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Abstract 
 
The Riverine Rabbit (Bunolagus monticularis), a habitat specialist, is one of the most 
endangered mammals in southern Africa due to the large-scale fragmentation of Karoo 
riverine vegetation in South Africa that it inhabits. B. monticularis is an important indicator 
of ecosystem health and an umbrella species for conservation of the unique riverine 
ecosystems of the Karoo and the important ecological processes they maintain. This study 
aimed to contribute towards our understanding of B. monticularis through an assessment 
of historical survey data to better understand population status and distribution. 
Geospatial analysis using GIS and distribution modelling was done using Maxent.  Extent of 
occurrence for the species is 54,227 km2 and area of occupancy 2,943 km2. Population size 
estimates of between 157 and 207 mature individuals indicate extremely low population 
size for B. monticularis and along with the estimate that no subpopulation contains more 
than 50 mature individuals, supports the species’ continued listing as Critically Endangered 
under IUCN Red List criteria C2a(i). Maxent models performed well in terms of predictive 
ability and fit and continue to be a useful tool for assessing potential future conservation 
and management actions for this species.  
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Introduction 
 
The riverine rabbit, Bunolagus monticularis, is on the verge of extinction and is listed as 
Critically Endangered under IUCN red list criterion C2a(i).  A small population size of less 
than 250 mature individuals and no subpopulations containing more than 50 mature 
individuals (Collins et al., 2003)  led to this  initial listing (although it is based on very 
limited data). The species is endemic to South Africa’s Karoo region and is separated into a 
northern and southern population, each consisting of several smaller subpopulations 
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(Table 1). Until very recently, none of the species’ known range occurred on formally 
protected land (Ahlmann et al., 2000), however an additional southern subpopulation was 
recently discovered in Anysberg Nature Reserve and portions of the northern population’s 
range are informally protected within Riverine Rabbit Conservancies.  
 

 
 
An important habitat requirement for B. monticularis is alluvial soil for digging nesting 
burrows (Coetzee, 1994) but this soil type is the most fertile for cultivation. In the past, 
ploughing by Karoo farmers transformed ~60% of the original habitat and remaining 
patches were intensively grazed by livestock (Duthie, 1989). Current threats to the species 
include continued habitat loss and degradation, in addition to hunting for sport and 
bushmeat (Duthie & Robinson, 1990; Fabricius, 1993; Coetzee, 1994), while climate change 
is reducing options for habitat restoration and conservation (Hughes et al., 2008). Ours 
differs from previous work (Hughes et al., 2008) in providing an improved assessment of 
the current B. monticularis species status and red list status using species distribution 
modelling (SDM), a technique that has been found effective for improving red list 
assessments (Cassini, 2011; Keith et al., 2014; Syfert et al., 2014). Compared with the data 
used for the previous study (Hughes et al., 2008) and the initial red listing, the data set we 
used here is four times larger and was collected during an additional seven years of 
surveys that included the recently discovered southern population. The aims of our study 
were to (i) analyse all available survey data to refine estimates of population size, status 
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and distribution range and (ii) use SDM to accurately determine both the extent of 
available habitat and the main constraints on the current species range. This information is 
needed for verifying the red list status and adapting conservation plans for this extremely rare 
mammal. 
 

Methods 
 
The study area is located in the semi-arid Karoo region of South Africa within distribution 
range of B. monticularis and is roughly bounded by the towns of Carnarvon and Williston 
(North), Victoria West (East), Prince Albert (South-East), and Touwsrivier (South-West) 
(Fig. 1). Species distribution modelling includes all sightings (Fig. 1) within bounding 
coordinates North-West extremity -29.5833 South; 17.2500 East and South-Eastern 
extremity -34.8333 South; 26.3750 East. 
 

 
Fig 1. Study area showing the number of sightings from surveys (white circles) the location of museum 
specimens (black X’s), kernel density estimate indicating approximate core distribution range, towns (black 
triangles) and provincial boundaries (black lines). The ‘southern population’ relates to all sightings close to 
the towns of Touwsrivier and Montagu enclosed in the Kernel density polygon whereas the ‘northern 
population’ refers to all sightings north and west of the southern population. 

