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Introduction
Throughout history many methods and 
theories have been developed to design 
gravity dams. For many decades the popular 
‘classical’ or ‘conventional’ method (CM) was 
used. This method became virtually a design 
standard and is still used by many engineers. 
It is based on the formulation of Bernoulli’s 
‘shallow beam theory’. Despite its popularity, 
the method has many limitations. Its popu-
larity can be attributed to its straightforward 
approach, conservative results and the fact 
that manual calculations can be done.

The finite element method (FEM) has 
become a popular tool for analysing complex 
structures. Although the geometry of a 
gravity dam is very basic, the structural 
analysis of such a mass concrete structure 
is relatively complex, due to the non-linear 
material behaviour and the variety of static 
and dynamic loads acting on the structure. 
In this paper the FEM is investigated as 
a design tool for analysing gravity dams. 
Although the FEM is already widely used 
for this purpose, there are some deficiencies 

that have to be addressed in order to fully 
utilise this method. The major shortcoming 
of the linear elastic FEM is its sensitivity to 
mesh density and stress peaks at the points 
of so-called ‘singularities’. These are posi-
tions where the structure has sharp edges, or 
re-entrant corners, usually leading to infinite 
stresses. An additional shortcoming of the 
linear elastic FE analysis is dealing with 
brittle material behaviour in tension and 
compression stress zones.

Although in this paper the FEM Drucker-
Prager material yield model is illustrated 
with 2-D models, these principles and con-
cepts can also be adapted to 3-D models.

Classical method (CM)
The theory of the CM is well documented 
(USBR 1976; CADAM 2001). This method, 
used to evaluate the stability of a gravity dam, 
is based on two criteria: (1) the calculation 
of the tensile stress at the heel and toe of the 
wall by means of the Bernoulli thin beam 
formula, and (2) the factor of safety against 
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sliding calculated from the Coulomb friction 
equation. A set of load combinations is evalu-
ated according to the design standards. These 
are based on failure mechanisms relevant to 
the specific gravity dam. The CM method will 
not be dealt with in this paper, although the 
results of a CM analysis with the well-known 
program CADAM (2001) will be illustrated.

In South Africa and many other countries 
no official code of practice for dam design 
is available, and the design criteria, load 
conditions, acceptable stresses and factors 
of safety (FOS) are left to the discretion of 
the approved professional person (APP) and/
or design engineers. However, a large variety 
of SANCOLD (South African National 

Committee on Large Dams) and ICOLD 
(International Commission on Large Dams) 
publications and guidelines are available to 
the design engineer.

Finite element method (FEM)
The FEM is a powerful design tool for ana-
lysing gravity dams, but when the analyses 
are performed in the linear elastic domain, 
the problems of stress peaks at the points of 
singularity have to be addressed. Figure 1 
illustrates the singularity problems at the 
heel and toe of the wall of a gravity dam for a 
homogeneous wall and foundation. The heel 
is defined as the position where the upstream 
face of the wall intersects the foundation 
face. Similarly the toe is defined as the posi-
tion where the downstream face of the wall 
intersects the foundation face.

The points where singularities emerge are 
important positions in gravity dam design. 
In order to address the singularities problem 
for linear FE analysis, the following solutions 
were investigated by Durieux (2009):

■■ Identify points where singularities occur 
and disregard the peak stresses within a 
small restricted area.

■■ Use a relatively coarse FEM mesh to 
eliminate the singularity effects, but still 
capture the essential stresses in the wall 
section with reasonable accuracy.

■■ Employ ‘stress linearisation’.
■■ Modify the geometry to incorporate a fil-

let or round-off radius, relaxing the stress 
concentration.

Non-linear analysis techniques provide more 
realistic stress distributions at singularities:

■■ Fracture mechanics techniques which 
simulate crack development at the sin-
gularity point and redistribute the stress 
surges.

■■ Contact elements follow a prescribed path 
and open when a specified tensile stress 
occurs, and thus relieve tensile stresses.

■■ Non-linear material methods, such as 
the Mohr-Coulomb and Drucker-Prager 
yield models, which will be the focus of 
this paper.

