Title Page
Submission title:
Type I Tympanoplasty Meta-Analysis: A Single Variable Analysis
Short running head:
Type I Tympanoplasty Meta-Analysis
<u>Authors</u>
Hsern Ern Tan ^{1,2,3} , Peter Luke Santa Maria ^{1,2,3,4} , Robert Henry Eikelboom ^{1,2,5} , Keith
Surendran Anandacoomaraswamy ^{1,2} , Marcus David Atlas ^{1,2,3}
1 Ear Science Institute of Australia, Subiaco, Western Australia
2 Ear Sciences Centre, The University of Western Australia, Nedlands, Western
Australia
3 Department of Otolaryngology, Head and Neck Surgery, Sir Charles Gairdner
Hospital, Perth, Western Australia
4 Department of Otolaryngology, Head and Neck Surgery, Stanford University,
Palo Alto California

5 Department of Speech-Language Pathology and Audiology, University of Pretoria

Corresponding author:

Name: Dr Hsern Ern Tan

Address: c/o Department of Otolaryngology, Head and Neck Surgery, Sir

Charles Gairdner Hospital, Perth, Western Australia, AUS 6009

Email: <u>hsern.ern.tan@gmail.com</u>

Fax No: 08 9346 4899

Phone No: 08 9346 3333

Acknowledgement:

Dr Noweed Ahmed and Dr Guy Watts contributed to the review of the studies included in the analysis, and Ms Charley Budgeon and Miss Chrianna Bharat contributed to the statistical analysis.

There was no funding received for this project.

ABSTRACT

Objective: To determine which independent variables influencing the efficacy of type I tympanoplasty in adult and pediatric populations.

Data Sources: A search of the PubMed database and Cochrane Database of Systematic Reviews using the key words "tympanoplasty OR myringoplasty" from January 1966 to July 2014 was performed.

Study Selection: Studies reporting outcomes of myringoplasty or Type I tympanoplasty in primary non-cholesteatomatous chronic tympanic membrane perforation were included.

Data Extraction: Of 4,698 abstracts reviewed, 214 studies involving 26,097 cases met our inclusion criteria and contributed to meta-analysis.

Data Synthesis: The primary outcome of success was defined as closure rate at 12 months. The independent variables analyzed were age, follow-up period, approach, graft material, perforation cause, size, location, ear dryness, and surgical technique. Only those studies providing data on a given parameter of interest could be included when comparing each variable.

Conclusion: The weighted average success rate of tympanic closure was 86.6%. Based on this meta-analysis, pediatric surgery has a 5.8% higher failure rate than adults and there is no correlation between follow-up period and success. Other variables associated with improved closure rates include perforation with a size less than 50% of total area (improved by 6.1%) and the use of cartilage as a graft (improved by 2.8% compared to fascia), while ears that were operated on while still discharging, those in different locations of the pars tensa, or using different surgical approaches or techniques did not have significantly different outcomes.

Key Words:

Myringoplasty, Meta-analysis, Tympanoplasty, Tympanic membrane perforation

INTRODUCTION

Type I tympanoplasty is a relatively common procedure in otolaryngology. The history of the management of a perforated tympanic membrane (TM) can the traced back to 1644, when Banzer used a tube of elk's claw covered in pig's bladder to close the perforation in a TM. (1) It was not until the nineteenth century that the British otologists, James Yearsley and Joseph Toynbee, targeted an improvement in hearing with their innovative devices. (2,3) Berthold introduced the term "myringoplasty", when he performed the first surgical closure of a TM perforation in 1878. (4) However, myringoplasty was not widely accepted until Wullstein and Zollner, utilizing the operative microscope, re-introduced it in 1951. (5) Tympanoplasty is the surgical repair of the TM and/or the middle ear ossicles. Horst Wullstein classified it into five types as described first in 1956. (6) Type I tympanoplasty, involving an intact ossicular chain, involves the grafting of TM alone onto an intact ossicular chain. The difference between type I tympanoplasty and myringoplasty is that tympanoplasty involves the raising of a tympanomeatal flap whereas myringoplasty does not, although the terms are often used interchangeably. (7) To avoid confusion for the remainder of this analysis both type I tympanoplasty and myringoplasty will be referred to as tympanoplasty. Two previous meta-analyses investigate outcomes in pediatric populations only. (8,9) This study aims to identify and analyze the variables that influence the success of TM repair in terms of closure rates and hearing outcomes in both the adult and pediatric population.

METHODS

This meta-analysis was performed in accordance with the PRISMA guidelines. (10)

Search method and study selection

All observational and experimental studies reporting closure rates were eligible for inclusion. Using the key words of tympanoplasty or myringoplasty a systematic literature search of the PubMed database and Cochrane Database of Systematic Reviews for studies published, in the English language, from January 1966 to July 2014 was conducted (July 2nd 2014), yielding 4698 articles. The search strategy for PubMed was ("myringoplasty" [MeSH Terms] OR "myringoplasty" [All Fields]) OR ("tympanoplasty" [MeSH Terms] OR "tympanoplasty" [All Fields]) AND ("1966/01/01" [PDAT]: "2014/07/01" [PDAT]). The primary author reviewed all abstracts of studies found with the above search strategy before two other independent authors selected studies for inclusion based on the defined criteria. If there were any abstracts that lacked clarity or adequate detail in their methodology or results, the full manuscript was read to assess suitability for inclusion. The inclusion and exclusion criteria were only applied after detailed assessment of full-text manuscripts. Duplicate reporting of results by authors were discarded. Studies were classified by a particular variable if at least 90% of the population fitted into that category, otherwise the options of unclassified, mixed or other were used and therefore being excluded in data analysis.

Study Inclusion Criteria

The inclusion criteria for individual studies were any observational (retrospective or prospective) or treatment (randomized or non-randomized clinical trials) study reporting the outcome of tympanoplasty in adult and pediatric

populations. Only studies reporting clinically diagnosed, primary non-cholesteatomatous chronic TM perforations were included. Studies were excluded if they reported patients who had tympanoplasty for acute perforations, for conditions other than perforation, revision surgery (if >10% of study population required revision surgery), other types of tympanoplasty (non-type I), ossicular chain pathology or mastoidectomy.

Variables

Variables examined included: the patient's age (at the time of surgery), follow-up period (months from surgery to the latest follow-up appointment), surgical approach (endaural or postaural), perforation cause (otitis media or traumatic – as defined by individual studies), graft material (cartilage, fascia, fat or other materials), perforation size (above or below 50% of TM surface area), perforation location (anterior, central or posterior), ear status (dry ear or 'wet' ear – defined as discharge from the middle ear at time of preadmission surgery appointment or a history of discharge within three months before surgery) and surgical technique (underlay, inlay or overlay graft positioning). For clarification, only chronic perforations were included and traumatic or other perforations that were not chronic were not included. Age and follow-up period were analyzed as a continuous variables with the range of ages, mean age and mean follow-up period extracted from each study.

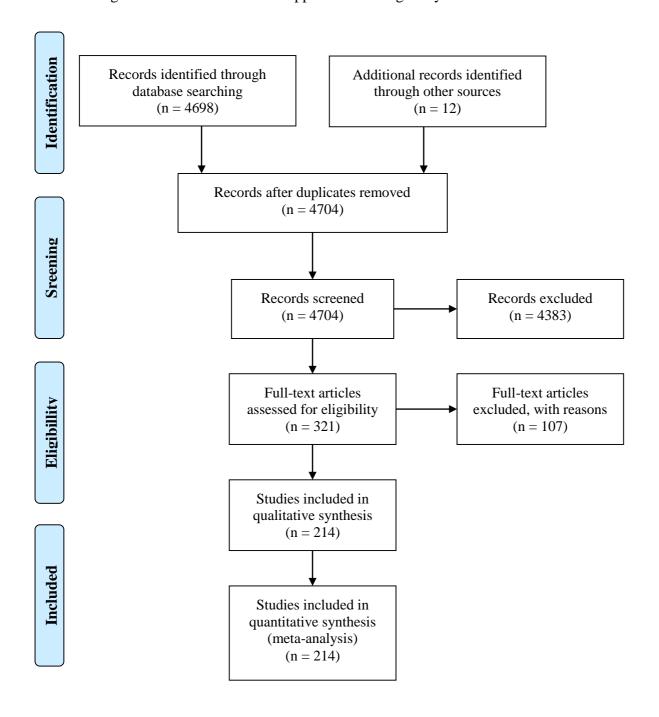
Outcome measures

The primary outcome measure was the complete closure of the TM perforation, defined as an intact neo-membrane at 12 months follow-up. Secondary outcome measures were the presence of adverse events (re-perforation, re-operation / revision surgery, blunting, lateralization) and degree of improvement of conductive hearing loss (by pure tone audiometry).

Assessment of risk of bias in included studies

Risk of bias was assessed at the individual study level at time of first appraisal and in the finally included studies, using the studies own summary assessment of the risk of bias. No studies were excluded on this basis.

Data synthesis


A meta-analysis applying the methodology of Einarson was performed using S-PLUS 2000 (Insightful Corporation, Seattle, WA, USA). (11) An overall success rate was calculated, as well as rates for each variable. For each category, the number of studies that the results were based on was recorded, and the homogeneity of the studies (p < 0.05 indicates a non-homogeneous population), the meta-analytic average success rate, the standard error, and 95% confidence intervals were calculated. A p value less than 0.05 was considered statistically significant. Linear regression technique was used to analyze the correlation between follow-up period and success rate.

RESULTS

The search strategy identified 4704 articles after duplicates were removed. Figure 1 shows the method of study identification according to PRISMA. (10) Following screening, 321 full-text articles were assessed for eligibility and 107 articles were excluded. A total of 214 studies were included in quantitative analysis (see supplementary table). Of the 214 studies, two were randomized control trials and the rest were observational retrospective or prospective cohort studies. Across 214 included studies, there were 26,097 cases and the mean number of patients in each study was 122 (121.92 \pm 149.51, range of 7 to 1298 cases). The mean closure rate was 86.6% (range of 46.8% to 100%, 95% CI [85.3, 87.9]) and the mean age of patients in the included studies was 28 (27.63 \pm 13.59, range of 5.50 to 70.70 years of age). Figure 2 demonstrates the increasing trend in the number of articles published concerning Type I tympanoplasty or myringoplasty since 1970.

The results of the meta-analysis are plotted in Figure 3 and summarized in Table 1, showing that the overall meta-analytic average success rate for closure of perforations was 86.6%. Highest failure rates were detected in studies with follow-up periods greater than 12 months (4.38% worse with follow-up periods >12 months compared to \leq 6 months). Though a decreasing success rate is observed with average longer follow-up times (\leq 6 months: 87.15%, \leq 12 months: 85.61%, >12months: 82.77%), simple linear regression analysis calculated no correlation between success rate and follow-up period (Pearson's r = 0.037, p = 0.625, after adjusting for outlier studies). The adult population (defined as 18 years and above) had 5.8% better closure rates compared to the pediatric population (defined as 17 years old and below) (adult: 89.25%, pediatric: 83.42%). Within the pediatric population, children < 12 years had the worst closure rate of all age groups (\leq 12 years: 83.11%, >12 years 88.23%, 13 to 17 years: 92.81%). Patients with otitis media pre-operatively had 3.4% worse closure rates compared to patients with traumatic perforations (otitis media: 83.86%, traumatic: 87.25%). Patients with actively discharging ears had 3.6%

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)(10) flowchart summarizing the search results and the application of eligibility criteria.

Figure 2: Graph demonstrating the number of studies regarding Type I tympanoplasty or myringoplasty published since 1970 per 5-year interval.

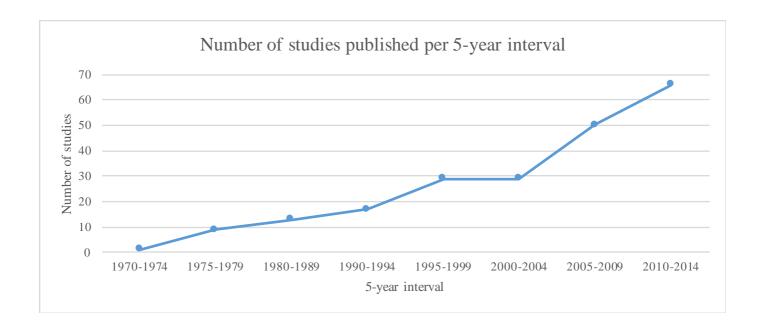
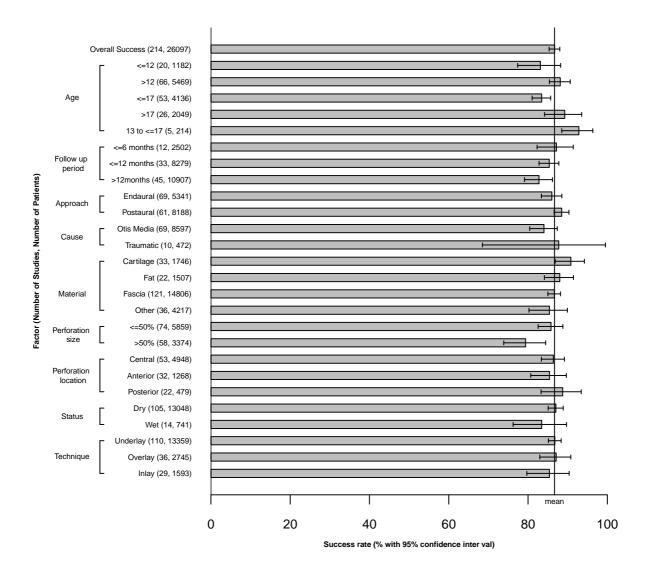



Figure 3: Graph of results depicting the overall closure rate and success rates stratified by each variable.