 
 
 
 



 4 

Sightings data 
 
Historical data exist in the form of five museum specimens collected before 1980 and an 
additional 20 during surveys of farms noted by Duthie (1989). All known presence data 
and density counts were collated from field surveys carried out from 1999-2014. 
Conventional sampling methods were often not feasible due to the species’ elusive, 
nocturnal behavior and preference for dense riverine vegetation. Presence data were 
obtained through transect surveys, drive-counts, and sighting records by experienced 
biologists observing the species whilst moving either on foot or on horseback or from 
roadkill specimens where the identity of B. monticularis was confirmed through genetic 
testing. Most surveys were carried out by eight to fifteen people approximately 5 m apart, 
often with one to two people on horseback to increase visibility. Sightings were recorded as 
presence data when observed by a biologist familiar with the species or observed by at 
least two observers less familiar with the species. Due to B. monticularis’ highly elusive 
nature, density count data for individual patches were only used where a minimum of eight 
people took part in the survey. The use of horses for surveys reduced the likelihood of 
repeat counts due to increased visibility of the flight path of animals flushed from cover. 
Surveys were conducted throughout the year from 2000 to 2010 with regularity and then 
less regularly since, mainly focusing on the lesser-known southern population. Surveys 
were primarily conducted during the day, although in areas with less dense vegetation and 
lower vegetation height, surveys with spotlights at night were found to be useful. 
 
 
Spatial analysis 
 
All geospatial analysis was undertaken using the Spatial Analyst extension of ArcGIS 10.2.1 
(ESRI, 2013), Geospatial Modelling Environment (Beyer, 2011) and SDMtoolbox (Brown, 
2014). Kernel density calculates the density of point features around each output raster cell 
and the kernel function used in ArcGIS 10.2 Spatial Analyst (ESRI, 2013) is based on a 
quadratic function (Silverman, 1986). Kernel density estimation of home range was carried 
out in ArcGIS with the sightings data from surveys for both northern and southern 
populations after data were spatially rarefied (Brown, 2014) using the following kernel 
grid output levels; low – 4.6% to 12%, medium – 13% to 29%, high – 30% to 100%. The 
minimum cut-off point of the kernel grid from sample data (homerange) was taken as 4.6% 
as this represented a maximum distance of 10 km from sightings beyond which dispersal is 
unlikely for this species. Isolated points were linked to the main populations by the width 
of their 10 km buffer along closely associated rivers (Fig. 1). 
 
Environmental biases are often introduced into species distribution models from spatially 
autocorrelated occurrence points resulting from sampling bias (Brown, 2014).  This was 
addressed by first spatially rarefying the sample data using SDMtoolbox to reduce any 
sampling bias within the data due to more surveys possibly being conducted in easier-to-
access areas and to remove any duplicate records or multi-year repeat counts of the same 
individuals. The Euclidian distance specified for the spatial rarefying of the sample data 
was 400 m as this was the average distance between individuals where homerange studies 
were carried out (Duthie, 1989). The cut-off point for the kernel density smoothing of 
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sightings data was a maximum of 10 km from each sighting, assumed to be beyond the 
maximum dispersal distance for this species based on knowledge of homerange size.  
 
The extent of occurrence (EOO), also termed the species’ range, was calculated by using 
kernel density home range estimation. Area of occupancy (AOO) is defined as the area 
within its 'extent of occurrence' occupied by a taxon (Baillie et al., 2004). AOO was 
calculated by buffering all rivers and sightings by 1 km and using the buffered sightings 
points to clip the river buffer giving a total estimate of AOO. A buffer of 1 km was chosen as 
most of the larger patches of riverine vegetation do not extend more than 1 km from rivers, 
and all sightings were contained within these areas. 
 
