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Abstract
In Egypt, ducks kept for commercial purposes constitute the second highest poultry popula-

tion, at 150 million ducks/year. Hence, ducks play an important role in the introduction and

transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control

outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To

date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we

evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey

Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/

Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from

clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection

of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/

dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days

(D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in

which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/

chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived

antibody regression and post-vaccination antibody immune responses were monitored

weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vac-

cines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80%

and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral

shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the
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MEFLUVAC groups only in the first two challenge experiments. However, the non-vacci-

nated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5

and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides pro-

tection against HPAI challenge.

Introduction
Egypt is one of five countries where the highly pathogenic avian influenza (HPAI) H5N1 has
become endemic. The H5N1 virus continues to circulate and has already caused great eco-
nomic losses in poultry [1, 2]. Human infections and deaths have also been reported. Approxi-
mately 100 to 150 million domestic ducks are produced in Egypt annually and this makes
ducks the species that constitutes the second largest group in the domestic poultry population.
There are also vast numbers of domestic ducks in Egypt in the household sector, a recognized
source of infection and transmission of the HPAI H5N1 virus to poultry and humans [3–7].
Previous research suggests that water fowls (migratory and domestic) play a crucial role in the
perpetuation and dissemination of avian influenza (AI) viruses globally [3–8]. It is therefore
crucial to mitigate the risk of HPAI H5N1 infection and to reduce the circulation of HPAI in
domestic ducks to control the spread of HPAI H5N1 [9]. Vaccination can decrease disease
prevalence and reduce viral shedding among infected poultry, thereby decreasing the rate of
environmental contamination, especially where enforcement of biosecurity is impractical [9].
Although AI vaccination has been widely implemented as a disease control tool in Egypt, very
little or no post-vaccination monitoring has taken place in the country [10–12]. In addition,
there is insufficient information on the effectiveness of HPAI H5N1 vaccination in domestic
duck species to guide disease control programs. Since the licensing of a new live recombinant
vector vaccine (rHVT-H5) based on a turkey herpes virus (HVT) expressing the H5 gene from
a clade 2.2 HPAI H5N1 virus in Egypt late in 2012, the vaccine has gained acceptance [12]. Fur-
thermore, because so far no AI vaccine has been developed specifically for water fowl, all the
available studies for this vaccine have been on specific pathogen-free (SPF) chickens [13–15],
commercial broilers [12,16], and commercial layers [12] only. Because the ducks play a central
role in the epidemiology of HPAI H5N1 in Egypt, the present study was conducted to fill the
knowledge gap about the rHVT-H5 vaccine and to assess the effectiveness of HPAI H5N1 vac-
cine in domestic water fowl. The study was specifically designed to monitor the post-vaccina-
tion serological response to a single dose of the rHVT-H5 vaccine, compared to a dose of an
inactivated H5N1 reverse genetic vaccine based on clade 2.2.1 and 2.2.1.1 Egyptian seed strain
(MEFLUVAC), in protecting domestic Mulard ducks from challenges with HPAI H5N1 clade
2.2.1 viruses from Egypt.

Results

Maternally-derived antibody (MDA) monitoring
We obtained 225 commercial Mulard day-old-ducks from breeder flock that has been vacci-
nated four times using the H5N2 vaccine. During the first week, all the tested ducklings from
the two experimental groups (n = 15/group) and the controls (n = 15) were 100% seropositive.
At one day old, the mean HI titres of the MDAs ranged from 7.3 to 7.4 log2, using H5N2/Ag
(Table 1, Fig 1A). However, other antigens did not perform as well as the H5N2/Ag (Fig 1B–
1D, S1–S3 Tables). The MDA titres decreased constantly until the third week in the two vacci-
nated groups (the rHVTH5-vaccinated and MEFLUVAC-H5-vaccinated groups) and the
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control. (Table 1, Fig 1A). However, while the MDA decreased in the other groups, it continued
to exist until the fourth week in the unvaccinated controls (Table 1). Only during the second
week was the MDAmean titre for Group III significantly higher (p<0.05) than the MDA titre
for the vaccinated groups (I and II) (Table 1). In this study, the time to reach the half-life of
MDAs was<7 days for vaccinated Group I (5.9 days) and Group II (6.1days), and it was 9.3
days for the unvaccinated (Group III) birds (Fig 2A–2D).

Post-vaccination antibody response to the rHVT-H5 vaccine
The three experimental groups were highly sero-positive (90–95%) during the first week, but
the mean HI titres of the MDA were significantly lower than where the H5N2/Ag was used
(Fig 2A, Table 2). The detected HI mean titres of the MDA ranged from 3.8 to 7.4 log2
(Table 2, Fig 2A). The post-vaccination antibody response against the rHVT-H5 in Group I
started from the second week, with a sero-conversion rate of 16.7% (Table 2, Fig 2B). The post-
vaccination immune response continued in its development on a weekly basis until the HI
mean titres reached 3.5log2 and 70% sero-conversion by the sixth week (Table 2 and Fig 2A–
2D).