Table 1: Variables and their effects on the primary outcome of success of tympanoplasty.

Variable Type		No. Studies	No. Patients	Success (%)	95% CI Range	p value*	
Overall Success		214	26097	86.62	85.27 – 87.92	value*	
	≤12	20	1182	83.11	77.38 – 88.21	0.075	
	>12	66	5469	88.23	85.55 – 90.68	0.073	
Age	<17	53	4136	83.42	81.01 – 85.70		
Age	>17	26	2049	89.25	84.17 – 93.52	<u>0.017</u>	
	13 to ≤17	5	214	92.81	88.49 – 96.33	_	
	<6 months	12	2502	87.15	82.28 – 91.38	_	
Follow-up	≤12 months	33	8279	85.61	83.07 – 87.98		
period	>12 months	45	10907	82.77	79.11 – 86.15	0.320	
	Endaural	69	5341	86.02	83.35 – 88.51		
Approach	Postaural	64	8188	88.06	86.12 – 89.88	0.112	
Perforation	Otis Media	69	8597	83.86	80.33 – 87.12	0.8610	
cause	Traumatic	10	472	87.25	70.21 – 98.62		
	Cartilage	33	1746	90.80	86.85 – 94.19	0.040	
Graft	Fascia	121	14806	88.00	84.13 – 91.44	<u>0.048</u>	
material	Fat	22	1507	86.52	84.91 – 88.05	0.460	
	Other	36	4217	85.39	80.23 - 89.92	0.469	
Perforation	≤50%	74	5859	85.56	82.39 - 88.48	0.010	
size	>50%	58	3374	79.44	74.06 - 84.40	<u>0.019</u>	
Perforation	Central	53	4948	86.03	83.08 - 88.77		
location	Anterior	32	1268	85.42	80.68 - 89.66	0.822	
	Posterior	22	479	88.72	83.28 - 93.41		
Ear status	Dry	105	13048	87.02	85.09 – 88.85	0.155	
Eai status	Wet	14	741	83.44	76.24 – 89.69	0.155	
Cumaiaal	Underlay	110	13359	86.71	85.09 – 88.26		
Surgical technique	Overlay	36	2745	86.83	82.78 - 90.45	0.712	
teeninque	Inlay	29	1593	85.39	79.69 – 90.36		

worse closure rates compared to pre-operatively dry ears (dry: 87.02%, wet: 83.44%). Perforations greater than 50% have a 6.1% lower success rate than those less than 50% in size (\leq 50% perforation size: 85.56%, >50% perforation size: 79.44%). Anterior perforations had lower closure rates than central or posterior perforations by 0.6% and 3.3% respectively (anterior: 85.42%, central: 85.42%, posterior 88.72%). The postaural approach had an increased closure rate of 2.0% compared to endaural approach, but the difference was not statistically significant. The underlay technique was the most commonly used graft technique (used in 75.5% of patients: 13,359 of 17,697 total patients where surgical technique was specified). The overlay technique was only 0.1% better in achieving successful closure compared to the underlay technique, and the inlay technique was the least common and successful (underlay: usage 75.5%, success 86.71%, overlay: usage 15.5%, success 86.83%, inlay: usage 9.0%, 85.39%). Cartilage had superior closure rates compared to temporalis fascia, fat, and 'other' materials such as paper, alloderm, perichondrium, other synthetic materials (cartilage: 90.80%, fascia 88.00%, fat: 86.52%, other 85.39%). Pairwise comparisons of graft materials showed that cartilage compared to fascia as the only significant pair comparison with a p value of 0.048. When cartilage was compared to fat or to 'other' materials, there was no significant advantage (p value 0.366 and 0.110 respectively). Likewise, fascia compared to fat and to 'other' materials was not significant (p value 0.581 and 0.560 respectively). Lastly, fat compared to 'other' materials was not significant (p value 0.4692). Audiometry data was inconsistently reported, and a mean improvement in ABG post operatively could not be ascertained. However, data at the 10dB, 20dB and 30dB postoperative ABG thresholds was available in 29, 32 and 30 studies respectively. Looking at the postoperative ABG within these studies, 42.5% of cases (n = 1380/3247) were within 10dB, 68.6% (n = 2428/3540) within 20dB and 95.5% (n = 2797/2928) within 30dB.

DISCUSSION

The overall closure rate for this meta-analysis was 86.6%, with an adult population success rate of 89.2% and a pediatric population success rate of 83.4%, which is the same success rate identified in a 2015 meta-analysis of pediatric tympanoplasty. (9)

Follow-up period does not correlate to graft success rate

Through linear regression analysis, this study demonstrates that there is no correlation between follow-up period and success rate. In some series, the follow-up period is as little as two months while in others it was as high as 12 years. (12-15) Some authors have suggested that late graft failure is relatively rare, therefore stating that a graft follow-up period of six months is sufficient. (16,17) However, others have compared short and long-term follow-up periods and demonstrated that a significant number of failures occur after one year. (18,19) It has been observed that regardless of any factors that can be controlled, a 10% deterioration in closure rate occurs within the first two years post-operatively. (13) These late re-perforations are attributed to either underlying Eustachian tube dysfunction or to avascularity and inappropriate thickness of the graft. (20) Future studies should aim to follow-up graft success for a minimum of 12 months.

Adult populations have superior closure rates

In our analysis, it was demonstrated that adults had a better closure rate than the overall pediatric population. Interestingly, the teenage subgroup (13 to 17 years of age) had the highest success rate (92.81%), 9.7% higher than for children \leq 12 years (83.11%) and 9.4% higher than success rate for children \leq 17 years (83.42%) suggesting

within children, better outcomes are found in older children. However, direct comparison of age groups above and below 12 years was not significant, and no comparative analysis could be made between <12 years and 13 to 17 years. Our findings are consistent with a meta-analysis of pediatric tympanoplasty performed in 1997, which identified that age was a significant factor, and that in children better outcomes are found with increasing age. (8) However, a more recent meta-analysis of pediatric tympanoplasty has found through subgroup analysis that age was not a significant factor affecting the closure rate. (9) The lower success rate of tympanoplasty in children is thought to be related to Eustachian tube function and its relationship with otitis media. (21-25) There remains debate as to whether there should be a minimum age for tympanoplasty or not, with some studies suggesting it should be performed after the Eustachian tube is at adult development after seven years of age. (22,26-31) The decision to perform tympanoplasty in children remains a balance of the risks and benefits within the individual patient with the additional added risk of an increased rate of failure. In order to determine a recommended minimum age for tympanoplasty, future studies should aim to report age-specific closure rates.

Discharging ears and perforations due to otitis media do not significantly affect closure rates

Closure rates in tympanoplasty performed in perforations due to otitis media and in those perforations that were still discharging were not significantly affected. It is important to recognize that discharging ears may not necessarily be infected, with multiple factors including tympanomastoid space mucosa, ventilation and Eustachian tube dysfunction influencing the occurrence and presentation of infection. (28) Individual studies looking at this specific issue have reported mixed results. (15,17,22,26,32-36) Given that this meta-analysis and no individual study claims that perforations that are wet have a higher success rate for closure, it would seem reasonable to attempt to create a dry perforation but not make this a necessary condition for surgery.

Perforation size matters, but location does not

This meta-analysis indicates that perforations greater than 50% have a lower success rate, while the location of the perforation had no significant effect on success rate. Several individual studies also found a significantly higher rate of failures in larger perforations. (9,17,20,26,32,34,37,38) There are also individual studies where perforation size was not observed to affect overall results. (16,22,24,36,39-46) The major reasons thought to be responsible for graft failure in larger perforations are increased technical difficulty, reduced visibility, reduced graft overlap with the residual TM, a poor vascular bed for the graft and poor graft support or fixation. (16,34) Some studies have claimed that anteriorly placed perforations are associated with a poorer outcome, possibly due to reduced vascularity or exposure of the anterior TM. (13,15,47,48) While our meta-analysis did not demonstrate statistical significance with the location of the perforation, it is important to acknowledge that large-sized perforations often include the anterior segment, as anterior-only perforations are uncommon. (49) Anteriorly located perforations also had the lowest success rate (85.42% vs. 86.03% for central and 88.72% for posterior) and so the site of the perforation while not proving to be significant for success rate remains an important factor.

No surgical approach has an advantage

The type of surgical approach did not have an impact on outcomes. Surgical approach depends on many factors including the perforation size, location, visualization and the individual surgeon's preference. Typically an endaural or transcanal approach is used for smaller, more posterior perforations in wider canals. Because there are a number of variables that contribute to the decision of approach and these are biased by the individual surgeon's preferences it is not surprising that this meta-analysis did not detect a difference.

There is no superior graft placement technique

This meta-analysis demonstrates that there is no significant difference between the grafting techniques used (underlay, overlay and inlay). While the underlay technique was the most commonly used graft technique (75.5% of patients in this meta-analysis), there was no significant benefit of any individual technique. Some individual studies have claimed superiority in closure rates for the overlay technique. (50,51) Others have reported no difference; however, there is an identified increased risk of blunting of the anterior tympanomeatal angle and lateralization of the TM are more common when utilizing the overlay technique. (52-54) Blunting may result in a persistent conductive hearing loss. (16) The inlay technique was initially used for small perforations utilizing a plug of adipose tissue. (4,55) More recently, this technique has been applied using cartilage. (56-58) There does not appear to be a definitive indication for each technique, so to a large extent the choice usually depends on the surgeon's view of each technique's relative advantages or disadvantages. (59,60) As each surgeon has personal preferences, it is almost impossible to compare grafting techniques performed by the same surgeon and excellent outcomes are achieved with all techniques. (16,51,61-64)

Cartilage has superior closure rates

The most commonly used graft materials are temporalis fascia, cartilage and fat, which are all readily accessible at the surgical site. Over the years many other natural and synthetic materials have been trialed, but there are very few published studies on outcomes. Our meta-analysis shows that cartilage (90.80%) has a small but significant superior closure rate to temporalis fascia (88.00%), with pairwise comparisons of other material choices demonstrating no significance. A small randomized prospective clinical trial comparing fascia (20 ears) to cartilage (18 ears) found the graft uptake rates and hearing outcomes were not significantly different at 24 months (84.2% and 80% respectively). (65) Since the literature review date of this meta-analysis one other randomized control trial showed a

benefit for cartilage in closure rate at 12 months, while another reported a reduced post-operative infection rate with cartilage. (57,66,67) One possible suggested explanation of this difference in cartilage success, between these two trials, is that poorer results may occur with cartilage thickness over 500 micrometers. (67) While graft choice ultimately depends on the perforation type, size and surgeon preference, our meta-analysis has shown that cartilage, as an independent variable, is a superior graft choice compared to temporalis fascia in both the pediatric and adult populations in terms of perforation closure. Cartilage is also often used as a graft material for smaller sized perforations, which innately have higher healing rates, and this may account for the increased closure rate with cartilage compared to other graft material. Different graft materials can also be used in different situations and the superiority of cartilage must still be balance for an individual patient's situation and the surgeon's experience with a particular material.

Hearing outcomes were inconsistently reported

Hearing outcomes following tympanoplasty are inconsistently reported which limits the conclusions that are able to be made. In this meta-analysis 39% (83 of 214 studies) of the studies recorded post-operative hearing results. Due to inconsistency in reporting the overall mean hearing gain could not be calculated. The range of mean postoperative air-bone gap (ABG) closures in individual studies was 1.2dB to 25.5dB. A total of 32 studies in this meta-analysis contributed data with complete reporting of postoperative ABG. (20,24,43,48,56,57,61,64,68-91) Data at the 10dB, 20dB and 30dB postoperative ABG thresholds was available in 29, 32 and 30 studies respectively. Looking at the postoperative ABG within these studies, 42.5% of cases (n = 1380/3247) were within 10dB, 68.6% (n = 2428/3540) within 20dB and 95.5% (n = 2797/2928) within 30dB, demonstrating that only a minority of patients achieved the best postoperative ABG (<10dB). While the ideal outcome in Tympanoplasty is the complete closure of the postoperative ABG to 0 dB (indicating no hearing loss), achieving a postoperative ABG

<10dB should be considered good clinical outcome as an ABG greater than 10dB indicates a conductive hearing loss. Though data was collected on pure-tone air conduction thresholds, very few studies documented findings in adequate detail for a meaningful analysis. When examining other individual studies' ability to achieve a postoperative ABG within 20dB there are reports ranging from 60% to 90%, consistent with our finding of 69%. (12,35,48,51,70,72,92,93) The impact of variables on hearing outcomes could not be determined due to the poor quality of reporting. Future studies should report audiometric outcomes in accordance to the American Academy of Otolaryngology, Head and Neck Surgery's Hearing Committee and with audiometry test results before and after surgery. (94)</p>

Secondary outcomes and complications

The complications detected in this meta-analysis are reported in Table 2. Complication rates were reported in only 21% of studies (44 of 214 studies). The most commonly reported complications were reperforation (11.9%), revision surgery (11.4%), blunting (6.7%) and lateralization (4.2%). Re-operation or revision surgery was defined as any operation caused by an event requiring return to theatre, or as defined by the individual study. Future studies should aim to report complications in greater details to help future analysis of specific complications.

The effect of mastoidectomy

Mastoidectomy or other surgical adjunctive procedures were not included as a variable as the majority of studies did not discriminate between cholesteatoma and non cholesteatoma etiology when considering mastoidectomy. The current body of literature has been unable to demonstrate a clear benefit for TM healing when mastoidectomy is performed concurrently with tympanoplasty. Several studies retrospectively compared tympanoplasty alone to

Table 2: Complication rates as reported by individual studies included in this meta-analysis.