To estimate total population size, survey data representing confirmed sightings along 
rivers was used to calculate size of individual subpopulations along river systems. 
Subpopulations were defined as groups of confirmed sightings along 1st-, 2nd- and 3rd-order 
rivers that are within a maximum of 10 km of each other. If the groups of sightings are 
more than 10 km from each other they were not taken as being from the same 
subpopulation (Table 1). Due to limited information about this species’ dispersal ability 
and the fact that known densities where homerange studies were carried out (Duthie, 
1989) showed approximately one riverine rabbit for every 400 m of river length. Based on 
this understanding, 10 km between confirmed sightings was considered a reasonable 
distance to separate subpopulations. A minimum of six sightings was taken to represent a 
subpopulation (potentially representing up to three breeding pairs). Where fewer than six 
sightings occurred in isolation from survey data, these were assumed to be part of the 
nearest subpopulation based on connectivity along the rivers. In the absence of additional 
life history information it was assumed that 70% of all sightings during surveys represent 
mature (breeding) individuals (Birss, C., Pers. Comm., 2015).  
 
 
Climate and environmental data 
 
The complete set of nineteen climate predictor variables bio1-bio19 at 30 arc second 
spatial resolution (Table 3) were selected from the WorldClim database (Hijmans et al., 
2005), which was used in the initial baseline model 19pv_No-Rar (Table 2). All data were 
projected into Albers Equal Area projection for Africa. Highly correlated climate data were 
then removed using ArcGIS 10.2 SDM Tools that evaluates correlation among input data 
and removes layers correlated at the user-specified level (Brown, 2014). Highly correlated 
climate variables can negatively affect the accuracy estimate of variable contributions from 
the Maxent model output. Removing highly correlated climate variables reduced the 
number of variables from nineteen to fifteen (Table 3: bio 10, bio 11, bio 16, bio 17).  
 
Additional predictor variables in the model included slope, soil and riparian area. The soil 
variable came from a broad-scale soil classification, the slope was created from a high 
resolution 25 m digital elevation model and the riparian variable was created by buffering 
all rivers by 500 m and expressed as the proportion of river buffer area within each grid 
cell. This buffer distance was chosen as the average homerange size for B. monticularis and 
is approximately 17 ha (20.9 ha for males and 12.9 ha for females and none of the  
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homeranges extended beyond 500 m either side of the river - (Duthie & Robinson, 1990).  
All sample data fell within this river buffer area. 
 
 
Species distribution model 
 
Species distribution models (SDMs) are used to characterise the relationship between 
species records and the environmental and spatial characteristics of those location at 
which the species was observed (Franklin, 2009)(Elith & Leathwick, 2009). SDMs have 
been applied to understand climate change impacts, spatial patterns of species diversity 
and the spread of invasive species (Phillips & Dudik, 2008; Zengeya et al., 2013), and can 
identify previously unknown wildlife ranges (Pearson et al., 2007) and delineate spatial 
and ecological boundaries of species complexes (Chetan et al., 2014). Maxent has been 
shown to perform species distribution modelling well (Elith et al., 2006; Hernandez et al., 
2006), with its  output dependent  on both on how closely data matches assumptions and 
on model complexity (Phillips & Dudik, 2008). Maxent uses species presence records and a 
set of background records to predict potential distribution performs well for species 
distribution modelling (Elith et al., 2006; Hernandez et al., 2006; Merow et al., 2013). Its 
output depends on both on how closely data match assumptions and on model complexity  
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(Phillips & Dudik, 2008). Species distribution model runs were implemented using Maxent 
version 3.3.3k (Phillips et al., 2006).  
 
Factors determining the B. monticularis distribution were assessed using combinations of 
22 predictor variables fitted and evaluated in the Maxent models (Table 3). A number of 
combinations of sample data were also tested (Table 2) followed by a jackknife test to 
measure variable importance (Fig. 3). Background records were selected using Maxent 
default settings. Model evaluation was carried out using a random selection of 25% of the 
sample data used for testing model predictive performance for all the models, except the 
northern and southern population models. Performance of northern population model was 
tested using all 47 samples from southern population and performance of the southern 
model was tested using a random subset of 47 samples from the northern population. After 
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excluding the test data samples, the number of sample records for model training after 
being spatially rarefied was 198 for the baseline model, 47 for southern population and 
184 for all other models.  

