social utilization. Toward this
end, we first derive the expected unconditional sojourn time of a joining customer, denoted
by E [W (q)]. Replacing q0 and q1 by q in Eqs.(33), (36), (38), and using the following
relationship

λqµ̄v−(1−λq)µvp̄r
′=

ξr′

(1− r′)
,

we have

E [W (q)]=
1−λq
µb−λq

+H∗λqµ̄vθ̄(µb−µv)(1− r′)

r′

{
(1−λq)(1−ρ′)
1−µ̄vθ̄−µvp̄θ̄r′

+
λq

µb
+

r′

µb(1− r′)

}
, (42)

where

ρ′ =
λqµ̄b

(1− λq)µb
,

r′ =
[ξ+λqµ̄v+(1−λq)µvp̄]−

√
[ξ+λqµ̄v+(1−λq)µvp̄]

2−4 (1−λq)µvµ̄vp̄λq

2 (1− λq)µvp̄
,
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H∗=
{
µb(1−λq)(1−r′)(1−ρ′)

[
θ+θ̄µv(1−λqp̄)(1−r′)+θ̄µvpr

′+λq0θ̄µ̄v

]
+λqθ̄µ̄v∆

′

+λqµ̄v(1−r′)
[
θ+θ̄µvp[λq+(1−λq)r′]

]}−1
,

∆′ = p̄−1
(
θ+pθ̄

)
{r′ξ+r′[λqµ̄v+(1−λq)µvp̄]−λqµ̄v}+r′

[
λqµv

(
θ+pθ̄

)
+(1−λq)µ̄vθ

]
+λqµ̄vθ.

Actually, Eq.(42) gives the stochastic decomposition structure of the expected sojourn time
which indicates the relationship with that of Geo/Geo/1 queue without working vacations.
Obviously, the first term on the right hand side of Eq.(42) is the sojourn time of a joining
customer in a corresponding classic Geo/Geo/1 queue.

Once the expected sojourn time is calculated, the utility functions for individual cus-
tomer and whole system can be established, respectively. Further, the optimal values of
the decision variable can also be found by numerical analysis of utility functions.

5.1. Mixed strategy for individual optimization

With a mixed strategy, an arriving customer joins the waiting line with probability q
and the equilibrium value of q, denoted by qe, is such that if all customers follow it all are
indifferent. Here, it is necessary to point out when we evaluate the customers’ strategic
response in equilibrium, we should guarantee that an equilibrium strategy can make the
queueing system stable. That is to say, we should limit our search for equilibrium strategies
in the interval [0, µb/λ] ∩ [0, 1]. Employing E [W (q)], the expected net gain for a customer
entering the system is given by

U e
fu=R−C

[
1−λq
µb−λq

+H∗λqµ̄vθ̄(µb−µv)(1− r′)

r′

(
(1−λq)(1−ρ′)
1−µ̄vθ̄−µvp̄θ̄r′

+
λq

µb
+

r′

µb(1− r′)

)]
.

Since the explicit expression of E [W (q)] is complicated enough, by varying the value of
parameter R, we numerically demonstrate some possible cases for the mixed strategy qe in
Figure 7. Here, we take the system parameters as C = 1, θ = 0.1, µv = 0.1, µb = 0.5, p = 0.5
and λ = 0.45. Figure 7 shows the behavior of U e

fu with respect to the joining probability q
for different values of reward R. The following conclusions can be drawn from the graph:

(i) U e
fu decreases with the increase in the values of q;

(ii) If R∈
(
C(µb+µ̄vθ)

µb

(
1−µ̄vθ̄

) , CE [W (q)]q=1

)
, namely R belongs to (6.2105, 17.0726), there

exists a point q̃ in the interval (0, 1) such that U e
fu = 0. For example, when R = 12, the

value of U e
fu is positive or zero or negative according as q less than or equal to or greater

than 0.8897 and hence q̃ = qe = 0.8897;
(iii) If R ∈ (17.0726,+∞), U e

fu is always positive for any q ∈ (0, 1). This indicates
that customer will be profitable as long as he enters the system and receives the service.
Therefore, the optimal response for individual customer is to join the queue with probability
one, namely qe = 1.
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Figure 7. Ue
fu versus joining probability q for different values of reward R.

Moreover, giving R = 10 and letting p vary from 0.1 to 0.9, we present some numerical
results in Table 2 for comparison of individual customer’s optimal joining rules in partially
observable and fully unobservable cases. As is to be expected qe0 and qe are increasing
functions of p when all other parameters are fixed. However, as p increases, qe1 shows a
decreasing trend. Furthermore, from Table 2 we also see that the rate of increase of qe

becomes smaller for higher values of p, and qe is always locating between qe0 and qe1. This
means that if customers are not informed about the state of the server, they will adopt an
intermediate strategy to decide whether or not to join the queue.