Complication	Number of studies	Mean (%)	Range (%)	SD
Reperforation	22	11.88	2.25 - 31	7.72
Reoperation	14	11.43	1 - 87%	23.25
Blunting	17	6.65	1 - 54%	12.36
Lateralization	17	4.24	1 - 13%	3.75

tympanoplasty with mastoidectomy for TM perforation repair and did not find any statistical difference in repair success or hearing outcomes for adults or children. (95-98) A large prospective randomized study of adults with CSOM compared graft success rate and mean postoperative-ABG between tympanoplasty only to tympanoplasty with cortical mastoidectomy and concluded there was no significant difference. (99) Regarding non-cholesteatomata CSOM perforations, a literature review examining 26 articles concluded that there was no additional benefit to performing mastoidectomy with tympanoplasty for uncomplicated TM perforations. (100)

Limitations

Any meta-analysis is limited by the quality of the primary data. In the 214 included studies, there were only three experimental studies, with the majority of studies being retrospective cohort studies. Most studies did not report hearing outcomes adequately, or were inconsistent with outcome reporting. We relied on individual studies to determine the chronicity of perforations, as well as their definition of a 'chronic traumatic' perforation. Differences in surgical technique were not accounted for as these are highly variable between individual surgeons, difficult to define and mostly unreported.

CONCLUSION

Based on this meta-analysis, the weighted average success rate of tympanic closure was 86.6%. Pediatric surgery has a larger failure rate than adults. Poorer outcomes are found in those perforations with a size over 50% of the total area. Perforations discharging around the time of surgery and those perforations of different locations of the pars tensa did not have significantly different outcomes. The length of follow-up period does not correlate to graft success. Surgical factors that led to improved closure rates include the use of cartilage whilst other factors such as

surgical approach or technique of graft placement did not influence the closure rate overall. Future studies should, at a minimum, report closure rates, hearing outcomes, complications and report follow-up of at least 12 months.

ACKNOWLEDGEMENTS

We thank Dr Noweed Ahmed and Dr Guy Watts for contributing to the review of the studies included in the analysis, and Ms Charley Budgeon and Miss Chrianna Bharat for contributing to the statistical analysis.

REFERENCES

- 1. Banzer M. Disputatio de Auditione Laesa. Wittenbergae: Johannis Rohrerei, 1651.
- 2. Chu EA, Jackler RK. The artificial tympanic membrane (1840-1910): from brilliant innovation to quack device. *Otol Neurotol* 2003;24:507-18.
- 3. Sarkar S. A Review on the History of Tympanoplasty. *Indian Journal of Otolaryngology and Head & Neck Surgery* 2013;65:455-60.
- 4. Ringenberg JC. Closure of tympanic membrane perforations by the use of fat. *Laryngoscope* 1978;88:982-93.
- 5. Storrs L. Myringoplasty. *Laryngoscope* 1966;76:185-95.
- 6. Wullstein H. Theory and practice of tympanoplasty. *The Laryngoscope* 1956;66:1076-93.
- 7. Mudry A. History of myringoplasty and tympanoplasty type I. *Otolaryngology Head and Neck Surgery* 2008;139:613-4.
- 8. Vrabec JT, Deskin RW, Grady JJ. Meta-analysis of pediatric tympanoplasty. *Arch Otolaryngol Head Neck Surg* 1999;125:530-4.
- 9. Hardman J, Muzaffar J, Nankivell Pet al. Tympanoplasty for Chronic Tympanic Membrane Perforation in Children: Systematic Review and Meta-analysis. *Otol Neurotol* 2015;36:796-804.
- 10. Moher D, Liberati A, Tetzlaff Jet al. Preferred reporting items for systematic reviews and meta-analyses:

 The PRISMA statement. *International Journal of Surgery* 2010;8:336-41.
- 11. Einarson TR. Pharmacoeconomic applications of meta-analysis for single groups using antifungal onychomycosis lacquers as an example. *Clin Ther* 1997;19:559-69; discussion 38-9.
- 12. Friedberg J, Gillis T. Tympanoplasty in childhood. *J Otolaryngol* 1980;9:165-8.
- 13. Sade J, Berco E, Brown Met al. Myringoplasty: short and long-term results in a training program. *J Laryngol Otol* 1981;95:653-65.

- 14. Velepic M, Starcevic R, Ticac Ret al. Cartilage palisade tympanoplasty in children and adults: long term results. *Int J Pediatr Otorhinolaryngol* 2012;76:663-6.
- 15. Jurovitzki I, Sade J. Myringoplasty: long-term followup. *The American journal of otology* 1988;9:52-5.
- 16. Gibb AG, Chang SK. Myringoplasty (A review of 365 operations). *J Laryngol Otol* 1982;96:915-30.
- 17. Adkins WY, White B. Type I tympanoplasty: influencing factors. *Laryngoscope* 1984;94:916-8.
- 18. Berger G, Shapira A, Marshak G. Myringoplasty in children. *J Otolaryngol* 1983;12:228-30.
- 19. Raine CH, Singh SD. Tympanoplasty in children. A review of 114 cases. *J Laryngol Otol* 1983;97:217-21.
- 20. Puhakka H, Virolainen E, Rahko T. Long-term results of myringoplasty with temporalis fascia. *J Laryngol Otol* 1979;93:1081-6.
- 21. Buchwach KA, Birck HG. Serous otitis media and type 1 tympanoplasties in children. A retrospective study. *Ann Otol Rhinol Laryngol Suppl* 1980;89:324-5.
- 22. Koch WM, Friedman EM, McGill TJet al. Tympanoplasty in children. The Boston Children's Hospital experience. *Arch Otolaryngol Head Neck Surg* 1990;116:35-40.
- 23. Shih L, de Tar T, Crabtree JA. Myringoplasty in children. *Otolaryngol Head Neck Surg* 1991;105:74-7.
- 24. Black JH, Hickey SA, Wormald PJ. An analysis of the results of myringoplasty in children. *Int J Pediatr Otorhinolaryngol* 1995;31:95-100.
- 25. Gersdorff M, Garin P, Decat Met al. Myringoplasty: long-term results in adults and children. *Am J Otol* 1995;16:532-5.
- 26. Ophir D, Porat M, Marshak G. Myringoplasty in the pediatric population. *Arch Otolaryngol Head Neck Surg* 1987;113:1288-90.
- 27. Crabtree JA, Maceri DR. Tympanoplasty and ossicular reconstruction: an update. *Am J Otol* 1988;9:334-9.
- 28. Bluestone CD, Paradise JL, Beery QC. Physiology of the eustachian tube in the pathogenesis and management of middle ear effusions. *Laryngoscope* 1972;82:1654-70.

- 29. Strong MS. The eustachian tube: basic considerations. *Otolaryngol Clin North Am* 1972;5:19-27.
- 30. Singh GB, Sidhu TS, Sharma Aet al. Tympanoplasty type I in children—an evaluative study. *International Journal of Pediatric Otorhinolaryngology* 2005;69:1071-6.
- 31. Ribeiro JC, Rui C, Natercia Set al. Tympanoplasty in children: A review of 91 cases. *Auris Nasus Larynx* 2011;38:21-5.
- 32. Lee P, Kelly G, Mills RP. Myringoplasty: does the size of the perforation matter? *Clinical otolaryngology* and allied sciences 2002;27:331-4.
- 33. Westerberg J, Harder H, Magnuson Bet al. Ten-year myringoplasty series: does the cause of perforation affect the success rate? *J Laryngol Otol* 2011;125:126-32.
- 34. Vartiainen E, Karja J, Karjalainen Set al. Failures in myringoplasty. *Arch Otorhinolaryngol* 1985;242:27-33.
- 35. Lau T, Tos M. Tympanoplasty in children. An analysis of late results. *Am J Otol* 1986;7:55-9.
- 36. Chandrasekhar SS, House JW, Devgan U. Pediatric tympanoplasty. A 10-year experience. *Arch Otolaryngol Head Neck Surg* 1995;121:873-8.
- 37. Smyth GD, Hassard TH. Tympanoplasty in children. *Am J Otol* 1980;1:199-205.
- 38. Onal K, Uguz MZ, Kazikdas KCet al. A multivariate analysis of otological, surgical and patient-related factors in determining success in myringoplasty. *Clin Otolaryngol* 2005;30:115-20.
- 39. Glasscock ME, 3rd, Jackson CG, Nissen AJet al. Postauricular undersurface tympanic membrane grafting: a follow-up report. *Laryngoscope* 1982;92:718-27.
- 40. Packer P, Mackendrick A, Solar M. What's best in myringoplasty: underly or overlay, dura or fascia? *J Laryngol Otol* 1982;96:25-41.
- 41. Yung MW. Myringoplasty for subtotal perforation. Clin Otolaryngol 1995;20:241-5.

- 42. Vartiainen E, Vartiainen J. Tympanoplasty in young patients: the role of adenoidectomy. *Otolaryngol Head*Neck Surg 1997;117:583-5.
- 43. Denoyelle F, Roger G, Chauvin Pet al. Myringoplasty in children: predictive factors of outcome.

 **Laryngoscope* 1999;109:47-51.
- 44. Salviz M, Bayram O, Bayram AAet al. Prognostic factors in type I tympanoplasty. *Auris Nasus Larynx* 2015;42:20-3.
- 45. Kim DK, Park SN, Yeo SWet al. Clinical efficacy of fat-graft myringoplasty for perforations of different sizes and locations. *Acta oto-laryngologica* 2011;131:22-6.
- 46. Wasson JD, Papadimitriou CE, Pau H. Myringoplasty: impact of perforation size on closure and audiological improvement. *J Laryngol Otol* 2009;123:973-7.
- 47. Halik JJ, Smyth GD. Long-term results of tympanic membrane repair. *Otolaryngol Head Neck Surg* 1988;98:162-9.
- 48. Bhat NA, De R. Retrospective analysis of surgical outcome, symptom changes, and hearing improvement following myringoplasty. *J Otolaryngol* 2000;29:229-32.
- 49. Schraff S, Dash N, Strasnick B. "Window Shade" Tympanoplasty for Anterior Marginal Perforations. *The Laryngoscope* 2005;115:1655-9.
- 50. Strahan RW, Acquarelli M, Ward PHet al. Tympanic membrane grafting. Analysis of materials and techniques. *Ann Otol Rhinol Laryngol* 1971;80:854-60.
- 51. Rizer FM. Overlay versus underlay tympanoplasty. Part II: the study. *The Laryngoscope* 1997;107:26-36.
- 52. Rizer FM. Overlay versus underlay tympanoplasty. Part I: historical review of the literature. *Laryngoscope* 1997;107:1-25.
- 53. Doyle PJ, Schleuning AJ, Echevarria J. Tympanoplasty: should grafts be placed medial or lateral to the tympanic membrane. *Laryngoscope* 1972;82:1425-30.

- 54. Glasscock ME, 3rd. Tympanic membrane grafting with fascia: overlay vs. undersurface technique.

 Laryngoscope 1973;83:754-70.
- 55. Gross CW, Bassila M, Lazar RHet al. Adipose plug myringoplasty: an alternative to formal myringoplasty techniques in children. *Otolaryngol Head Neck Surg* 1989;101:617-20.
- 56. Eavey RD. Inlay tympanoplasty: cartilage butterfly technique. *Laryngoscope* 1998;108:657-61.
- 57. Mauri M, Lubianca Neto JF, Fuchs SC. Evaluation of inlay butterfly cartilage tympanoplasty: a randomized clinical trial. *Laryngoscope* 2001;111:1479-85.
- 58. Couloigner V, Baculard F, El Bakkouri Wet al. Inlay butterfly cartilage tympanoplasty in children. *Otol Neurotol* 2005;26:247-51.
- 59. Smyth GD. Tympanic reconstruction. *Otolaryngol Clin North Am* 1972;5:111-25.
- 60. Sergi B, Galli J, De Corso Eet al. Overlay versus underlay myringoplasty. *Acta Otorhinolaryngologica Italica* 2011;31:366-71.
- 61. Pignataro L, Grillo Della Berta L, Capaccio Pet al. Myringoplasty in children: anatomical and functional results. *J Laryngol Otol* 2001;115:369-73.
- 62. Gersdorff M, Gerard JM, Thill MP. Overlay versus underlay tympanoplasty. Comparative study of 122 cases. *Rev Laryngol Otol Rhinol (Bord)* 2003;124:15-22.
- 63. Singh M, Rai A, Bandyopadhyay Set al. Comparative study of the underlay and overlay techniques of myringoplasty in large and subtotal perforations of the tympanic membrane. *J Laryngol Otol* 2003;117:444-8.
- 64. Wang WH, Lin YC. Minimally invasive inlay and underlay tympanoplasty. *American journal of otolaryngology* 2008;29:363-6.
- 65. Yung M, Vivekanandan S, Smith P. Randomized study comparing fascia and cartilage grafts in myringoplasty. *Ann Otol Rhinol Laryngol* 2011;120:535-41.