 
Results 
 
 
A spatial analysis of B. monticularis presence data indicates that 70% of the known 
population occurs in the Nama-Karoo Biome, 24% in the Succulent Karoo Biome and 6% in 
the Fynbos Biome (Mucina L & Rutherford, 2006). The total number of sightings across all 
twelve subpopulations is 320 individuals, which yields a total population estimate of 207 
mature individuals (Table 1). A second method estimated total population size (not only 
mature individuals) by calculating the average density of sightings per area of 1 km river 
buffer for all subpopulations (Table 1) and multiplied by the total area (AOO), gave a 
population size estimate of 224 individuals. This estimate is reduced to 157 if we assume 
70% of population are mature individuals. The EOO, calculated as kernel density 
homerange, is 54,227 km2 (Fig. 1). 
 
The baseline model 19pv_no_rar (test AUC 0.955) showed a good model fit using training 
and test data. Adding environmental variables ripa, slope and soil (model 22pv_no-rar, Test 
AUC 0.965) increases baseline model predictive power but there is still a potential issue of 
sampling bias. Reducing the number of climatic variables to seven (model 10pv, Test AUC 
0.957) showed reduced predictive power. Removal of the slope variable (model 17pv_no-
slo, Test AUC 0.961) only marginally reduced overall accuracy of the model (Table 3.). 
Removal of the soil variable (model 17pv_no-soi, Test AUC 0.965) did not affect model 
accuracy, whereas removal of the riparian variable (model 17pv_no-rip, Test AUC 0.953) 
reduced model predictive power, but had less importance for the southern population 
model (Table 3). The northern population model (18pv_N, Test AUC 0.723) did not predict 
habitat suitability well across the whole species range and the southern population model 
(18pv_S, Test AUC 0.475) performed worse. The model with the highest predictive power 
was 18pv with the highest Test AUC value of 0.965 (Table 2). The jackknife test 
(regularized training gain) for model 18pv (Table 2) showed annual mean temperature 
(bio1) having highest gain when used in isolation and the riparian variable decreasing the 
gain most when omitted. For the optimal model 18pv, the most important predictor 
variables in order of performance are ripa, bio2, bio13, bio6 and bio9 (Table 3). 
 
 

Discussion 
 
A study of the habitat requirements of B. monticularis indicates the estimated total area of 
suitable habitat remaining could possibly support 1435 rabbits (Duthie 1989), although 
varying densities along riparian areas suggests that the actual population size may be 
substantially less.  A number of surveys since the late-nineties have significantly improved 
estimates of the location and size of subpopulations. The population size of B. monticularis 
is critically low with an estimated twelve subpopulations totalling between 157-207 
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mature individuals (Table 1). These subpopulations include three in the southern 
population and nine in the northern. All subpopulations are estimated to contain fewer 
than 50 mature individuals.  
 
Several riverine areas that once harboured B. monticularis no longer do (Duthie, 1989). 
Five possible historical subpopulations are represented by five museum specimens 
collected in the past (Fig. 1) but surveys during the past 30 years do not confirm sightings 
in those localities. These five subpopulations are assumed extirpated. This includes three 
museum specimens collected in the north-western distribution range of B. monticularis 
along the Vis and Renoster rivers and their tributaries near the town of Calvinia. 
Disappearance of these subpopulations is likely due to significant habitat transformation 
along these particular rivers following extensive cultivation of the alluvial floodplains  
(Duthie et al., 1989).  
 
 
Model outputs 
 
Addressing bias in species distribution models is critical (Newbold, 2010).  All species 
distribution modelling methods, including Maxent, rely on an unbiased sample through 
collecting a comprehensive set of presence records (with duplicates and errors removed). 
The baseline model showed good model fit, however it did not have highly correlated 
climate variables removed as well as sample data spatially rarefied in order to reduce 
sampling bias. Adding environmental variables ripa, slope & soil to the baseline model 
increased model performance but the potential issue of sampling bias persists.  
 