Post-vaccination antibody response to MEFLUVAC-H5 vaccine
Using the V/H5N1/Ag as the homologous antigen to the MEFLUVAC–H5 vaccine, the MDA
monitoring indicated that in the three experimental groups, significantly lower (undetectable
level of antibodies (range 0.0 to 1.5 log2) existed in the first week post vaccination until the
third week. The antibody titres gradually developed thereafter with higher titres obtained in
group II (Table 2, Fig 2C and S2 Table). The post-vaccination antibody response against the
MEFLUVAC-H5 in Group II started from the second week with a sero-conversion rate of 50%.
The post-vaccination immune response continued to develop on a weekly basis until the HI
mean titres reached 5.6log2 and 100% sero-conversion by the sixth week (Table 2, Fig 2C).

Post-vaccination antibody response against the HPAI H5N1 challenge
virus antigen (C/H5N1/Ag)
All the experimental groups showed (�75%) sero-positivity at Day 1. The MDAmean HI titres
(0.8–3.1 log2) were significantly lower for H5N1/Ag than where the H5N2/Ag was used

Table 1. Weekly HI mean titres (log2 ± SD) using (A/chicken/Mexico/232/1994) H5N2/Ag that indicate
the MDAs’ regression profile.

Age (Weeks) Group*

I II III

0 (day 1) 7.3 ±1.4a 7.4±1.4b 7.4±1.6b

1 4.2±1a 4.8±1.2b 4.8±0.7b

2 1.4±1.5a 1.5±1.4a 2.6±1b

3 0±0a 0±0a 0.1±0.4a

4 0±0a 0±0a 0±0a

5 0±0a 0±0a 0±0a

6 0±0a 0±0a 0±0a

Different superscripts in a row denote the presence of statistically significant (p �0.05) differences.

*Group I (vaccinated with rHVT-H5 vaccine at 1 day old), Group II (vaccinated with inactivated KV-H5

vaccine at 8 days old), Group III (unvaccinated control).

doi:10.1371/journal.pone.0156747.t001
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(Table 2, S1–S3 Tables). MDA waned significantly by the end of the second week in all three
experimental groups (Figs 1 and 2). The post-vaccination antibody response against the C/
H5N1/Ag in Group II started in the third week, while in Group I, it started in the fourth week
(S3 Table, Fig 2D). The post-vaccination mean antibody titre detected in Group I and II were

Fig 1. Weekly mean HI titres (log2 ± SD) showing the results of MDA regression profiles and post vaccination immune responses in different
experimental groups*.Weekly Mean HI titers (log 2) measured using (1a) (A/Chicken/Mexico/232/1994) H5N2/Ag indicating MDA regression; (1b)
(A/Swan/Hungary/4999/2006)rHVT-H5/Ag indicating immune response to rHVT-H5 vaccination; (1c) (A/Chicken/Egypt/Q1995D/2010)H5N1/Ag
indicating immune response to KVT-H5 vaccination; (1d) (A/H5N1/Chicken/Egypt/128s/2012)C/H5N1/Ag indicating immune response to challenge
virus antigen. *Group I (1b) (vaccinated with rHVT-H5 vaccine at 1 day old),Group II (1c) (vaccinated with inactivated MEFLUVAC-H5 vaccine at 8
days old),Group III (1d) (unvaccinated control).

doi:10.1371/journal.pone.0156747.g001
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(0±0, 1.1±1.3, 1.8±1.3 and 2.4±1.1 log2) and (1.7±1.3, 2.4±1.4, 2.8±1.1 and 3.5±1.1log2) at
third, fourth, fifth and sixth weeks respectively (S3 Table). The sero-conversion rates detected
in Group I and II at the third, fourth, fifth and sixth weeks gradually peaked (Table 2). In

Fig 2. Weekly sero-conversion (%) showing the results of MDA regression profiles and post vaccination immune responses in different
experimental groups*.Weekly Mean Sero-conversion (%) measured using (2a) (A/Chicken/Mexico/232/1994) H5N2/Ag indicating MDA regression;
(2b) (A/Swan/Hungary/4999/2006)rHVT-H5/Ag indicating immune response to rHVT-H5 vaccination; (2c) (A/Chicken/Egypt/Q1995D/2010)H5N1/Ag
indicating immune response to KVT-H5 vaccination; (2d) (A/H5N1/Chicken/Egypt/128s/2012)C/H5N1/Ag indicating immune response to challenge virus
antigen. *Group I (vaccinated with rHVT-H5 vaccine at 1 day old), Group II (vaccinated with inactivated MEFLUVAC-H5 vaccine at 8 days old), Group III
(unvaccinated control).

doi:10.1371/journal.pone.0156747.g002
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general, the mean HI antibody titres and sero-conversion rates were significantly higher in
Group II than in Group I at the third, fourth, fifth and sixth weeks (Table 2 and Fig 2).