- 66. Cabra J, Monux A. Efficacy of cartilage palisade tympanoplasty: randomized controlled trial. *Otol Neurotol* 2010;31:589-95.
- 67. Jiang H, Zhang Z. Cartilage Tends To Be a Better Choice than Temporalis Fascia for Tympanoplasty under the Circumstance of Eustachian Tube Dysfunction. *Ann Otol Rhinol Laryngol* 2014;1:1013.
- 68. Ajulo SO, Myatt HM, Alusi G. Peri-umbilical superficial fascial graft myringoplasty--a simple alternative. *Clinical otolaryngology and allied sciences* 1993;18:433-5.
- 69. Black JH, Wormald PJ. Myringoplasty--effects on hearing and contributing factors. *South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde* 1995;85:41-3.
- 70. Blanshard JD, Robson AK, Smith Iet al. A long term view of myringoplasty in children. *J Laryngol Otol* 1990;104:758-62.
- 71. Caye-Thomasen P, Nielsen TR, Tos M. Bilateral myringoplasty in chronic otitis media. *The Laryngoscope* 2007;117:903-6.
- 72. Claes J, Van de Heyning PH, Creten Wet al. Allograft tympanoplasty: predictive value of preoperative status. *Laryngoscope* 1990;100:1313-8.
- 73. Cody DT, Taylor WF. Tympanoplasty: long-term results. *The Annals of otology, rhinology, and laryngology* 1973;82:538-46.
- 74. el-Guindy A. Endoscopic transcanal myringoplasty. *The Journal of laryngology and otology* 1992;106:493-5.
- 75. Fernandes SV. Composite chondroperichondrial clip tympanoplasty: the triple "C" technique.

 Otolaryngology--head and neck surgery: official journal of American Academy of Otolaryngology-Head

 and Neck Surgery 2003;128:267-72.
- 76. Goyal N, Kakkar V, Goyal Pet al. Myringoplasty for chronic otitis media. *Indian journal of pediatrics* 2002;69:223-4.

- 77. Haksever M, Akduman D, Solmaz Fet al. Inlay butterfly cartilage tympanoplasty in the treatment of dry central perforated chronic otitis media as an effective and time-saving procedure. *European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies* (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:867-72.
- 78. Harugop AS, Mudhol RS, Godhi RA. A comparative study of endoscope assisted myringoplasty and microsocope assisted myringoplasty. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2008;60:298-302.
- 79. Kim HJ, Kim MJ, Jeon JHet al. Functional and practical outcomes of inlay butterfly cartilage tympanoplasty. *Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2014;35:1458-62.
- 80. Mak D, MacKendrick A, Bulsara Met al. Outcomes of myringoplasty in Australian Aboriginal children and factors associated with success: a prospective case series. *Clinical otolaryngology and allied sciences* 2004;29:606-11.
- 81. Naganuma H, Okamoto M, Shitara Tet al. Myringoplasty in the outpatient clinic. *Acta oto-rhino-laryngologica Belgica* 1994;48:59-65.
- 82. Onal K, Arslanoglu S, Oncel Set al. Perichondrium/Cartilage island flap and temporalis muscle fascia in type I tympanoplasty. *Journal of otolaryngology head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale* 2011;40:295-9.
- 83. Onal K, Arslanoglu S, Songu Met al. Functional results of temporalis fascia versus cartilage tympanoplasty in patients with bilateral chronic otitis media. *The Journal of laryngology and otology* 2012;126:22-5.
- 84. Potsic WP, Winawer MR, Marsh RR. Tympanoplasty for the anterior-superior perforation in children. *The American journal of otology* 1996;17:115-8.

- 85. Rourke T, Snelling JD, Aldren C. Cartilage graft butterfly myringoplasty: how we do it. *Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery* 2010;35:135-8.
- 86. Sakagami M, Yuasa R, Yuasa Y. Simple underlay myringoplasty. *The Journal of laryngology and otology* 2007;121:840-4.
- 87. Singh BJ, Sengupta A, Das SKet al. A comparative study of different graft materials used in myringoplasty.

 Indian journal of otolaryngology and head and neck surgery: official publication of the Association of

 Otolaryngologists of India 2009;61:131-4.
- 88. Singh GB, Sharma A, Singh N. Role of transtympanic myringoplasty in modern otology. *The Journal of otolaryngology* 2006;35:408-12.
- 89. Srinivasan V, Toynton SC, Mangat KS. Transtympanic myringoplasty in children. *International journal of pediatric otorhinolaryngology* 1997;39:199-204.
- 90. Ulku CH. Cartilage tympanoplasty with island technique for reconstruction of tympanic membrane perforation: anatomic and audiologic results. *Kulak burun bogaz ihtisas dergisi : KBB = Journal of ear, nose, and throat* 2010;20:7-12.
- 91. Yadav SP, Aggarwal N, Julaha Met al. Endoscope-assisted myringoplasty. *Singapore medical journal* 2009;50:510-2.
- 92. Perkins R, Bui HT. Tympanic membrane reconstruction using formaldehyde-formed autogenous temporalis fascia: twenty years' experience. *Otolaryngol Head Neck Surg* 1996;114:366-79.
- 93. Podoshin L, Fradis M, Malatskey Set al. Type I tympanoplasty in children. *Am J Otol* 1996;17:293-6.
- 94. Committee on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. American Academy of Otolaryngology-Head and Neck Surgery Foundation, Inc. *Otolaryngol Head Neck Surg* 1995;113:186-7.

- 95. Balyan FR, Celikkanat S, Asian Aet al. Mastoidectomy in Noncholesteatomatous Chronic Suppurative Otitis Media: Is it Necessary? *Otolaryngology -- Head and Neck Surgery* 1997;117:592-5.
- 96. McGrew BM, Jackson CG, Glasscock ME. Impact of Mastoidectomy on Simple Tympanic Membrane Perforation Repair. *The Laryngoscope* 2004;114:506-11.
- 97. Rickers J, Petersen CG, Pedersen CBet al. Long-term follow-up evaluation of mastoidectomy in children with non-cholesteatomatous chronic suppurative otitis media. *Int J Pediatr Otorhinolaryngol* 2006;70:711-5.
- 98. Mishiro Y, Sakagami M, Takahashi Yet al. Tympanoplasty with and without mastoidectomy for non-cholesteatomatous chronic otitis media. *European Archives of Oto-Rhino-Laryngology*;258:13-5.
- 99. Albu S, Trabalzini F, Amadori M. Usefulness of cortical mastoidectomy in myringoplasty. *Otol Neurotol* 2012;33:604-9.
- 100. Eliades SJ, Limb CJ. The role of mastoidectomy in outcomes following tympanic membrane repair: A review. *The Laryngoscope* 2013;123:1787-802.

SUPPPLEMENTARY TABLE – INCLUDED STUDIES

Reference	Author(s)	Year	Title
			The button graft technique for perforations affecting less than 25% of the tympanic membrane: a non-
1	Abdelghany, A.M.	2013	randomised comparison of a new modification to cartilage tympanoplasty with underlay and overlay grafts
2	Acar, M., et al.	2015	Fat-plug myringoplasty of ear lobule vs abdominal donor sites
	, ,		
3	Adkins, W.Y., et al.	1984	Type I tympanoplasty: influencing factors Chondroperichondrial clip myringoplasty: a new technique for closure of tympanic membrane
4	Ahmed, S., et al.	2013	perforations
5	Ahmed, Z., et al.	2005	Over-under myringoplasty
6	Ajulo, S.O., et al.	1993	Peri-umbilical superficial fascial graft myringoplastya simple alternative
7	Al-Khtoum, N., et al.	2009	Myringoplasty in children: retrospective analysis of 35 cases
8	al-Shaikh, A.M., et al.	1998	Underlay tympanoplasty with anterior and posterior flaps for subtotal perforations
9	Albera, R., et al.	2009	Equine versus bovine pericardium in transmeatal underlay myringoplasty
10	Albera, R., et al.	2006	Tympanic reperforation in myringoplasty: evaluation of prognostic factors
11	Albera, R., et al.	1998	[Myringoplasty in children: a comparison with an adult population]
12	Albirmawy, O.A.	2010	Comparison between cartilage-perichondrium composite 'ring' graft and temporalis fascia in type one tympanoplasty in children
13	Alkan, S., et al.	2009	Effect of the use of dry (rigid) or wet (soft) temporal fascia graft on tympanoplasty
14	Altuna, X., et al.	2010	[Island cartilage myringoplasty. Anatomical and functional results in 122 cases]
15	Alzahrani, M., et al.	2015	Hyaluronic acid fat graft myringoplasty vs fat patch fat graft myringoplasty
16	Alzoubi, F.Q., et al.	2010	Comparison between transtympanic and elevation of tympanomeatal flap approaches in tympanoplasty
17	Anderson, O., et al.	2007	Tri-adcortyl ointment ear dressing in myringoplasty: an analysis of outcome
18	Attallah, M.S., et al.	1996	Hearing results in tympanoplasty in Riyadh
19	Aviles Jurado, F.J., et al.	2009	[Myringoplasty: auditory follow-up and study of prognostic factors]
20	Ayache, S.	2013	Cartilaginous myringoplasty: the endoscopic transcanal procedure
21	Ayache, S., et al.	2003	Adipose graft: an original option in myringoplasty
22	Bajaj, Y., et al.	1998	Tympanoplasty in childrena prospective study
23	Balaguer Garcia, R., et al.	2011	[Myringoplasties. A retrospective analysis of our surgical outcomes]
24	Becker, J., et al.	2011	Success rate of myringoplasty at Groote Schuur Hospital
25	Benson-Mitchell, R., et al.	1996	Day-stay myringoplasty

26	Berger, G., et al.	1983	Myringoplasty in children
			Retrospective analysis of surgical outcome, symptom changes, and hearing improvement following
27	Bhat, N.A., et al.	2000	myringoplasty
28	Black, J.H., et al.	1995	An analysis of the results of myringoplasty in children
29	Black, J.H., et al.	1995	Myringoplastyeffects on hearing and contributing factors
30	Blanshard, J.D., et al.	1990	A long term view of myringoplasty in children
		1000	[Autologous perichondrium-cartilage graft in the treatment of total or subtotal perforations of the
31	Borkowski, G., et al. Boronat-Echeverria, N.E.,	1999	tympanic membrane]
32	et al.	2012	Prognostic factors of successful tympanoplasty in pediatric patients: a cohort study
33	Brandow, E.C., Jr.	1976	Homograft tympanic membrane myringoplasty
34	Buchwach, K.A., et al.	1980	Serous otitis media and type 1 tympanoplasties in children. A retrospective study
35	Callanan, V.P., et al.	1993	Xenograft versus autograft in tympanoplasty
36	Castro, O., et al.	2013	Myringoplasties in children: our results
37	Caye-Thomasen, P., et al.	2007	Bilateral myringoplasty in chronic otitis media
38	Caylan, R., et al.	1998	Myringoplasty in children: factors influencing surgical outcome
39	Chanvimalueng, W.	2000	A clinical comparison of outpatient and standard myringoplasty
40	Claes, J., et al.	1990	Allograft tympanoplasty: predictive value of preoperative status
41	Cody, D.T., et al.	1973	Tympanoplasty: long-term results
42	Coskun, B.U., et al.	2006	The effects of the incision types in myringoplasty operations on cosmesis
43	Couloigner, V., et al.	2005	Inlay butterfly cartilage tympanoplasty in children
44	D'Eredita, R., et al.	2009	Anterior tab flap versus standard underlay myringoplasty in children
45	Dabholkar, J.P., et al.	2007	Comparative study of underlay tympanoplasty with temporalis fascia and tragal perichondrium
46	De, S., et al.	2004	Myringoplasty using a subcutaneous soft tissue graft
47	De Seta, E., et al.	2013	Type I tympanoplasty with island chondro-perichondral tragal graft: the preferred technique?
48	Deddens, A.E., et al.	1993	Adipose myringoplasty in children
			Graft uptake rates with isoamyl-2-cyanoacrylate in myringoplasty procedures: a 10-year retrospective
49	Deenadayal, D.S., et al.	2011	study
50	Demirpehlivan, I.A., et al.	2011	Comparison of different tympanic membrane reconstruction techniques in type I tympanoplasty
51	Denoyelle, F., et al.	1999	Myringoplasty in children: predictive factors of outcome
52	Dursun, E., et al.	2008	Comparison of paper-patch, fat, and perichondrium myringoplasty in repair of small tympanic membrane perforations

53	Eavey, R.D.	1998	Inlay tympanoplasty: cartilage butterfly technique
54	Effat, K.G.	2005	Results of inlay cartilage myringoplasty in terms of closure of central tympanic membrane perforations
55	Eisenbeis, J.F., et al.	2004	Areolar connective tissue grafts in pediatric tympanoplasty: a pilot study
56	el-Guindy, A.	1992	Endoscopic transcanal myringoplasty
57	Emir, H., et al.	2007	Success is a matter of experience: type 1 tympanoplasty : influencing factors on type 1 tympanoplasty
58	Emmett, J.R.	1999	Age as a factor in the success of tympanoplasty: a comparison of outcomes in the young and old
			A randomized prospective trial of a novel device for measuring perforation size during inlay 'butterfly'
59	Eren, S.B., et al.	2014	myringoplasty
60	Fadl, F.A.	2003	Outcome of type-1 tympanoplasty
61	Feilen, S.E., et al.	1996	[Long-term outcome of tympanoplasty in chronic suppurative middle ear infection in childhood]
62	Fernandes, S.V.	2003	Composite chondroperichondrial clip tympanoplasty: the triple "C" technique
63	Fouad, T., et al.	2010	Utilization of amniotic membrane graft for repair of the tympanic membrane perforation
64	Francois, M., et al.	1985	[Myringoplasty in children]
65	Fukuchi, I., et al.	2006	Tympanoplasty: surgical results and a comparison of the factors that may interfere in their success
66	Gamra, O.B., et al.	2008	Cartilage graft in type I tympanoplasty: audiological and otological outcome
67	Gavriel, H., et al.	2013	Inferior flap tympanoplasty: a novel technique for anterior perforation closure
68	Gedikli, O., et al.	2011	Efficacy of octyl-2-cyanoacrylate in type I tympanoplasty
69	Gersdorff, M., et al.	1995	Myringoplasty: long-term results in adults and children
70	Ghosh, L.M., et al.	1991	Paediatric myringoplasty in India
71	Gibb, A.G., et al.	1982	Myringoplasty (A review of 365 operations)
72	Golz, A., et al.	2003	Paper patching for chronic tympanic membrane perforations
73	Goyal, N., et al.	2002	Myringoplasty for chronic otitis media
74	Gross, C.W., et al.	1989	Adipose plug myringoplasty: an alternative to formal myringoplasty techniques in children
75	Gupta, S.C.	2000	Myringoplasty with a single flap
76	Habesoglu, T.E., et al.	2011	Effect of type I tympanoplasty on the quality of life of children
77	Habib-ur-Rehman, et al.	2011	Otitis Media: Comparison of outcome of underlay versus overlay myringoplasty
78	Hagemann, M., et al.	2003	[Tympanoplasty with adipose tissue]
			Inlay butterfly cartilage tympanoplasty in the treatment of dry central perforated chronic otitis media as
79	Haksever, M., et al.	2015	an effective and time-saving procedure
80	Halim, A., et al.	2009	Pediatric myringoplasty: postaural versus transmeatal approach
81	Hamans, E.P., et al.	1996	Allograft tympanoplasty type 1 in the childhood population