Several Maxent models often use a reduced number of bioclimatic variables. However,  
when bioclimatic variables were reduced to seven, the remaining set, chosen for their effect 
on vegetation (model 10pv) still performed relatively well, but did not improve on the 
model with fifteen bioclimatic variables. Slope and soil variables had little affect on model 
performance, indicating that these two predictor variables were not important across the 
entire species range, although slope did appear to be a more important variable for the 
southern population. Removal of the riparian variable reduced model performance, 
indicating that it is an important predictor variable for this species, although possibly more 
so for the northern population than for the southern population (Table 3). The model run 
with only northern population sample data (18pv_N) did not perform well for the entire 
species range. The model using only sample data from the southern population (18pv_S) 
performed the worst in terms of predicting suitable habitat across the entire species range. 
It is therefore important to use a model that combines both northern and southern 
population sample data for both training and test samples. The model 18pv, where four 
highly correlated climate variables were removed and three additional environmental 
variables added (ripa, soil, slope) as well as spatially rarefying the sample data, showed an 
11% improvement in test AUC from the baseline model and was selected as the optimal 
model based on these factors. 
 
Predictor variable importance for the best selected model 18pv (Table 3) shows the most 
important predictor variables in order of performance being riparian variable, annual  
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Fig 2. Habitat suitability map from Maxent models; (a) using 18pv_N northern population sample data and 
southern population test data, (b) 18pv_S southern population sample data and northern population test 
data, (c) using 18pv combined northern and southern population sample data and 25% random test data 
(Table 2). Sightings data used for training the Maxent model (white circles) and testing the Maxent model 
(black circles), the location of museum specimens (black X’s), kernel density (dotted line) indicating 
approximate core distribution range, towns (black triangles) and provincial boundaries (black lines). The 
darker grey areas indicate better predicted conditions. 

 
mean temperature, precipitation of the wettest month, minimum temperature of the 
coldest month and mean temperature of driest quarter. Interestingly for the southern and 
northern population models run separately, the riparian variable showed the most 
importance for the northern population whereas mean temperature of the driest quarter 
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seemed to be the most important predictor variable for the southern population. This 
requires further investigation into possible evolutionary adaptive differences between the 
two populations. The area of unsuitable habitat separating the two populations (Fig. 2) may 
indicate that they may have been isolated by climatic factors for a relatively long time. 
 

 
Fig 3. Jackknife test of variable importance (regularized training gain) for the Maxent model 18pv (Table 2). 
The predictor variable with the highest gain when used in isolation is bio 1 (Annual Mean Temperature) 
which appears to have the most useful information on its own. The predictor variable ripa (Riparian) 
decreases the gain most when omitted therefore appears to have the most information that is not present in 
all the other variables. Variable descriptions can be found in Table 3. 

 
 
The jackknife test (regularized training gain) for variable performance showed annual 
mean temperature (bio1) having the most useful information on its own with the riparian 
variable having the most information not present in all the other variables (Fig. 3). The 
species distribution models in this study were run with predictor variables at a finer scale 
(30 arc second grid cell resolution) than previous studies (Hughes et al., 2008) allowing for 
the examination of finer-scale features important for environmental model predictors such 
as the slope and riparian variables. 
 
These results provide a better understanding of the absolute population size and the 
distribution for the species, as well as the relative importance of factors that determine the 
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extent of the species’ range.  However further analyses are required to understand the 
relationship between factors that may affect the northern and subpopulations  in a 
different manner..  
 
An initial analysis of potential climate change impacts for the northern population under 
the most severe General Circulation Model (GCM) suggest that, on average, over 96% of 
current habitat could become unsuitable due to climate change, mitigated by a possible 7% 
increase in range in other areas (Hughes et al., 2008). Future modelling could explore a 
combination of different GCM’s for northern and southern populations combined, to 
improve our understanding of the potential impact of climate-change impact the species as 
well as potential future suitable habitat.  
 
 

Conclusion 
 
 
A population size estimate of between 157-207 mature individuals indicate an extremely 
low population size for B. monticularis. Together  with the estimate that no subpopulation 
contains more than 50 mature individuals, this gives support to the species remaining 
listed as Critically Endangered under IUCN Red List criteria C2a(i). The best-performing 
model provides an improved understanding of extent of suitable habitat and which 
predictor variables were the most important in determining the current species range. 
Maxent performed well in terms of both model predictive power and accuracy and will 
continue to be a very useful tool for assessing potential future conservation and 
management actions for this species. B. monticularis can be used as both an important 
ecosystem health indicator species as well as an umbrella species for conservation of the 
unique riverine biotic communities of the Karoo region, as well as the important ecological 
processes that are maintained by these communities. 
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