Table 2. Individual customer’s optimal joining probabilities for different values of p.

p 0.1 0.3 0.5 0.7 0.9
(qe0, q

e
1) (0.4690, 0.8649) (0.5600, 0.8476) (0.6657, 0.8274) (0.7851, 0.8045) (0.9172, 0.7788)

qe 0.6158 0.6998 0.7578 0.7972 0.8249

5.2. Mixed strategy for social optimization

On the other hand, from the system administrator’s perspective, the social benefit per
unit time for the joining strategy q can now be easily computed as

U s
fu=λq

{
R−C

[
1−λq
µb−λq

+H∗λqµ̄vθ̄(µb−µv)(1−r′)

r′

(
(1−λq)(1−ρ′)
1−µ̄vθ̄−µvp̄θ̄r′

+
λq

µb
+

r′

µb(1− r′)

)]}
.

Since customers tend to lack self-control, higher access probability for individual interests
can cause queue congestion so that the expected waiting time of future customers will
severely increase, and eventually lead to a decline in net profit for the whole system.
Hence, we discuss how to achieve the maximal system’s expected profit by controlling the
probability of joining the queue.

We note that showing concavity of the utility function U s
fu and computation of its

derivatives are non-trivial tasks. For the reasons mentioned above, we employ quadratic fit
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in fully unobservable case.

line search method to obtain the joining probability q∗ for social optimization. In Figure
8, we display the graph of U s

fu as a function of q for various values of p by fixing R = 17,
C = 0.7, θ = 0.025, µv = 0.2, µb = 0.5 and λ = 0.42. From Figure 8 we observe that for
fixed p, U s

fu increases initially and then decreases as q increases. That is to say, beyond a
certain value of q, any further increase in its value will only result in the system’s overall
profits to decline. So, this is the fundamental reason why we implement access control to
reject some customers to join the queue. Taking R = 10, C = 1.5, θ = 0.1, µv = 0.25 and
µb = 0.5, in Figure 9, the joining probabilities for individual and social optimization are
plotted against λ for p = 0.7. We could visually observe that the socially optimal mixed
strategy q∗ is less than or equal to the individually mixed strategy qe. This indicates that
if every customer acts selfishly, the system may be over-congested and is impossible to
achieve maximum social welfare. Next, we also conduct numerical comparisons between
the socially optimal joining rules for partially observable and fully unobservable queues.
In Table 3, the computation results of the optimal mixed strategies are given for various
vacation interruption probabilities with the same system parameters R = 17, C = 0.7,
θ = 0.025, µv = 0.2, µb = 0.5 and λ = 0.42. We reveal that when the state of the server
is not communicated to the customer upon his arrival, q∗ is still inside the interval formed
by two socially optimal joining probabilities for partially observable case. Furthermore, it
is worth noting that as vacation interruption probability increases up to a certain value,
q∗0 will always be one. Thus, there is no need to take a large value of p for increasing the
socially optimal joining probability in a working vacation period. Since larger value of p
often means frequent switching of service rate, the more the server switches its service rate,
the more additional cost it has to face.

Table 3. Socially optimal joining probabilities for different values of p.

p 0.1 0.3 0.5 0.7 0.9
(q∗0 , q

∗
1) (0.5471, 0.9757) (0.7223, 0.9350) (0.8893, 0.9021) (1, 0.8731) (1, 0.8462)

q∗ 0.6733 0.8573 0.8899 0.9046 0.9126
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6. Conclusions

From an economic point of view, the customer’s individually and socially optimal join-
ing rules in a discrete time working vacation queue have been extensively analyzed in this
paper. Unlike classic multiple and single working vacation queues, Bernoulli vacation in-
terruption schedule has been incorporated into our current model. Such mechanism makes
the server state transitions have greater flexibility and can potentially capture the correla-
tions between service time and vacation duration. The analysis of the model is performed
under three different information levels. For the full information case, it is shown that
the symmetric equilibrium strategies are determined by two balking thresholds I(0) and
I(1). These are established by deriving iterative relationships on the generating function
and the expected value of the conditional waiting time. As for the social optimization
model, which is notably more difficult, it is assumed that the central planner employs a
similar threshold policy and the optimal threshold values are also computed by analyzing
the steady state distribution of the resulting Markov process under the threshold policy.
Also, we compare the equilibrium and optimal threshold numerically. During regular ser-
vice the optimal threshold is always lower than that under equilibrium, which implies that
the joining customer impose negative externalities, while during working vacation period
the situation may be reversed, and the central planner may need to subsidize the arriving
customers and encourage them to join the queue. This also means that Naor’s classic
conclusion is not necessarily true for discrete time working vacation queue. In addition,
by developing the expressions for the waiting function which allow for numerically deriv-
ing the equilibrium and socially optimal strategy, we further find that the same situation
also occurs in almost unobservable case. That is to say, the joining probability for social
optimization is not always lower than the one for individual optimization. By entering
in a vacation state, especially when the expected length of the vacation time is relatively
long, joining customers can create more additional service completion epochs and increase
the probability of a vacation interruption to reduce the delay of other present or future
customers. Thus, in some cases, the externalities that a joining customer brings to the
system are positive. Therefore, it is unclear whether the social planner wants a tax to dis-
courage arrivals or a subsidy to encourage arrivals. Furthermore, it would be a good topic
to analyze the problem discussed in this paper where the inter-arrival time is generally
distributed. Naturally, with the inclusion of generally distributed inter-arrival time, the
problem will be more challenging.
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