82	Harterink, E., et al.	2014	Results of myringoplasty in children with cleft palate: a patient-matched study
83	Harugop, A.S., et al.	2008	A comparative study of endoscope assisted myringoplasty and microscope assisted myringoplasty
84	Harvinder, S., et al.	2005	Underlay myringoplasty: comparison of human amniotic membrane to temporalis fascia graft
85	Hicks, G.W., et al.	1988	A review of 925 cases of tympanoplasty using formaldehyde-formed-fascia grafts
86	Hod, R., et al.	2013	Inlay "butterfly" cartilage tympanoplasty
87	Hung, T., et al.	2004	Anterosuperior anchoring myringoplasty technique for anterior and subtotal perforations
			Effect of type I tympanoplasty on the resonant frequency of the middle ear: comparison between
88	Iacovou, E., et al.	2012	chondrotympanoplasty and temporalis fascia grafting
89	Jung, T., et al.	2009	Medial or medio-lateral graft tympanoplasty for repair of tympanic membrane perforation
90	Jung, T.T., et al.	2005	Mediolateral graft tympanoplasty for anterior or subtotal tympanic membrane perforation
91	Jurovitzki, I., et al.	1988	Myringoplasty: long-term followup
92	Kaddour, H.S.	1992	Myringoplasty under local anaesthesia: day case surgery
93	Kane, R.J., et al.	1980	Out-patient myringoplasty
94	Karela, M., et al.	2008	Myringoplasty: surgical outcomes and hearing improvement: is it worth performing to improve hearing?
95	Karkanevatos, A., et al.	2003	Day-case myringoplasty: five years' experience
96	Kartush, J.M.	2000	Tympanic membrane Patcher: a new device to close tympanic membrane perforations in an office setting
			Palisade cartilage tympanoplasty for management of subtotal perforations: a comparison with the
97	Kazikdas, K.C., et al.	2007	temporalis fascia technique
98	Kessler, A., et al.	1994	Type 1 tympanoplasty in children
99	Khan, M.M., et al.	2011	Primary cartilage tympanoplasty: our technique and results
100	Kim, D.K., et al.	2011	Clinical efficacy of fat-graft myringoplasty for perforations of different sizes and locations
101	Kim, H.J., et al.	2014	Functional and practical outcomes of inlay butterfly cartilage tympanoplasty
102	Knapik, M., et al.	2011	Pediatric myringoplasty: a study of factors affecting outcome
103	Koch, W.M., et al.	1990	Tympanoplasty in children. The Boston Children's Hospital experience
104	Komune, S., et al.	1992	Interlay method for myringoplasty
105	Konstantinidis, I., et al.	2013	Fat myringoplasty outcome analysis with otoendoscopy: who is the suitable patient?
106	Kumar, S., et al.	2010	Pediatric myringoplasty: definition of "success" and factors affecting outcome
107	Kwong, K.M., et al.	2012	Fat graft myringoplasty using umbilical fat
108	Kyrodimos, E., et al.	2014	Cartilage tympanoplasty: a reliable technique for smokers
109	Lai, P., et al.	2006	Lateral graft type 1 tympanoplasty using AlloDerm for tympanic membrane reconstruction in children
110	Landsberg, R., et al.	2006	Fat graft myringoplasty: results of a long-term follow-up

111	Lee, P., et al.	2002	Myringoplasty: does the size of the perforation matter?
112	Lee, S.H., et al.	2008	Paper-patch myringoplasty with CO2 laser for chronic TM perforation
113	Li, P., et al.	2010	The selection and strategy in otoendoscopic myringoplasty with autogenous adipose tissue
114	Lima, J.C., et al.	2011	Evaluation of the organic and functional results of tympanoplasties through a retro-auricular approach at a medical residency unit
115	Lin, Y.C., et al.	2011	Predictors of surgical and hearing long-term results for inlay cartilage tympanoplasty
116	Loock, J.W., et al.	2008	A randomised controlled trial comparing fresh, dried, and dried-then-rehydrated temporalis fascia in myringoplasty
117	Lou, Z.C., et al.	2011	Prognosis and outcome of the tympanic membrane flap at traumatic tympanic membrane perforation edge
118	Lubianca-Neto, J.F.	2000	Inlay butterfly cartilage tympanoplasty (Eavey technique) modified for adults
119	MacDonald, R.R., 3rd, et al.	1994	Fasciaform myringoplasty in children
120	Maeta, M., et al.	1998	[A clinical comparison of orthodox myringoplasty and a simple method with fibrin glue]
121	Mak, D., et al.	2004	Outcomes of myringoplasty in Australian Aboriginal children and factors associated with success: a prospective case series
122	Mauri, M., et al.	2001	Evaluation of inlay butterfly cartilage tympanoplasty: a randomized clinical trial
123	Mendel, L., et al.	1985	A clinical comparison of the results of two different methods of closing tympanic membrane perforations
124	Migirov, L., et al.	2014	Efficacy of myringoplasty in older people
125	Migirov, L., et al.	2013	Does smoking influence the surgical outcome of a myringoplasty?
126	Mills, N.	2013	Early healing and hearing improvement following type one tympanoplasty using the 'drum sandwich' technique
127	Mills, R., et al.	2013	Results of myringoplasty operations in active and inactive ears in adults
128	Mishra, P., et al.	2007	Prospective study of 100 cases of underlay tympanoplasty with superiorly based circumferential flap for subtotal perforations
129	Mitchell, R.B., et al.	1997	Fat graft myringoplasty in childrena safe and successful day-stay procedure
130	Mitchell, R.B., et al.	1996	Bilateral fat graft myringoplasty in children
131	Mompo Romero, L., et al.	1996	[Survey of 80 myringoplasty]
132	Monfared, A., et al.	2008	Bivalve cartilage inlay myringoplasty: an office-based procedure for closing small to medium-sized tympanic membrane perforations
133	Morant Ventura, A., et al.	1993	[Myringoplasty using formaldehyde formed fascia (Perkins' foot) in 188 cases: anatomical and functional results at 5 years]
134	Naganuma, H., et al.	1994	Myringoplasty in the outpatient clinic

135	Nagle, S.K., et al.	2009	Comparative study of outcome of type I tympanoplasty in dry and wet ear
136	Nakhla, V., et al.	2007	Myringoplasty: a comparison of bismuth iodoform paraffin paste gauze pack and tri-adcortyl ointment ear dressing
137	Nardone, M., et al.	2012	Myringoplasty in simple chronic otitis media: critical analysis of long-term results in a 1,000-adult patient series
138	Noh, H., et al.	2012	Vascularisation of myringo-/tympanoplastic grafts in active and inactive chronic mucosal otitis media: a prospective cohort study
139	Ogisi, F.O., et al.	2004	Type 1 Tympanoplasty in Benin: a 10- year review
140	Onal, K., et al.	2011	Perichondrium/Cartilage island flap and temporalis muscle fascia in type I tympanoplasty
141	Onal, K., et al.	2012	Functional results of temporalis fascia versus cartilage tympanoplasty in patients with bilateral chronic otitis media
142	Ophir, D., et al.	1987	Myringoplasty in the pediatric population
143	Ozbek, C., et al.	2008	A comparison of cartilage palisades and fascia in type 1 tympanoplasty in children: anatomic and functional results
144	Park, S.N., et al.	2015	Predictors for outcome of paper patch myringoplasty in patients with chronic tympanic membrane perforations
145	Peng, R., et al.	2013	Efficacy of "hammock" tympanoplasty in the treatment of anterior perforations
146	Piedrola Maroto, D., et al.	2010	[Functional results in myringoplasties]
147	Pignataro, L., et al.	2001	Myringoplasty in children: anatomical and functional results
148	Podoshin, L., et al.	1996	Type I tympanoplasty in children
149	Potsic, W.P., et al.	1996	Tympanoplasty for the anterior-superior perforation in children
150	Puhakka, H., et al.	1979	Long-term results of myringoplasty with temporalis fascia
151	Puls, T.	1996	Myringoplasty: is molded collagen xenograft a valid alternative for fresh temporalis fascia?
152	Quraishi, M.S., et al.	1995	Day case myringoplasty using tragal perichondrium
153	Raghavan, U., et al.	2000	Myringoplasty: update on onlay pedicle skin flap and temporalis fascia sandwich graft
154	Raine, C.H., et al.	1983	Tympanoplasty in children. A review of 114 cases
155	Ribeiro, J.C., et al.	2011	Tympanoplasty in children: A review of 91 cases
156	Ringenberg, J.C.	1978	Closure of tympanic membrane perforations by the use of fat
157	Rizer, F.M.	1997	Overlay versus underlay tympanoplasty. Part II: the study
158	Rogha, M., et al.	2014	Comparison of tympanic membrane grafting medial or lateral to malleus handle
159	Rourke, T., et al.	2010	Cartilage graft butterfly myringoplasty: how we do it

160	Ryan, C., et al.	2002	Paediatric day-stay myringoplasty: a review of 74 consecutive cases
161	Saadat, D., et al.	2001	Office myringoplasty with alloderm
162	Sade, J., et al.	1981	Myringoplasty: short and long-term results in a training program
163	Sakagami, M., et al.	2007	Simple underlay myringoplasty
164	Sakai, N., et al.	1997	Simple in-office closure of small intractable tympanic membrane perforations after myringoplasty
165	Saliba, I., et al.	2012	Advantages of hyaluronic acid fat graft myringoplasty over fat graft myringoplasty
166	Saliba, I., et al.	2011	Hyaluronic acid fat graft myringoplasty: a minimally invasive technique
167	Salman, S.D.	1977	Myringoplasty as an office procedure: a new technique
168	Sarac, S., et al.	2002	Use of homograft dehydrated temporal fascia in tympanoplasty
169	Sauvage, J.P., et al.	1996	[Hammock myringoplasty (technique, results)]
170	Scaramella, L.F., et al.	2002	Effectiveness of nonsurgical office closure of tympanic membrane pars tensa perforations
			Outcomes in children with perforated tympanic membranes after tympanostomy tube placement: results
171	Schraff, S.A., et al.	2006	using a pilot treatment algorithm
172	Sckolnick, J.S., et al.	2008	Pediatric myringoplasty: factors that affect success-a retrospective study
173	Seidman, M.D.	2008	Anterior transcanal tympanoplasty: a novel technique to repair anterior perforations
			Overlay versus underlay myringoplasty: report of outcomes considering closure of perforation and
174	Sergi, B., et al.	2011	hearing function
175	Shaikh, A.A., et al.	2009	Outcome of Tympanoplasty Type - I by Underlay Technique
176	Sharma, D.K., et al.	2009	Prospective study of myringoplasty using different approaches
177	Sharp, J.F., et al.	1992	Myringoplasty for the anterior perforation: experience with the Kerr flap
178	Sheahan, P., et al.	2002	Results of type 1 tympanoplasty in children and parental perceptions of outcome of surgery
179	Sheehy, J.L., et al.	1980	Myringoplasty. A review of 472 cases
180	Shih, L., et al.	1991	Myringoplasty in children
181	Shrestha, S., et al.	2006	Hearing results after myringoplasty
182	Singh, B.J., et al.	2009	A comparative study of different graft materials used in myringoplasty
183	Singh, G.B., et al.	2006	Role of transtympanic myringoplasty in modern otology
184	Singh, G.B., et al.	2005	Tympanoplasty type I in childrenan evaluative study
			Comparative study of the underlay and overlay techniques of myringoplasty in large and subtotal
185	Singh, M., et al.	2003	perforations of the tympanic membrane
186	Sozen, E., et al.	2012	Is the tragal cartilage necessary for type 1 tympanoplasties?
187	Sridhara, S.K., et al.	2013	Tympanoplasty for blast-induced perforations: the Walter Reed experience