Illustration of the singularity 
effect on a hypothetical 
triangular dam in 2-D
To illustrate the effect of the singularity 
problem on a gravity dam, a 2-D plane strain 
FE model of a hypothetical triangular dam 
was created with different mesh densities. 
Mesh densities of 4, 8, 12, 20, 40, 80 and 160 
elements along the base of the wall were 
modelled. Figure 2 illustrates some of these 
mesh densities for a 100 m high triangular 
gravity dam with a downstream slope of 1:0.8. 
A monolithically FEM mesh was used, i.e. wall 

Figure 1 Illustration of singularity points where stress peaks occur
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Figure 2 Triangular gravity dam – mesh densities with 4, 8, 20 and 160 elements at the base
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and foundation were only distinguished by 
their material properties, but no discontinuities 
were introduced, such as contact elements.

The load conditions applied are: (a) hydro-
static pressure of 100 m water applied on the 
upstream face, (b) full uplift pressure under 
the wall (triangular distribution from 1 MPa 
at the heel to zero at the toe), and (c) self-
weight of the concrete wall. The MSC Marc 
FE program was used (MSC Marc 2003).

The material properties of a typical 
concrete gravity dam were used, i.e. elastic 
modulus for concrete Ec = 20 GPa, Poisson’s 
ratio υ = 0.22 and density ρ = 2 400 kg/m³. 
For the foundation, Er = 30 GPa and υ = 0.25 
were used. No density was incorporated into 

the foundation block. The boundary condi-
tions were applied on the foundation block 
and were fixed on the lower circumference 
in the x and y directions. The last mesh illus-
trated in Figure 2 is one-way biased to limit 
the number of elements, but still has the cor-
rect element size at the heel of the wall.

Figure 3 illustrates the contour plot of the 
vertical normal stress (Sy) for a mesh density 
of a one-way biased 160 elements at the base 
of the wall. The load case was for the above-
mentioned load condition. The maximum 
vertical normal stress Sy at the heel of the 
wall is 5.30 MPa.

Figure 4 illustrates the distribution of 
normal tensile stress Sy at the heel of the wall 

for the seven mesh densities. The load condi-
tions (as outlined above) were the same for 
all the analyses.

The normal stress Sy at the heel of the 
wall in Figure 4 varies from 0.36 MPa to 
5.30 MPa for the 4 to 160 element mesh den-
sities, illustrating the large disparity in the 
stress. The question is, which stress is the 
correct one to represent the stress condition 
at the heel of the wall?

The main stability criterion used in the 
CM is based on calculating the stress at 
the heel of the wall and assessing it with 
an allowable tensile stress for a given load 
condition. However, when the same evalu-
ation criterion is used with the linear FEM, 
conflicting conclusions on the safety of the 
structure can be reached, due to the large 
stress variation at the heel depending on the 
mesh density (illustrated in Figure 4). It is 
thus necessary to adopt another evaluation 
criterion for the FEM.

One of the methods mentioned above to 
address the singularity problem in an FEM is 
to use the non-linear material yield models. 
The Drucker-Prager (DP) yield model is well 
suited to deal with this problem, but then an 
alternative evaluation criterion would have 
to be adopted for gravity dams. The authors 
have found that a useful technique for evalu-
ating the structural behaviour of a gravity 
wall, utilising the non-linear FEM, is by com-
puting the equivalent plastic strain (EQPS) 
of the wall for the given load conditions. The 
EQPS provides a means of measuring the 
material yielding in the plastic zone (plastic 
strain) and presents the areas where plastic 
material yielding is assumed to occur. The 
EQPS can be illustrated on a graph present-
ing the normal stress versus strain. The 
position where the EQPS starts is where the 
curve deviates from the linear relationship 
(see Figure 5 in next section).

Determination of the 
parameters for the Drucker-
Prager model from standard 
laboratory tests
The theory of the DP model is well docu-
mented in text books, such as Zienkiewicz 
(1977) and Chen (1982).

A simplified uni-axial stress-strain curve 
for the DP ideal plastic model is presented 
in Figure 5, which illustrates the linear 
and non-linear relationship between stress 
and strain.