Challenge study: Clinical signs and protection
Control birds. The control positive challenged group displayed 100% morbidity during

the four different challenge experiments at 21, 28, 35 and 42 days (Table 3). All the challenged
control positive groups displayed depression, pink eye, respiratory distress and nervous mani-
festations before death. There was no clear difference between the means for the onset of clini-
cal signs between the four different control positive groups, although the trend displayed by
age (21, 28, 35 and 42 days) differed, as the mean duration of the onset of clinical signs
increased (1.1, 1.2, 1.3 and 1.5 days) respectively (Table 3). The mean duration of the clinical
signs (the patent period) also displayed the same age trend in the four challenge experiments
were 7, 6, 8.7 and 11.3 days respectively (Table 3). The control positive challenged groups dis-
played 100% mortality and a 100% case fatality rate (CFR). However, the mean death time
(MDT) was 8.2, 8, 9.8 and 12.8 days respectively during the four challenge experiments, sug-
gesting the possibility of age susceptibility (Table 3).

Group I (rHVT-H5 vaccinated group). Group I displayed 100% morbidity during the
four different challenge experiments. All the challenged birds displayed depression, pink eye
and mild respiratory distress, and nervous manifestations appeared only in these birds that
died. There was no difference in the mean duration for the onset of clinical signs (2.7, 4.2, 3.0
and 3.4 days) between the four experiments (21, 28, 35 and 42 days), although it was longer
than for the control positive groups (Table 3). The mean duration of clinical signs (patent
period) also was 10.1, 6, 10.1 and 10.1 days, during the four challenge experiments respectively.

Table 2. HI titres* (mean ±SD) and sero-positivity rates for the selected ducks subject to the four challenge experiments**.

Age Parameters Group I (n = 10) Group II (n = 10) Group III (n = 10)

rHVT Ag H5N1/2012 H5N1/2010 H5N1/2012 H5N2 H5N1/2012

1 day HI log2 titres 3.8±1.3a 2.9±1.3a 0.8±1.6b 2.8±1.2a 7.4±1.6c 3.1±1.4a

Sero-conversion (%) 95 75 20 75 100 75

7 days HI log2 titres 1.9±1.6a 1.5±1.4a 0±0b 1.5±1.4a 4.8±0.7c 1.7±1.5a

Sero-conversion (%) 52 36.8 0 40 100 35

14 days HI log2 titres 0.5±1.1a 0±0a 2.8±1.1b 0±0a 2.6±1b 0±0a

Sero-conversion (%) 16.7 0 50 0 70 0

21 days HI log2 titres 1.5±1.6a 0±0b 2.8±0.5c 1.7±0.4a 0.1±0.4b 0±0b

Sero-conversion (%) 20 0 60 0 0 0

28 days HI log2 titres 2±1.4 a 1.3±1.4 b 4.5±1.1 c 1.7±1.4 b 0±0 d 0±0 d

Sero-conversion (%) 40 20 85 35 0 0

35 days HI log2 titres 2.5±0.5 a 1.8±1.3 b 5.2±0.9 c 2.8±0.8 a 0±0 d 0±0 d

Sero-conversion (%) 60 20 100 60 0 0

42 days HI log2 titres 3.5±0.5a 2.4±0.5b 5.6±0.7c 2.8±0.5b 0±0e 0±0e

Sero-conversion (%) 70 30 100 70 0 0

Different superscripts in a row denote the presence of statistically significant (p �0.05) differences

*HI titres were measured using homologous vaccinal antigens: rHVT-H5/Ag (A/Swan/Hungary/4999/2006) was used for Groups I; V/H5N1/Ag (A/chicken/

Egypt/Q1995D/2010) was used for Group II, and H5N2/Ag (A/chicken/Mexico/232/1994) was used for Group III.

**Group 1 (vaccinated with rHVT-H5 vaccine at 1 day old), Group II (vaccinated with inactivated KV-H5 vaccine at 8 days old), Group III (unvaccinated

control). All birds were challenged with HPAI H5N1 virus (A/Chicken/Egypt/128S/2012 (H5N1)) (GenBank Accession No. JQ858485) via the oculo-nasal

route with 100 μl (50_ul in eye, 50_ul in nose) of inoculum containing 106 EID50 per duck.

doi:10.1371/journal.pone.0156747.t002
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Group I challenge birds showed 20%, 20%, 10%, and 10%mortality and CFR was 20%, 20%,
10% and 10% respectively in the four different experiments. However, the mean death time
(MDT) was 8, 12, 14 and 14 days respectively during the fourth challenge experiment. In terms
of the protection percentage (against mortality), the rHVT-H5-vaccinated birds displayed the
highest protection levels at 80%, 80%, 90% and 90% respectively during the four challenge
experiments (Table 3).

Group II (MEFLUVAC-H5 vaccinated group). Group II challenged birds displayed
100%morbidity in the four different challenge experiments. All the challenged birds displayed
depression, pink eye, and mild respiratory, but nervous manifestation appeared only in the birds
that died. There was no difference in the means for the onset of clinical signs (3.1, 3.4, 3 and 2.9
days) between the four experiments (21, 28, 35 and 42 days of age), although it was longer than
in the control positive groups (Table 3). The mean duration of clinical signs (patent period) was
also 7, 9.2, 9.7 and 9.2 days respectively during the four challenge experiments. Group II chal-
lenge birds displayed 50%, 30%, 20% and 10%mortality, and CFR was 50%, 30%, 20% and 10%
respectively in the four different experiments. However, the mean death time (MDT) was 7.8,
9.3, 10 and 14 days respectively in the fourth challenge experiment (Table 3). The percentage of
protection against mortality was highest for the MEFLUVAC-H5-vaccinated birds, at 50%, 70%,
80% and 90% respectively during the four challenge experiments (Table 3). In general, Group I
performed the best during the first two challenge experiments, and there was no difference
between the two vaccinated groups in the third and fourth challenge experiments.