188	Srinivasan, V., et al.	1997	Transtympanic myringoplasty in children
189	Supiyaphun, P., et al.	1999	Myringoplasty: a simple procedure for out-patients
190	Takahashi-Tatsumi, E., et al.	2014	Longitudinal follow-up after pediatric myringoplasty: long-term outcome is defined at 12 months
			Audiological and graft take results of cartilage reinforcement tympanoplasty (a new technique) versus
191	Tek, A., et al.	2012	fascia
192	Terry, R.M., et al.	1988	Fat graft myringoplastya prospective trial
193	Thomassin, J.M., et al.	2004	[The effectiveness of otoendoscopy in myringoplasty using adipose graft]
194	Trotoux, J., et al.	1986	[Tympanic reconstruction by molded grafts. Value and results. Apropos of experience in 158 cases]
195	Tuzuner, A., et al.	2015	Does glubran 2 improve the graft uptake in tympanoplasty? A retrospective study
196	Ulku, C.H.	2010	Cartilage tympanoplasty with island technique for reconstruction of tympanic membrane perforation: anatomic and audiologic results
197	Ullah, N., et al.	2011	Tympanoplasty in young patients
198	Umapathy, N., et al.	2003	Myringoplasty: is it worth performing in children?
199	Vartiainen, E., et al.	1993	Success and pitfalls in myringoplasty: follow-up study of 404 cases
200	Vartiainen, E., et al.	1997	Tympanoplasty in young patients: the role of adenoidectomy
201	Velepic, M., et al.	2012	Cartilage palisade tympanoplasty in children and adults: long term results
202	Vos, J.D., et al.	2005	Use of AlloDerm in type I tympanoplasty: a comparison with native tissue grafts
203	Wang, W.H., et al.	2008	Minimally invasive inlay and underlay tympanoplasty
204	Webb, B.D., et al.	2008	Efficacy of tympanoplasty without mastoidectomy for chronic suppurative otitis media
205	Weider, D.J.	1977	Tympanoplasty: medial grafting using Williams' microclips
206	Williams, J.D.	1977	Microclip application in tympanoplasty
207	Yadav, S.P., et al.	2009	Endoscope-assisted myringoplasty
208	Yang, H.C., et al.	2014	Efficacy of tympanoplasty without mastoidectomy on MRSA-infected chronic otitis media
209	Yigit, O., et al.	2005	Short-term evaluation of over-under myringoplasty technique
210	Yilmaz, M.S., et al.	2015	Comparison of the anatomic and hearing outcomes of cartilage type 1 tympanoplasty in pediatric and adult patients
211	Yuasa, Y., et al.	2008	Postoperative results of simple underlay myringoplasty in better hearing ears
212	Yung, M., et al.	2007	A longitudinal study on pediatric myringoplasty
213	Zhang, Z., et al.	2010	Combined tympanic epithelial layer avulsion and overlay myringoplasty for diffuse granular myringitis
214	Zhang, Z.G., et al.	2011	Three autologous substitutes for myringoplasty: a comparative study

References:

- 1. Abdelghany AM. The button graft technique for perforations affecting less than 25% of the tympanic membrane: a non-randomised comparison of a new modification to cartilage tympanoplasty with underlay and overlay grafts. Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery 2013;38:208-16.
- 2. Acar M, Yazici D, San Tet al. Fat-plug myringoplasty of ear lobule vs abdominal donor sites. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology-Head and Neck Surgery 2015;272:861-6.
- 3. Adkins WY, White B. Type I tympanoplasty: influencing factors. *The Laryngoscope* 1984;94:916-8.
- 4. Ahmed S, Raza N, Ullah Set al. Chondroperichondrial clip myringoplasty: a new technique for closure of tympanic membrane perforations. *The Journal of laryngology and otology* 2013;127:562-7.
- 5. Ahmed Z, Aslam MA, Aslam MJet al. Over-under myringoplasty. *Journal of the College of Physicians and Surgeons--Pakistan : JCPSP* 2005;15:768-70.
- 6. Ajulo SO, Myatt HM, Alusi G. Peri-umbilical superficial fascial graft myringoplasty--a simple alternative. *Clinical otolaryngology and allied sciences* 1993;18:433-5.
- 7. Al-Khtoum N, Hiari MA. Myringoplasty in children: retrospective analysis of 35 cases. *Brazilian journal of otorhinolaryngology* 2009;75:371-4.
- 8. al-Shaikh AM, Reddy PV, Bizrah MB. Underlay tympanoplasty with anterior and posterior flaps for subtotal perforations. *Otolaryngologia polska*. *The Polish otolaryngology* 1998;52:137-40.
- 9. Albera R, Dagna F, Lacilla Met al. Equine versus bovine pericardium in transmeatal underlay myringoplasty. *The Annals of otology, rhinology, and laryngology* 2009;118:287-91.
- 10. Albera R, Ferrero V, Lacilla Met al. Tympanic reperforation in myringoplasty: evaluation of prognostic factors. *The Annals of otology, rhinology, and laryngology* 2006;115:875-9.
- 11. Albera R, Milan F, Riontino Eet al. [Myringoplasty in children: a comparison with an adult population]. *Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale* 1998;18:295-9.
- 12. Albirmawy OA. Comparison between cartilage-perichondrium composite 'ring' graft and temporalis fascia in type one tympanoplasty in children. *The Journal of laryngology and otology* 2010;124:967-74.
- 13. Alkan S, Baylancicek S, Sozen Eet al. Effect of the use of dry (rigid) or wet (soft) temporal fascia graft on tympanoplasty. *Journal of otolaryngology head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale* 2009;38:126-32.
- 14. Altuna X, Navarro JJ, Martinez Zet al. [Island cartilage myringoplasty. Anatomical and functional results in 122 cases]. *Acta otorrinolaringologica espanola* 2010;61:100-5.
- 15. Alzahrani M, Saliba I. Hyaluronic acid fat graft myringoplasty vs fat patch fat graft myringoplasty. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:1873-7.
- 16. Alzoubi FQ, Tarifi AA, Khader Yet al. Comparison between transtympanic and elevation of tympanomeatal flap approaches in tympanoplasty. *Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2010;31:773-5.

- 17. Anderson O, Takwoingi YM. Tri-adcortyl ointment ear dressing in myringoplasty: an analysis of outcome. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2007;264:873-7.
- 18. Attallah MS, al-Essa A. Hearing results in tympanoplasty in Riyadh. *Otolaryngologia polska*. *The Polish otolaryngology* 1996;50:145-51.
- 19. Aviles Jurado FJ, Meran Gil JL, Tobed Secall Met al. [Myringoplasty: auditory follow-up and study of prognostic factors]. *Acta otorrinolaringologica espanola* 2009;60:169-75.
- 20. Ayache S. Cartilaginous myringoplasty: the endoscopic transcanal procedure. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2013;270:853-60.
- 21. Ayache S, Braccini F, Facon Fet al. Adipose graft: an original option in myringoplasty. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2003;24:158-64.
- 22. Bajaj Y, Bais AS, Mukherjee B. Tympanoplasty in children--a prospective study. *The Journal of laryngology and otology* 1998;112:1147-9.
- 23. Balaguer Garcia R, Morales Suarez-Varela MM, Tamarit Conejeros JMet al. [Myringoplasties. A retrospective analysis of our surgical outcomes]. *Acta otorrinolaringologica espanola* 2011;62:213-9.
- 24. Becker J, Lubbe D. Success rate of myringoplasty at Groote Schuur Hospital. *South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde* 2011;101:740.
- 25. Benson-Mitchell R, Kenyon GS, Gardiner Q. Day-stay myringoplasty. *The Journal of laryngology and otology* 1996;110:421-4.
- 26. Berger G, Shapira A, Marshak G. Myringoplasty in children. *The Journal of otolaryngology* 1983;12:228-30.
- 27. Bhat NA, De R. Retrospective analysis of surgical outcome, symptom changes, and hearing improvement following myringoplasty. *The Journal of otolaryngology* 2000;29:229-32.
- 28. Black JH, Hickey SA, Wormald PJ. An analysis of the results of myringoplasty in children. *International journal of pediatric otorhinolaryngology* 1995;31:95-100.
- 29. Black JH, Wormald PJ. Myringoplasty--effects on hearing and contributing factors. *South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde* 1995;85:41-3.
- 30. Blanshard JD, Robson AK, Smith Iet al. A long term view of myringoplasty in children. *The Journal of laryngology and otology* 1990;104:758-62.
- 31. Borkowski G, Sudhoff H, Luckhaupt H. [Autologous perichondrium-cartilage graft in the treatment of total or subtotal perforations of the tympanic membrane]. *Laryngo- rhino- otologie* 1999;78:68-72.
- 32. Boronat-Echeverria NE, Reyes-Garcia E, Sevilla-Delgado Yet al. Prognostic factors of successful tympanoplasty in pediatric patients: a cohort study. *BMC pediatrics* 2012;12:67.
- 33. Brandow EC, Jr. Homograft tympanic membrane myringoplasty. Archives of otolaryngology (Chicago, Ill.: 1960) 1976;102:473-7.
- 34. Buchwach KA, Birck HG. Serous otitis media and type 1 tympanoplasties in children. A retrospective study. *The Annals of otology, rhinology & laryngology. Supplement* 1980;89:324-5.
- 35. Callanan VP, Curran AJ, Gormley PK. Xenograft versus autograft in tympanoplasty. *The Journal of laryngology and otology* 1993;107:892-4.
- 36. Castro O, Perez-Carro AM, Ibarra Iet al. Myringoplasties in children: our results. *Acta otorrinolaringologica espanola* 2013;64:87-91.
- 37. Caye-Thomasen P, Nielsen TR, Tos M. Bilateral myringoplasty in chronic otitis media. *The Laryngoscope* 2007;117:903-6.
- 38. Caylan R, Titiz A, Falcioni Met al. Myringoplasty in children: factors influencing surgical outcome. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 1998;118:709-13.

- 39. Chanvimalueng W. A clinical comparison of outpatient and standard myringoplasty. Ear, nose, & throat journal 2000;79:113-4, 7.
- 40. Claes J, Van de Heyning PH, Creten Wet al. Allograft tympanoplasty: predictive value of preoperative status. *The Laryngoscope* 1990;100:1313-8.
- 41. Cody DT, Taylor WF. Tympanoplasty: long-term results. *The Annals of otology, rhinology, and laryngology* 1973;82:538-46.
- 42. Coskun BU, Cinar U, Seven Het al. The effects of the incision types in myringoplasty operations on cosmesis. *European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery* 2006;263:820-2.
- 43. Couloigner V, Baculard F, El Bakkouri Wet al. Inlay butterfly cartilage tympanoplasty in children. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2005;26:247-51.
- 44. D'Eredita R, Lens MB. Anterior tab flap versus standard underlay myringoplasty in children. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2009;30:777-81.
- 45. Dabholkar JP, Vora K, Sikdar A. Comparative study of underlay tympanoplasty with temporalis fascia and tragal perichondrium. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2007;59:116-9.
- 46. De S, Karkanevatos A, Srinivasan VRet al. Myringoplasty using a subcutaneous soft tissue graft. *Clinical otolaryngology and allied sciences* 2004;29:314-7.
- 47. De Seta E, De Seta D, Covelli Eet al. Type I tympanoplasty with island chondro-perichondral tragal graft: the preferred technique? *The Journal of laryngology and otology* 2013;127:354-8.
- 48. Deddens AE, Muntz HR, Lusk RP. Adipose myringoplasty in children. *The Laryngoscope* 1993;103:216-9.
- 49. Deenadayal DS, Neeli AK, Patel SH. Graft uptake rates with isoamyl-2-cyanoacrylate in myringoplasty procedures: a 10-year retrospective study. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2011;145:442-5.
- 50. Demirpehlivan IA, Onal K, Arslanoglu Set al. Comparison of different tympanic membrane reconstruction techniques in type I tympanoplasty.

 European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2011;268:471-4.
- 51. Denoyelle F, Roger G, Chauvin Pet al. Myringoplasty in children: predictive factors of outcome. *The Laryngoscope* 1999;109:47-51.
- 52. Dursun E, Dogru S, Gungor Aet al. Comparison of paper-patch, fat, and perichondrium myringoplasty in repair of small tympanic membrane perforations. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2008;138:353-6.
- 53. Eavey RD. Inlay tympanoplasty: cartilage butterfly technique. *The Laryngoscope* 1998;108:657-61.
- 54. Effat KG. Results of inlay cartilage myringoplasty in terms of closure of central tympanic membrane perforations. *The Journal of laryngology and otology* 2005;119:611-3.
- 55. Eisenbeis JF, Herrmann BW. Areolar connective tissue grafts in pediatric tympanoplasty: a pilot study. *American journal of otolaryngology* 2004;25:79-83.
- 56. el-Guindy A. Endoscopic transcanal myringoplasty. *The Journal of laryngology and otology* 1992;106:493-5.
- 57. Emir H, Ceylan K, Kizilkaya Zet al. Success is a matter of experience: type 1 tympanoplasty: influencing factors on type 1 tympanoplasty. *European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery* 2007;264:595-9.
- 58. Emmett JR. Age as a factor in the success of tympanoplasty: a comparison of outcomes in the young and old. *Ear, nose, & throat journal* 1999;78:480, 3.

- 59. Eren SB, Tugrul S, Ozucer Bet al. A randomized prospective trial of a novel device for measuring perforation size during inlay 'butterfly' myringoplasty. *American journal of otolaryngology* 2014;35:305-8.
- 60. Fadl FA. Outcome of type-1 tympanoplasty. Saudi medical journal 2003;24:58-61.
- 61. Feilen SE, Federspil P. [Long-term outcome of tympanoplasty in chronic suppurative middle ear infection in childhood]. *Hno* 1996;44:143-7.
- 62. Fernandes SV. Composite chondroperichondrial clip tympanoplasty: the triple "C" technique. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2003;128:267-72.
- 63. Fouad T, Rifaat M, Buhaibeh Q. Utilization of amniotic membrane graft for repair of the tympanic membrane perforation. *Egyptian Journal of ear, nose, throat and Allied Sciences* 2010;11:31-4.
- 64. Francois M, Juvanon JM, Contencin Pet al. [Myringoplasty in children]. *Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris* 1985;102:321-7.
- 65. Fukuchi I, Cerchiari DP, Garcia Eet al. Tympanoplasty: surgical results and a comparison of the factors that may interfere in their success. *Brazilian journal of otorhinolaryngology* 2006;72:267-71.
- 66. Gamra OB, Mbarek C, Khammassi Ket al. Cartilage graft in type I tympanoplasty: audiological and otological outcome. *European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology: Head and Neck Surgery* 2008;265:739-42.
- 67. Gavriel H, Eviatar E. Inferior flap tympanoplasty: a novel technique for anterior perforation closure. *BioMed research international* 2013;2013:758598.
- 68. Gedikli O, Eren SB, Kahya Vet al. Efficacy of octyl-2-cyanoacrylate in type I tympanoplasty. *The Journal of craniofacial surgery* 2011;22:1039-41.
- 69. Gersdorff M, Garin P, Decat Met al. Myringoplasty: long-term results in adults and children. *The American journal of otology* 1995;16:532-5.
- 70. Ghosh LM, Dubey SP. Paediatric myringoplasty in India. *Auris, nasus, larynx* 1991;18:209-13.
- 71. Gibb AG, Chang SK. Myringoplasty (A review of 365 operations). *The Journal of laryngology and otology* 1982;96:915-30.
- 72. Golz A, Goldenberg D, Netzer Aet al. Paper patching for chronic tympanic membrane perforations. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2003;128:565-70.
- 73. Goyal N, Kakkar V, Goyal Pet al. Myringoplasty for chronic otitis media. *Indian journal of pediatrics* 2002;69:223-4.
- 74. Gross CW, Bassila M, Lazar RHet al. Adipose plug myringoplasty: an alternative to formal myringoplasty techniques in children. *Otolaryngology-head* and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 1989;101:617-20.
- 75. Gupta SC. Myringoplasty with a single flap. Ear, nose, & throat journal 2000;79:946-8, 50-1.
- 76. Habesoglu TE, Habesoglu M, Deveci Iet al. Effect of type I tympanoplasty on the quality of life of children. *The Annals of otology, rhinology, and laryngology* 2011;120:326-30.
- 77. Habib-ur-Rehman, Fazal-I-Wahid, Javaid Met al. Otitis Media: Comparison of outcome of underlay versus overlay myringoplasty. *Pakistan Journal of Medical Sciences* 2011;27:1076.
- 78. Hagemann M, Hausler R. [Tympanoplasty with adipose tissue]. *Laryngo-rhino-otologie* 2003;82:393-6.
- 79. Haksever M, Akduman D, Solmaz Fet al. Inlay butterfly cartilage tympanoplasty in the treatment of dry central perforated chronic otitis media as an effective and time-saving procedure. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:867-72.
- 80. Halim A, Borgstein J. Pediatric myringoplasty: postaural versus transmeatal approach. *International journal of pediatric otorhinolaryngology* 2009;73:1580-3.

- 81. Hamans EP, Govaerts PJ, Somers Tet al. Allograft tympanoplasty type 1 in the childhood population. *The Annals of otology, rhinology, and laryngology* 1996;105:871-6.
- 82. Harterink E, Leboulanger N, Kotti Set al. Results of myringoplasty in children with cleft palate: a patient-matched study. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2014;35:838-43.
- 83. Harugop AS, Mudhol RS, Godhi RA. A comparative study of endoscope assisted myringoplasty and microscope assisted myringoplasty. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2008;60:298-302.
- 84. Harvinder S, Hassan S, Sidek DSet al. Underlay myringoplasty: comparison of human amniotic membrane to temporalis fascia graft. *The Medical journal of Malaysia* 2005;60:585-9.
- 85. Hicks GW, Wright JW, 3rd. A review of 925 cases of tympanoplasty using formaldehyde-formed-fascia grafts. *The Laryngoscope* 1988;98:150-3.
- 86. Hod R, Buda I, Hazan Aet al. Inlay "butterfly" cartilage tympanoplasty. *American journal of otolaryngology* 2013;34:41-3.
- 87. Hung T, Knight JR, Sankar V. Anterosuperior anchoring myringoplasty technique for anterior and subtotal perforations. *Clinical otolaryngology and allied sciences* 2004;29:210-4.
- 88. Iacovou E, Vlastarakos PV, Panagiotakopoulou Aet al. Effect of type I tympanoplasty on the resonant frequency of the middle ear: comparison between chondrotympanoplasty and temporalis fascia grafting. *Journal of otolaryngology head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale* 2012;41:14-9.
- 89. Jung T, Kim YH, Kim YHet al. Medial or medio-lateral graft tympanoplasty for repair of tympanic membrane perforation. *International journal of pediatric otorhinolaryngology* 2009;73:941-3.
- 90. Jung TT, Park SK. Mediolateral graft tympanoplasty for anterior or subtotal tympanic membrane perforation. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2005;132:532-6.
- 91. Jurovitzki I, Sade J. Myringoplasty: long-term followup. *The American journal of otology* 1988;9:52-5.
- 92. Kaddour HS. Myringoplasty under local anaesthesia: day case surgery. Clinical otolaryngology and allied sciences 1992;17:567-8.
- 93. Kane RJ, Moffat DA, O'Connor AF. Out-patient myringoplasty. *The Journal of laryngology and otology* 1980;94:1387-93.
- 94. Karela M, Berry S, Watkins Aet al. Myringoplasty: surgical outcomes and hearing improvement: is it worth performing to improve hearing? *European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery* 2008;265:1039-42.
- 95. Karkanevatos A, De S, Srinivasan VRet al. Day-case myringoplasty: five years' experience. *The Journal of laryngology and otology* 2003;117:763-5.
- 96. Kartush JM. Tympanic membrane Patcher: a new device to close tympanic membrane perforations in an office setting. *The American journal of otology* 2000;21:615-20.
- 97. Kazikdas KC, Onal K, Boyraz Iet al. Palisade cartilage tympanoplasty for management of subtotal perforations: a comparison with the temporalis fascia technique. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2007;264:985-9.
- 98. Kessler A, Potsic WP, Marsh RR. Type 1 tympanoplasty in children. *Archives of otolaryngology--head & neck surgery* 1994;120:487-90.
- 99. Khan MM, Parab SR. Primary cartilage tympanoplasty: our technique and results. *American journal of otolaryngology* 2011;32:381-7.
- 100. Kim DK, Park SN, Yeo SWet al. Clinical efficacy of fat-graft myringoplasty for perforations of different sizes and locations. *Acta oto-laryngologica* 2011;131:22-6.

- 101. Kim HJ, Kim MJ, Jeon JHet al. Functional and practical outcomes of inlay butterfly cartilage tympanoplasty. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2014;35:1458-62.
- 102. Knapik M, Saliba I. Pediatric myringoplasty: a study of factors affecting outcome. *International journal of pediatric otorhinolaryngology* 2011;75:818-23.
- 103. Koch WM, Friedman EM, McGill TJet al. Tympanoplasty in children. The Boston Children's Hospital experience. *Archives of otolaryngology--head & neck surgery* 1990;116:35-40.
- 104. Komune S, Wakizono S, Hisashi Ket al. Interlay method for myringoplasty. Auris, nasus, larynx 1992;19:17-22.
- 105. Konstantinidis I, Malliari H, Tsakiropoulou Eet al. Fat myringoplasty outcome analysis with otoendoscopy: who is the suitable patient? *Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2013;34:95-9.
- 106. Kumar S, Acharya A, Hadjihannas Eet al. Pediatric myringoplasty: definition of "success" and factors affecting outcome. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2010;31:1417-20.
- 107. Kwong KM, Smith MM, Coticchia JM. Fat graft myringoplasty using umbilical fat. *International journal of pediatric otorhinolaryngology* 2012;76:1098-101.
- 108. Kyrodimos E, Stamatiou GA, Margaritis Eet al. Cartilage tympanoplasty: a reliable technique for smokers. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2014;271:255-60.
- 109. Lai P, Propst EJ, Papsin BC. Lateral graft type 1 tympanoplasty using AlloDerm for tympanic membrane reconstruction in children. *International journal of pediatric otorhinolaryngology* 2006;70:1423-9.
- 110. Landsberg R, Fishman G, DeRowe Aet al. Fat graft myringoplasty: results of a long-term follow-up. *The Journal of otolaryngology* 2006;35:44-7.
- 111. Lee P, Kelly G, Mills RP. Myringoplasty: does the size of the perforation matter? Clinical otolaryngology and allied sciences 2002;27:331-4.
- 112. Lee SH, Jin SM, Lee KCet al. Paper-patch myringoplasty with CO2 laser for chronic TM perforation. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2008;265:1161-4.
- 113. Li P, Yang QT, Li YQet al. The selection and strategy in otoendoscopic myringoplasty with autogenous adipose tissue. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2010;62:25-8.
- 114. Lima JC, Marone SA, Martucci Oet al. Evaluation of the organic and functional results of tympanoplasties through a retro-auricular approach at a medical residency unit. *Brazilian journal of otorhinolaryngology* 2011;77:229-36.
- 115. Lin YC, Wang WH, Weng HHet al. Predictors of surgical and hearing long-term results for inlay cartilage tympanoplasty. *Archives of otolaryngology-head & neck surgery* 2011;137:215-9.
- 116. Loock JW, Naude N. A randomised controlled trial comparing fresh, dried, and dried-then-rehydrated temporalis fascia in myringoplasty. *Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery* 2008;33:97-101.
- 117. Lou ZC, Hu YX, Tang YM. Prognosis and outcome of the tympanic membrane flap at traumatic tympanic membrane perforation edge. *ORL*; *journal for oto-rhino-laryngology and its related specialties* 2011;73:212-8.

- 118. Lubianca-Neto JF. Inlay butterfly cartilage tympanoplasty (Eavey technique) modified for adults. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2000;123:492-4.
- 119. MacDonald RR, 3rd, Lusk RP, Muntz HR. Fasciaform myringoplasty in children. Archives of otolaryngology--head & neck surgery 1994;120:138-43.
- 120. Maeta M, Saito R, Nakagawa Fet al. [A clinical comparison of orthodox myringoplasty and a simple method with fibrin glue]. *Nihon Jibiinkoka Gakkai kaiho* 1998;101:1062-8.
- 121. Mak D, MacKendrick A, Bulsara Met al. Outcomes of myringoplasty in Australian Aboriginal children and factors associated with success: a prospective case series. *Clinical otolaryngology and allied sciences* 2004;29:606-11.
- 122. Mauri M, Lubianca Neto JF, Fuchs SC. Evaluation of inlay butterfly cartilage tympanoplasty: a randomized clinical trial. *The Laryngoscope* 2001;111:1479-85.
- 123. Mendel L, Kuylenstierna R. A clinical comparison of the results of two different methods of closing tympanic membrane perforations. *The Journal of laryngology and otology* 1985;99:339-42.
- 124. Migirov L, Lipschitz N, Slonimsky Get al. Efficacy of myringoplasty in older people. Aging clinical and experimental research 2014;26:661-4.
- 125. Migirov L, Lipschitz N, Wolf M. Does smoking influence the surgical outcome of a myringoplasty? *ORL; journal for oto-rhino-laryngology and its related specialties* 2013;75:207-10.
- 126. Mills N. Early healing and hearing improvement following type one tympanoplasty using the 'drum sandwich' technique. *The Journal of laryngology and otology* 2013;127:957-61.
- 127. Mills R, Thiel G, Mills N. Results of myringoplasty operations in active and inactive ears in adults. *The Laryngoscope* 2013;123:2245-9.
- 128. Mishra P, Sonkhya N, Mathur N. Prospective study of 100 cases of underlay tympanoplasty with superiorly based circumferential flap for subtotal perforations. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2007;59:225-8.
- 129. Mitchell RB, Pereira KD, Lazar RH. Fat graft myringoplasty in children--a safe and successful day-stay procedure. *The Journal of laryngology and otology* 1997;111:106-8.
- 130. Mitchell RB, Pereira KD, Younis RTet al. Bilateral fat graft myringoplasty in children. Ear, nose, & throat journal 1996;75:652, 5-6.
- 131. Mompo Romero L, Dalmau Galofre J, Pons Rocher Fet al. [Survey of 80 myringoplasty]. *Anales otorrinolaringologicos ibero-americanos* 1996;23:565-76.
- 132. Monfared A, Bergeron CM, Ortiz Jet al. Bivalve cartilage inlay myringoplasty: an office-based procedure for closing small to medium-sized tympanic membrane perforations. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2008;139:630-4.
- 133. Morant Ventura A, Marco Algarra J, Mallea Canizares Iet al. [Myringoplasty using formaldehyde formed fascia (Perkins' foot) in 188 cases: anatomical and functional results at 5 years]. *Acta otorrinolaringologica espanola* 1993;44:425-30.
- 134. Naganuma H, Okamoto M, Shitara Tet al. Myringoplasty in the outpatient clinic. *Acta oto-rhino-laryngologica Belgica* 1994;48:59-65.
- 135. Nagle SK, Jagade MV, Gandhi SRet al. Comparative study of outcome of type I tympanoplasty in dry and wet ear. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2009;61:138-40.
- 136. Nakhla V, Takwoingi YM, Sinha A. Myringoplasty: a comparison of bismuth iodoform paraffin paste gauze pack and tri-adcortyl ointment ear dressing. *The Journal of laryngology and otology* 2007;121:329-32.