Viral shedding
Rate of viral shedding. The control positive groups (Group III) displayed a 100% shed-

ding rate in the four different challenge experiments. All the shedder birds in the control posi-
tive groups died.

Table 3. Morbidity andmortality parameters measured in animals subjected to four separate challenge experiments (Exp.1, 2, 3 and 4)*.

Parameters Group I (n = 10) Group II (n = 10) Group III (n = 10)

Exp. 1 Exp. 2 Exp.3 Exp. 4 Exp. 1 Exp. 2 Exp.3 Exp. 4 Exp. 1 Exp. 2 Exp.3 Exp. 4

Morbidity (%) 100 100 100 100 100 100 100 100 100 100 100 100

Mean duration for clinical
onset (days) (range)

2.7(1–5) 4.2(1–
6)

3 (1–5) 3.4(2–
4)

3.1(2–
4)

3.4(2–
5)

3(2–5) 2.9(2–
4)

1.1(1–
3)

1.2(1–
2)

1.3(1–
2)

1.5(1–
2)

Overall mean patent period
(days) (range)

10.1(7–
12)

6(6–
12)

10.1(8–
12)

10.1(9–
12)

7(5–8) 9.2(4–
12)

9.7(6–
13)

9.2(7–
12)

7 6 8.76–
13)

11.3(9–
13)

Mean patent period (days) for
birds that died (range)

7 7.5(7–
8)

11(9–
13)

12 7(6–8) 5.3(4–
6)

8 12 7 6 8.7(5–
13)

11.3(9–
13)

Mean patent period (in days)
for birds that survived (range)

10.9
(10–12)

5.6(4–
8)

9.9(9–
11)

9.9(9–
11)

7(5–8) 10.9(9–
12)

10.1(8–
12)

8.9(7–
12)

NA NA NA NA

Mortality (%) 20 20 10 10 50 30 20 10 100 100 100 100

Total no. sick birds but
recovered (%)

80 80 90 90 50 70 80 90 0 0 0 0

Case fatality rate (%) 20 20 10 10 50 30 20 10 100 100 100 100

Mean death time (MDT) 8 12 14 14 7.8 9.3 10 14 8.2 8 9.8 12.8

Protection (%) 80 80 90 90 50 70 80 90 0 0 0 0

*Experiments 1, 2, 3 and 4 were carried out on birds of 21, 28 and 35 and 42 days of age. In both cases, Group 1 (vaccinated with rHVT-H5 vaccine at 1

day old), Group II (vaccinated with inactivated KV-H5 vaccine at 8 days old), Group III (unvaccinated control). All birds were challenged with HPAI H5N1

virus (A/Chicken/Egypt/128S/2012 (H5N1)) (GeneBank Accession No. JQ858485) via the oculo-nasal route with 100 μl (50_ul in eye, 50_ul in nose) of

inoculum containing 106 EID50 per duck.

doi:10.1371/journal.pone.0156747.t003
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In the case of Group I, the shedding rates were 80%, 40%, 40% and 20% respectively in the
four challenge experiments (Table 4). The number of shedder birds that died was 2, 2, 2 and 1
respectively in the four challenge experiments. The total number of sick birds that did not shed
the virus was 2, 6, 6 and 8 birds respectively.

In case of Group II, the shedding rates were 50%, 80%, 80% and 20% respectively during the
four challenge experiments. The number of shedder birds that died was 5, 3, 2 and 1 respec-
tively during the four challenge experiments. The total number of sick birds that did not shed
the virus was 5, 2, 2 and 8 birds respectively (Table 4).

In general, the highest shedding rate (80%) was recorded in Group I in the first challenge
experiment. In Group II, it was recorded in the second and third challenge experiments. The
rate of shedding decreased by age in both vaccinated groups. In the fourth challenge experi-
ment, both vaccinated groups displayed the same trend (Table 4).

Amount of challenge viral shedding (log10 PCR copies). In Group III, the mean viral
shedding in the control positive groups ranged from 3.6 to 5 log10/ml in the surviving birds.
The mean viral shedding in dead birds was 4.7±0.7, 5.1±0.5, 5.4±0.6 and 4.7±0.7 log10/ml
respectively in the four different experiments. The control positive birds in the third and fourth
challenge experiment continued shedding until the 14th dpc. The highest shedding rates (5
±0.7 and 4.8±0.8) among the four challenge control positive groups were detected in the third
and fourth challenge experiments in late shedding birds respectively (Table 4).

In Group I, the mean viral shedding in Group I-challenged birds during the four challenge
experiments ranged from 2 to 4.1 log10/ml in the surviving birds. The mean viral shedding in
dead birds was 3.9±0.5, 3±0, 3.4±1.2 and 3.4 log10/ml in the four different experiments respec-
tively. Viral shedding stopped from the sixth dpc in the first, second and fourth challenge

Table 4. Virological parameters measured in animals subjected to four separate challenge experiments (Exp.1, 2, 3 and 4)*.