- 137. Nardone M, Sommerville R, Bowman Jet al. Myringoplasty in simple chronic otitis media: critical analysis of long-term results in a 1,000-adult patient series. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2012;33:48-53.
- 138. Noh H, Lee DH. Vascularisation of myringo-/tympanoplastic grafts in active and inactive chronic mucosal otitis media: a prospective cohort study. Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery 2012;37:355-61.
- 139. Ogisi FO, Adobamen P. Type 1 Tympanoplasty in Benin: a 10- year review. *The Nigerian postgraduate medical journal* 2004;11:84-7.
- 140. Onal K, Arslanoglu S, Oncel Set al. Perichondrium/Cartilage island flap and temporalis muscle fascia in type I tympanoplasty. *Journal of otolaryngology head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale* 2011;40:295-9.
- 141. Onal K, Arslanoglu S, Songu Met al. Functional results of temporalis fascia versus cartilage tympanoplasty in patients with bilateral chronic otitis media. *The Journal of laryngology and otology* 2012;126:22-5.
- 142. Ophir D, Porat M, Marshak G. Myringoplasty in the pediatric population. Archives of otolaryngology--head & neck surgery 1987;113:1288-90.
- Ozbek C, Ciftci O, Tuna EEet al. A comparison of cartilage palisades and fascia in type 1 tympanoplasty in children: anatomic and functional results. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2008;29:679-83.
- 144. Park SN, Kim HM, Jin KSet al. Predictors for outcome of paper patch myringoplasty in patients with chronic tympanic membrane perforations.

 European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:297-301.
- 145. Peng R, Lalwani AK. Efficacy of "hammock" tympanoplasty in the treatment of anterior perforations. *The Laryngoscope* 2013;123:1236-40.
- 146. Piedrola Maroto D, Escalona Gutierrez JJ, Conde Jimenez Met al. [Functional results in myringoplasties]. *Acta otorrinolaringologica espanola* 2010;61:94-9.
- 147. Pignataro L, Grillo Della Berta L, Capaccio Pet al. Myringoplasty in children: anatomical and functional results. *The Journal of laryngology and otology* 2001;115:369-73.
- 148. Podoshin L, Fradis M, Malatskey Set al. Type I tympanoplasty in children. *The American journal of otology* 1996;17:293-6.
- 149. Potsic WP, Winawer MR, Marsh RR. Tympanoplasty for the anterior-superior perforation in children. The American journal of otology 1996;17:115-8.
- 150. Puhakka H, Virolainen E, Rahko T. Long-term results of myringoplasty with temporalis fascia. *The Journal of laryngology and otology* 1979;93:1081-6.
- Puls T. Myringoplasty: is molded collagen xenograft a valid alternative for fresh temporalis fascia? *Acta oto-rhino-laryngologica Belgica* 1996;50:111-4.
- 152. Quraishi MS, Jones NS. Day case myringoplasty using tragal perichondrium. Clinical otolaryngology and allied sciences 1995;20:12-4.
- 153. Raghavan U, Malki DS, Mahmoud NA. Myringoplasty: update on onlay pedicle skin flap and temporalis fascia sandwich graft. *The Journal of laryngology and otology* 2000;114:174-7.
- 154. Raine CH, Singh SD. Tympanoplasty in children. A review of 114 cases. *The Journal of laryngology and otology* 1983;97:217-21.
- 155. Ribeiro JC, Rui C, Natercia Set al. Tympanoplasty in children: A review of 91 cases. Auris, nasus, larynx 2011;38:21-5.
- 156. Ringenberg JC. Closure of tympanic membrane perforations by the use of fat. *The Laryngoscope* 1978;88:982-93.
- 157. Rizer FM. Overlay versus underlay tympanoplasty. Part II: the study. The Laryngoscope 1997;107:26-36.

- Rogha M, Berjis N, Taherinia Aet al. Comparison of tympanic membrane grafting medial or lateral to malleus handle. *Advanced biomedical research* 2014;3:56.
- 159. Rourke T, Snelling JD, Aldren C. Cartilage graft butterfly myringoplasty: how we do it. *Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery* 2010;35:135-8.
- Ryan C, Harris R, Hung Tet al. Paediatric day-stay myringoplasty: a review of 74 consecutive cases. *The Journal of laryngology and otology* 2002;116:899-902.
- 161. Saadat D, Ng M, Vadapalli Set al. Office myringoplasty with alloderm. *The Laryngoscope* 2001;111:181-4.
- 162. Sade J, Berco E, Brown Met al. Myringoplasty: short and long-term results in a training program. *The Journal of laryngology and otology* 1981;95:653-65.
- 163. Sakagami M, Yuasa R, Yuasa Y. Simple underlay myringoplasty. The Journal of laryngology and otology 2007;121:840-4.
- 164. Sakai N, Kokubun T, Asai Tet al. Simple in-office closure of small intractable tympanic membrane perforations after myringoplasty. *Auris, nasus, larynx* 1997;24:43-6.
- 165. Saliba I, Knapik M, Froehlich Pet al. Advantages of hyaluronic acid fat graft myringoplasty over fat graft myringoplasty. *Archives of otolaryngology-head & neck surgery* 2012;138:950-5.
- 166. Saliba I, Woods O. Hyaluronic acid fat graft myringoplasty: a minimally invasive technique. *The Laryngoscope* 2011;121:375-80.
- 167. Salman SD. Myringoplasty as an office procedure: a new technique. Archives of otolaryngology (Chicago, Ill.: 1960) 1977;103:459-60.
- 168. Sarac S, Gursel B. Use of homograft dehydrated temporal fascia in tympanoplasty. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2002;23:416-21.
- 169. Sauvage JP, Heurtebise F, Puyraud S. [Hammock myringoplasty (technique, results)]. Revue de laryngologie otologie rhinologie 1996;117:247-51.
- 170. Scaramella LF, Farrell BP, Kooiker PDet al. Effectiveness of nonsurgical office closure of tympanic membrane pars tensa perforations. *Ear, nose, & throat journal* 2002;81:556-8, 60.
- 171. Schraff SA, Markham J, Welch Cet al. Outcomes in children with perforated tympanic membranes after tympanostomy tube placement: results using a pilot treatment algorithm. *American journal of otolaryngology* 2006;27:238-43.
- 172. Sckolnick JS, Mantle B, Li Jet al. Pediatric myringoplasty: factors that affect success-a retrospective study. *The Laryngoscope* 2008;118:723-9.
- 173. Seidman MD. Anterior transcanal tympanoplasty: a novel technique to repair anterior perforations. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2008;138:242-5.
- 174. Sergi B, Galli J, De Corso Eet al. Overlay versus underlay myringoplasty: report of outcomes considering closure of perforation and hearing function. *Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale* 2011;31:366-71.
- 175. Shaikh AA, Onali MAS, Shaikh SMet al. Outcome of Tympanoplasty Type I by Underlay Technique. *Journal of Liaquat University of Medical and Health Sciences* 2009;8:80-4.
- 176. Sharma DK, Singh S, Sohal BSet al. Prospective study of myringoplasty using different approaches. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2009;61:297-300.
- 177. Sharp JF, Terzis TF, Robinson J. Myringoplasty for the anterior perforation: experience with the Kerr flap. *The Journal of laryngology and otology* 1992;106:14-6.
- 178. Sheahan P, O'Dwyer T, Blayney A. Results of type 1 tympanoplasty in children and parental perceptions of outcome of surgery. *The Journal of laryngology and otology* 2002;116:430-4.
- 179. Sheehy JL, Anderson RG. Myringoplasty. A review of 472 cases. *The Annals of otology, rhinology, and laryngology* 1980;89:331-4.

- 180. Shih L, de Tar T, Crabtree JA. Myringoplasty in children. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 1991;105:74-7.
- 181. Shrestha S, Sinha BK. Hearing results after myringoplasty. *Kathmandu University medical journal (KUMJ)* 2006;4:455-9.
- 182. Singh BJ, Sengupta A, Das SKet al. A comparative study of different graft materials used in myringoplasty. *Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India* 2009;61:131-4.
- 183. Singh GB, Sharma A, Singh N. Role of transtympanic myringoplasty in modern otology. *The Journal of otolaryngology* 2006;35:408-12.
- 184. Singh GB, Sidhu TS, Sharma Aet al. Tympanoplasty type I in children--an evaluative study. *International journal of pediatric otorhinolaryngology* 2005;69:1071-6.
- 185. Singh M, Rai A, Bandyopadhyay Set al. Comparative study of the underlay and overlay techniques of myringoplasty in large and subtotal perforations of the tympanic membrane. *The Journal of laryngology and otology* 2003;117:444-8.
- 186. Sozen E, Orhan Ucal Y, Tansuker HDet al. Is the tragal cartilage necessary for type 1 tympanoplasties? *The Journal of craniofacial surgery* 2012:23:e280-3.
- 187. Sridhara SK, Rivera A, Littlefield P. Tympanoplasty for blast-induced perforations: the Walter Reed experience. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2013;148:103-7.
- 188. Srinivasan V, Toynton SC, Mangat KS. Transtympanic myringoplasty in children. *International journal of pediatric otorhinolaryngology* 1997;39:199-204.
- 189. Supiyaphun P, Kerekhanjanarong V. Myringoplasty: a simple procedure for out-patients. *Journal of the Medical Association of Thailand = Chotmaihet thangphaet* 1999;82:1220-5.
- 190. Takahashi-Tatsumi E, Mishiro Y, Katsura Het al. Longitudinal follow-up after pediatric myringoplasty: long-term outcome is defined at 12 months.

 Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2014;35:126-8.
- 191. Tek A, Karaman M, Uslu Cet al. Audiological and graft take results of cartilage reinforcement tympanoplasty (a new technique) versus fascia.

 European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2012;269:1117-26.
- 192. Terry RM, Bellini MJ, Clayton MIet al. Fat graft myringoplasty--a prospective trial. Clinical otolaryngology and allied sciences 1988;13:227-9.
- 193. Thomassin JM, Facon F, Gabert K. [The effectiveness of otoendoscopy in myringoplasty using adipose graft]. *Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris* 2004;121:346-9.
- 194. Trotoux J, Geoffray B, Deffrennes Det al. [Tympanic reconstruction by molded grafts. Value and results. Apropos of experience in 158 cases]. *Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris* 1986;103:437-42.
- 195. Tuzuner A, Demirci S, Kuran Get al. Does glubran 2 improve the graft uptake in tympanoplasty? A retrospective study. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:3-8.
- 196. Ulku CH. Cartilage tympanoplasty with island technique for reconstruction of tympanic membrane perforation: anatomic and audiologic results. *Kulak burun bogaz ihtisas dergisi : KBB = Journal of ear, nose, and throat* 2010;20:7-12.
- 197. Ullah N, Khan Q, Said Met al. Tympanoplasty in young patients. *Journal of Postgraduate Medical Institute* 2011;22.
- 198. Umapathy N, Dekker PJ. Myringoplasty: is it worth performing in children? Archives of otolaryngology--head & neck surgery 2003;129:1053-5.
- 199. Vartiainen E, Nuutinen J. Success and pitfalls in myringoplasty: follow-up study of 404 cases. *The American journal of otology* 1993;14:301-5.

- 200. Vartiainen E, Vartiainen J. Tympanoplasty in young patients: the role of adenoidectomy. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 1997;117:583-5.
- 201. Velepic M, Starcevic R, Ticac Ret al. Cartilage palisade tympanoplasty in children and adults: long term results. *International journal of pediatric otorhinolaryngology* 2012;76:663-6.
- 202. Vos JD, Latev MD, Labadie RFet al. Use of AlloDerm in type I tympanoplasty: a comparison with native tissue grafts. *The Laryngoscope* 2005;115:1599-602.
- 203. Wang WH, Lin YC. Minimally invasive inlay and underlay tympanoplasty. American journal of otolaryngology 2008;29:363-6.
- Webb BD, Chang CY. Efficacy of tympanoplasty without mastoidectomy for chronic suppurative otitis media. *Archives of otolaryngology--head & neck surgery* 2008;134:1155-8.
- 205. Weider DJ. Tympanoplasty: medial grafting using Williams' microclips. Archives of otolaryngology (Chicago, Ill.: 1960) 1977;103:468-72.
- 206. Williams JD. Microclip application in tympanoplasty. *The Annals of otology, rhinology, and laryngology* 1977;86:223-6.
- 207. Yadav SP, Aggarwal N, Julaha Met al. Endoscope-assisted myringoplasty. Singapore medical journal 2009;50:510-2.
- 208. Yang HC, Cho YB, Jang CH. Efficacy of tympanoplasty without mastoidectomy on MRSA-infected chronic otitis media. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2014;35:976-80.
- 209. Yigit O, Alkan S, Topuz Eet al. Short-term evaluation of over-under myringoplasty technique. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology-Head and Neck Surgery 2005;262:400-3.
- 210. Yilmaz MS, Guven M, Kayabasoglu Get al. Comparison of the anatomic and hearing outcomes of cartilage type 1 tympanoplasty in pediatric and adult patients. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology Head and Neck Surgery 2015;272:557-62.
- 211. Yuasa Y, Yuasa R. Postoperative results of simple underlay myringoplasty in better hearing ears. *Acta oto-laryngologica* 2008;128:139-43.
- Yung M, Neumann C, Vowler SL. A longitudinal study on pediatric myringoplasty. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2007;28:353-5.
- 213. Zhang Z, Liu X, Chen Set al. Combined tympanic epithelial layer avulsion and overlay myringoplasty for diffuse granular myringitis. *The Journal of laryngology and otology* 2010;124:842-5.
- 214. Zhang ZG, Huang QH, Zheng YQet al. Three autologous substitutes for myringoplasty: a comparative study. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2011;32:1234-8.