Parameters Group I (n = 10) Group II (n = 10) Group III (n = 10)

Exp. 1 Exp. 2 Exp.3 Exp.4 Exp. 1 Exp. 2 Exp.3 Exp.4 Exp. 1 Exp. 2 Exp.3 Exp.4

Total no. shedder birds
(%)

8
(80%)a

4
(40%)b

4
(40%) b

2
(20%)c

5
(50%) d

8
(80%) a

8
(80%) a

2
(20%) c

10
(100%) e

10
(100%) e

10
(100%) e

10
(100%) e

Shedder birds that
died

2 2 2 1 5 3 2 1 10 10 10 10

Shedder birds that
recovered

6 2 2 1 0 5 6 1 0 0 0 0

Total no. sick birds but
did not shed virus

2 6 6 8 5 2 2 8 0 0 0 0

Mean virus load/
shedder birds

Third dpc 4.1±1.2 2.7±0.4 3.6±0.3 3.1±0.1 3.3±0.2 3.6±1.2 3.9±1.3 3 3.9±1 3.5±0.3 4.4±0.4 3±0.5

Sixth dpc 3.2±0.4 3.2±0.1 4.1±0.7 2.0±0.1 3.5±1.1 3.2±0.3 3.1±1 2.4±0.6 3.6±0.6 3.6±0.5 4.1±0.8 3.5±0.3

Ninth dpc 0 0 4.2 0 3.3±0.3 4.5±0.3 4.5±0.2 3.7 **NA NA 3.8±1.2 4±0.5

Fourteenth dpc 0 0 2.5 0 0 0 0 3.9 NA NA 5±0.7 4.8±0.8

Mean virus load/
shedder birds that died

3.9
±0.5

3.5 3.4±1.2 3.4 3.6±0.5 4.5±0.2 4.5±0.2 3.9 4.7±0.7 5.1±0.5 5.4±0.6 4.7±0.7

Different superscripts in a row denote the presence of statistically significant (p �0.05) differences

*Experiment 1, 2, 3 and 4 were carried out on birds of 21, 28, 35 and 42 days of age. In both cases, Group 1 (vaccinated with rHVT-H5 vaccine at 1 day

old), Group II (vaccinated with inactivated KV-H5 vaccine at 8 days old), Group III (unvaccinated control). All birds were challenged with HPAI H5N1 virus

(A/Chicken/Egypt/128S/2012 (H5N1)) (GeneBank Accession No. JQ858485) via the oculo-nasal route with 100 ul (50_ul in eye, 50_ul in nose) of

inoculum containing 106 EID50 per duck.

** NA = not applicable as all birds died before 10 dpc.

doi:10.1371/journal.pone.0156747.t004
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experiments, but it continues until the 14thdpc in the third challenge experiment. The level of
viral shedding decreased as the age of the challenged birds increased. The mean viral shedding
in Group I challenged birds in the four challenge experiments was lower than in the case of the
control positive groups by 1 to 2 log10 (Table 4).

In Group II, the mean viral shedding in Group II-challenged birds during the four challenge
experiments ranged from 2.4 to 4.5 log10/ml in the surviving birds. The mean viral shedding in
dead birds was 3.6±0.5, 4.5±0.2, 4.5±0.2 and 3.9 log10/ml in the four different experiments
respectively. Viral shedding stopped from the 9thdpc in the first, second and third challenge
experiments, but continued until the 14thdpc in the fourth challenge experiment. The mean
viral shedding in Group II challenged birds in the four challenge experiments was lower than
in case of the control positive groups by 1 log10 (Table 4).

In Group III, the mean viral shedding in Group III-challenged birds during the four chal-
lenge experiments ranged from 4.7to 5.4 log10/ml in the surviving birds. The mean viral shed-
ding in dead birds was 4.7±0.7, 5.1±0.5, 5.4±0.6 and 4.7±0.7 log10/ml in the four different
experiments respectively. Viral shedding stopped became undetectable from the 6thdpc in the
first and second challenge experiments, but continued until the 14thdpc in the third and fourth
challenge experiments (Table 4).

Discussion
In the winter of 2014–2015, Egypt recorded an epizootic of HPAI H5N1 virus, because of the
emergence of a new but dominant H5N1 virus cluster (clade 2.2.1.2) [17]. Prior to this event,
Egypt’s poultry population has continued to be infected with the H5N1 virus with regular
reports of human cases. To date, the following control measures have been implemented to miti-
gate the extent and impact of avian influenza H5N1: biosecurity, a ban on poultry movement,
market rest days, stamping out, and vaccination [18]. Whereas the first four measures are per-
ceived as the classical approach to the disease and have gained prominence worldwide, vaccina-
tion against avian influenza H5N1 is still hotly debated and its implementation is considered on
a country-by-country basis only. Because Egypt has been declared an area where the virus is
endemic to the poultry population and multiple human infections have been reported, the coun-
try has adopted vaccination of poultry against avian influenza to increase resistance to infection,
to protect the poultry population from clinical disease, and to reduce shedding of the virus in
infected birds.

Many vaccines against the H5N1 virus have been used and studied [19–23], however, no
single study has considered the efficacy of influenza H5N1 vaccine in Mulard ducks. This spe-
cies of domestic duck is a reproductive sterile hybrid between Perkin ducks (Anasplatyrhynchos
domestica) and muscovy ducks (Cairina moschata), and this hybrid is susceptible to infection
and can effectively transmit the virus [24].

Previous work by Cagle et al. [20], confirmed that both Perkin and Muscovy ducks have
received efficient vaccination for protection against the spread of the disease, but suggested
that they respond differently to the HPAI H5N1 commercial inactivated vaccine. It is therefore
difficult to generalize for duck species, based on these previous evaluations. In addition, the
virus may still be shed even in clinically healthy vaccinated populations [20], particularly in the
summer months [25, 26]. Furthermore, although previous studies have confirmed the effective-
ness of inactivated H5 vaccines in protecting ducks against disease [27–29], continuous shed-
ding of the virus occurs in clinically healthy vaccinated duck populations [30], and low scale
transmission to other poultry can still occur. Current H5 inactivated vaccines and vaccination
practices are thus insufficient to control H5N1 HPAI virus infections in domestic waterfowl.
New vaccination strategies are thus needed to improve the level of protection for ducks.
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In this study, we have demonstrated the protective efficacy of a commercial live recombi-
nant vector vaccine (rHVT-H5) given on its own, and have compared it with using an inacti-
vated H5N1 vaccine (MEFLUVAC), or no vaccination, in domestic Mulard ducks (a cross-
breed between Muscovy and mallard breeds). We used a virulent challenge virus that belongs
to major HA clade 2.2.1 circulating in Egypt and that is known to have previously caused severe
clinical signs and 100% mortality in non-vaccinated ducks.

The ducklings used in this study had maternally derived antibodies (MDA) from previous
multiple vaccination of the breeder ducks. However, we have determined that such MDA
waned significantly on or before 21 days of age. Decision-making on vaccination against HPAI
H5N1 in ducks should consider such degrading immunity before vaccination, because interfer-
ence between MDA and the protection provided by avian influenza inactivated vaccines has
been reported in poultry [12, 13, 22, 31]. In this case, the MDA half-life was less than 7 days in
the case of the rHVT-H5 and inactivated H5N1 vaccinated groups (5.9 and 6.1 days respec-
tively), while it was 9 days for non-vaccinated birds. Our work suggests that vaccination at 7
days of age could help minimize the interference of maternal antibodies, and would enable the
ducks to acquire early immunity. Despite this immunity and good protection against the dis-
ease, viral shedding still persisted in these species [29].

In this study, the ducks vaccinated with the rHVT-H5 and inactivated MEFLUVAC vac-
cines rapidly developed antibodies and were well protected against the challenge with the Egyp-
tian HPAI H5N1 virus. However, most ducks shed the virus for at least six days in the case of
the rHVT-H5-vaccinated groups, and for up to nine days in the case of the groups inoculated
with the inactivated vaccine. Although virus titres were generally lower than the titres observed
in the challenge controls for both groups of ducks, neither the rHVT-H5 vaccine nor the inacti-
vated vaccine were capable of protecting challenged ducklings from displaying clinical signs.
However, the vaccinated duck groups had a higher mean death time than the challenge con-
trols, and this difference in survival was significant (P>0.05). Ducks vaccinated with the inacti-
vated vaccine challenged with the Egyptian virus shed the virus for a longer period than those
vaccinated with the rHVT-H5 vaccine.

The rHVT-H5 vaccine induced a weak antibody response to its homologous antigen and unde-
tectable level for other viruses tested, indicating that it is most likely to replicate in Mulard ducks
[16]. In fact, the virus was detected in tissues from rHVT-H5-vaccinated ducks when they were
examined at 14 and 21 days after vaccination, both in feather follicles and in the spleen [16, 32].

In this study, we have confirmed that both vaccines were effective and conferred protection.
In addition, they induced both cellular and humoral immune responses, including cell-medi-
ated immunity [15]. Several studies have been conducted to evaluate vaccine efficacy in ducks
against a HPAI virus lethal challenge [27–29]. Vaccine protection from infection and the level
of viral shedding varied depending on single or double-dose vaccination [30], and the challenge
virus strain [29].

The majority of the published vaccine studies on ducks were done either on Perkin ducks
(Anasplatyrhynchos domesticus) [5,27,33], or mallard ducks (A. platyrhynchos) [34,35] and less
research has been done on Muscovy ducks (Cairinamoschata) [33,36], even though Muscovy
ducks are economically significant, as they are not produced only in Asia, but also represent
90% of the ducks hatched in France, the primary producer of ducks in Europe [36]. Vaccine
efficacy studies in ducks conducted by Steensels et al. [33] using fowlpox-vectored AI vaccina-
tion (TROVAC AIV H5, rFP-AIV-H5) revealed oropharyngeal virus shedding in Muscovy
ducks as late as 19 days after infection (dpi), while no shedding was detectable in Perkin ducks
at any point after infection with the same HPAI H5N1virus. However, no research has been
done comparing the responses of Perkin and Muscovy ducks to vaccination in the same study
and under the same conditions.
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In conclusion, the rHVT-H5 vaccine used alone and with inactivated H5 vaccine could con-
fer the required level of protection in Mulard ducks when they are challenged with the HPAI
H5N1 clade 2.2.1 viruses. The rHVT-H5 vaccine appears to offer better protection than the
inactivated vaccine, although it produced a higher level of viral shedding until Day 6 after the
challenge. Vaccinating ducklings with the rHVT-H5 vaccine should reduce the transmission of
HPAI H5N1 among domestic poultry.

Materials and Methods
All studies were carried out according to the Reference Laboratory for Veterinary Quality Con-
trol on Poultry Production (NLQP) guidelines for research ethics in animals. The project ethics
approval number was LA140801/Ex04. Model of experimental design are described in Fig 3.

Fig 3. Model of experimental design.

doi:10.1371/journal.pone.0156747.g003
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Vaccines and Challenge virus
Vectormune1 AI (rHVT-H5). It is a cryopreserved cell-associated recombinant turkey

herpes virus constructed with the FC-126 strain of HVT as the vector, and the HA gene from
the H5N1 clade 2.2 HPAI (A/Swan/ Hungary/ 4999/2006) strain as an insert, and manufac-
tured by CEVA-Santé animalé (Libourne, France). The details of the vaccine have been
described in previous studies [16, 22]. It is injected subcutaneously in day-old birds, usually in
the lower third of the neck at a dose rate of 12,450 plaque forming units (pfu)/0.3 ml/duckling
(the equivalent of 1.5 chicken doses). The Serial number of the vaccine was 395–042 with expi-
ration date set at 09 October 2016.

Egyptian inactivated bivalent H5N1 vaccine (MEFLUVAC). It is an oil emulsion inacti-
vated vaccine that contains two reassortant H5N1 strains (A/chicken/Egypt/Q1995D/2010;
GeneBank Accession No. CY099579 and A/duck/Egypt/M2583D/2010; GeneBank Accession
No. CY099580). The inactivated bivalent vaccine was manufactured by the Middle East Vac-
cine Producing Company (MEVAC) (Al Sharkia-Egypt). It is administered at a dose of 0.5 ml
per bird I/M as per manufacturer’s recommendation for chicken. The Batch number of the vac-
cine was 1402250101 with expiration date set at 25 February 2016.

HPAI H5N1 virus (A/chicken/Egypt/128s/2012(H5N1) (GeneBank Accession No.
JQ858485). The HPAI H5N1 virus (A/chicken/Egypt/128s/2012(H5N1) (HA clade 2.2.1)
was obtained from the repository of the Reference Laboratory for Veterinary Quality Control
on Poultry Production (NLQP), Animal Health Research Institute, Giza, Egypt. The virus was
inoculated into the allantoic cavity of 9-day-old embryonating chicken eggs and grown for 30
hours at 37°C. The allantoic fluid was harvested and frozen at −70°C until further use.

Study protocol
A total of 225 commercial day-old Mulard ducks (DODs) that carried maternally derived anti-
bodies (MDAs) against H5N2 vaccine were obtained from a commercial duck breeder (Al-
Wafaa Company, Egypt). The duck breeder flocks were vaccinated four times against avian
influenza H5, at Weeks 2, 8, 19 and 40, using different H5N2 inactivated vaccines. The DODs
were kept at biosecurity level 3 (BSL-3) poultry isolators at the Reference Laboratory for the
Quality Control of Poultry Production (NLQP) animal facility. The ducks for this experiment
were allocated into three groups (I, II and III) of 75 ducklings each. At one day old, 15 DODs
from each group were humanely bled intra-cardially to monitor for MDA titres. The Group I
ducklings (n = 75) were vaccinated with rHVT-H5 vaccine at one day old; Group II ducklings
(n = 75) received MEFLUVAC-H5 vaccine when they were eight days old, and Group III
(n = 75) served as unvaccinated controls. All the experimental DODs were monitored daily for
56 days.

Serological monitoring
Fifteen (15) randomly selected birds from each group were bled at Day 1, and at Weeks 1 2, 3,
4, 5 and 6. Sera were individually identified by group and date, and stored at -20°C until tested.
Duck antisera were treated using 10% chicken RBCs before HI testing was conducted to avoid
any non-specific reactions [37], The haemagglutination inhibition (HI) test was conducted
according to standard procedures and as previously described by theWorld Organisation for
Animal Health [22,37]. Briefly, an HI test was conducted using four different H5 antigens: i) the
H5N2/Ag (A/chicken/Mexico/232/1994 (H5N2) (Genebank Accession No. AY497096) to deter-
mine MDA titres; ii) the rHVT-H5/Ag, homologous vaccinal antigen (A/Swan/Hungary/4999/
2006) to determine post-vaccination antibody immune response against the rHVT-H5 vaccine;
iii) the V/H5N1/Ag,homologous Egyptian H5N1 antigen (A/chicken/Egypt/Q1995D/2010)
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(GeneBank Accession No. CY099579) to determine any post-vaccination immune response
against the MEFLUVAC-H5 vaccine, and iv) the C/H5N1/Ag challenge virus antigen (A/H5N1/
chicken/Egypt/128s/2012) (GeneBank Accession No. AFI 44355) to evaluate the post-vaccination
immune response against the challenge virus. The HI mean titres were expressed as reciprocal
log2, and an HI titre in a dilution of>23 was used to test specifically for the presence AI H5 anti-
body titres. The sero-conversion (sero-positivity) rate was estimated as the proportion of birds
with positive HI titres (�23) and was calculated using the following formula:

n
N
� 100

1

where n = number positive with HA titres of�23; N = total randomly selected and tested number
in the group.

Detection of rHVT-H5 in vaccinated birds
The rHVT-H5 virus replication was assessed in both the spleen and feather follicles of rHVt-
H5 vaccinated and control (non-vaccinated) birds at the age of 14 and 21 days. Specifically, the
Marek’s disease virus serotype 3 (HVT) US3 gene was targeted using the PCR test according to
Handberg et al.[38].

The challenge experiment
Considering the lack of standardized information on the challenge and protection time for AI
vaccine evaluation in ducks, and the differential responses in different species of ducks [20],
four different sets of challenge experiments were conducted at Days 21, 28, 35 and 42. In each
challenge trial, 10 DODs, tagged and identified individually, were randomly selected and allo-
cated from each group (Groups I, II and III). The birds were transferred to separate BLS-3
poultry isolators, and a challenge experiment was conducted according to the NLQP guidelines
for research ethics in animals. All experimental infections were performed via the oculo-nasal
route, with 100 μl of the challenge inoculum, containing 106 EID50/duckling (with 50μl admin-
istered into the eye and 50μl into the nasal cavity).

Animal care and welfare during the study
All ducks were placed under a 24-hour monitoring program by the laboratory animal facility
team for the duration of the study and no incidence of animal death or unexpected occurrence
was recorded in the course of the experiment.

However, in the course of the challenge experiment with highly pathogenic avian influenza
virus, it is expected that some ducks may die, and humane endpoint protocol were submitted
and approved by the Institution Ethics Committee for euthanasia of such animal. Situation
that will trigger the use of humane endpoint include the display of severe clinical signs that
cause suffering (Score of� 6) [39], pain or incompatible with animal welfare including prostra-
tion and nervous manifestation that affects normal movement and food intake and respiration
inside the isolator for 24–48 hours.

Euthanasia of individual experimental bird was performed by the intra-vascular inoculation
of sodium pentobarbital (100 mg/kg) with or without CO2 gas. This medication was provided
in a small ready-to-use vials (0.324 grams/ml) for use in individual experiments. A dose of 0.1–
0.2 ml was administered intravascularly to each 4-to-6 week old bird to quickly cause uncon-
sciousness and death for an experimental duck that was severally sick as described above. At
the end of the experiment, all survivor ducks were killed humanely using CO2 after euthanasia
of animals as described above.
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Pre- and Post-challenge monitoring
Prior to the challenge experiments, Mean HI (log2) titres and sero-conversion rates were ana-
lyzed as described above to determine the baseline values. Similarly, oropharyngeal swabs were
collected and tested using qRT-PCR, which targets the influenza type A matrix (M) gene of A/
H5N1 [40].

Post-challenge. Following the virus challenge, the health status of experimentally chal-
lenged birds was monitored for 10 days or more post-challenge (dpc). The parameters mea-
sured included: i) the onset of clinical signs and symptoms, ii) the duration of the clinical signs,
iii) daily and cumulative mortality, and iv) the mean death time.

Virus shedding. Oropharyngeal swabs were collected from individual chickens at 3, 6 and
10dpc. Each swab was immediately inserted into 1 ml of viral transport medium, processed
and tested separately for excretion of the challenge virus. Virus detection and quantification
were conducted in a Taqman qRT-PCR, targeting the influenza type A matrix (M) gene [40].
Briefly, RNA extraction was performed according to the manufacturer’s recommendations
using the QIAamp viral RNAMini kit (Qiagen, Hilden, Germany). Genome amplification,
detection and analysis were performed in a Stratagen MX3005P machine (Agilent, California,
USA). An absolute quantification of the AIV matrix gene specific RNA was achieved relative to
a standard curve, based on the tenfold dilution of an in vitro transcribed RNA template of the
challenge virus. The current detection limit of the qRT-PCR is 2.3 copies. A cut threshold (Ct)
value of 40 was selected as the cut-off between positive and negative results; therefore samples
with a Ct higher than 40 were considered negative for AIV. The results were expressed as the
number of M gene copies per ml of swab sample solution.

The viral load was expressed as the mean values of the M gene copies/ml per swab sample
(log10 PCR copies) detected daily. The mean viral load shed per group was calculated only for
live positive shedders per group per day. The number and proportion of shedders was calcu-
lated as the percentage of shedders of the total live birds in a group at one time point, and the
level of protection against morbidity and mortality conferred by a given vaccination regime
was determined as the proportion of healthy and surviving birds respectively in a group during
the monitoring period after the challenge.

Statistical analysis
Systematically collected data on parameters of interest were analyzed using descriptive and
appropriate tests of the hypotheses were conducted in SPSS v 21 (IBM, 2012). The variations
within and between groups were analyzed using a One-Way ANOVA and a P-value<0.05 was
considered statistically significant for all tests.
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