In Figure 5 the stress-strain curve illus-
trates that the theory of the linear plastic DP 
(also called the ideal plastic DP) is a conser
vative approach, because the linear horizon-
tal line of the relationship deviates from the 
non-linear stress-strain curve when entering 

Figure 4 �Maximum vertical normal stresses at the heel of the triangular gravity dam for different 
numbers of elements along the base
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the non-linear region. This implies that the 
yielding stress of the material is kept con-
stant at a lower stress level below the actual 
stress-strain relationship. This approach is 
valid only until the horizontal (dotted) line 
intersects the non-linear curve. The DP 
analysis should be kept within this strain 
region to ensure a conservative approach.

Figure 6, from Zienkiewicz (1977), illus-
trates the Mohr-Coulomb, Tresca, Drucker-
Prager (DP) and Von Mises material yield 
criteria. It should be noted that the stresses 
are illustrated in the negative zones. The 
envelopes represent the failure domain. σ1, σ2 
and σ3 are the maximum, intermediate and 
minimum principal stresses respectively, φ is 
the internal friction angle and c the cohesion. 

This paper will focus on the Drucker-Prager 
yield criterion.

Basic theory of the 
Drucker‑Prager model
In Chen (1982) and MSC Marc (2003) the 
following equation of the Drucker-Prager 
yield criterion is given:

f = αJ1 + J2
½ – 

σ

√3
 = 0� (1)

The equations for calculating the c and φ are 
given in terms of α and σ:

c = 
σ

[3(1 – 12α2)]½
; Sin φ = 

3α

(1 – 3α2)½
� (2)

where:
	c	=	 cohesion of material
	φ	=	 internal friction angle of material
	σ	=	 calculated yield stress
	α	=	 DP constant

J1 (MSC Marc 2003) or I1 (Chen 1982) is the 
first invariant of the stress tensor:

J1 = σii with σii = σ1+ σ2+ σ3

J2 is the second invariant of the stress 
tensor:

J2 = 
1

2
 σij σij

σii and σij are stress tensors

σ1, σ2 , σ3 are maximum, intermedi-
ate and minimum principal stresses 
respectively.

Chen (1982) gives:

f(I1, J2) = αI1 + √J2 – k� (3)

where:

k = 
σ

√3
�  (4)

Chen (1982) also gives the equations for 
determining the values of friction and cohe-
sion in terms of the tensile and compressive 
yield strength of the material:

Sin φ = 
fc – ft

fc + ft
  and  c = 

fc  ft

fc –  ft  
Tan φ� (5)

where:
	ft	=	tensile strength of material
	fc	=	compressive strength of material

Figure 6 Graphical illustrations of the different yield criteria (Zienkiewicz 1977)

√3c cot φ

–σ3

Mohr-Coulomb φ > 0

σ1 = σ2 = σ3

Tresca φ = 0

–σ2

–σ1

Drucker-Prager φ > 0

–σ3 σ1 = σ2 = σ3

Von Mises φ = 0

–σ2

√3c cot φ

–σ1 (a) (b)

Figure 5 �Simplified stress-strain curves for uniaxial material tests used in the Drucker-Prager  
theory

Stress

DP linear plastic curve

+

+

Non-linear region

Linear region
Ideal plastic 
region

Tension area

Strain

Linear region

Compressive area

Ideal plastic region

Non-linear region

–

–



Journal of the South African Institution of Civil Engineering  •  Volume 58  Number 2  June 20166

By substituting these values of φ and c in 
Equation (2) the parameters for the DP 
model (σ and α) can be obtained.

From the above equations it can be seen 
that, by simply using the tensile and compres-
sive strengths of the concrete, all the necessary 
parameters for the DP model can be derived. 
These material properties can be obtained 
from standard material laboratory tests.

BENCHMARKS APPLYING THE 
DRUCKER-PRAGER MODEL
To evaluate the accuracy of the DP non-
linear FEM (DP NL FEM) to address the 
singularity problem in concrete structures, a 
series of benchmarks were conducted.

The DP NL FEM analyses were computed 
with MSC Marc (2003) using the non-linear 
material facility. The loads were divided 
into time-steps and ramped from zero to 
maximum value during specific time-steps. 

The load time-stepping is necessary to 
accomplish correct convergence in the FE 
program for material yielding throughout 
the structure. For each time-step an 
iterative process was used to ensure that 
complete convergence had been obtained. 
Convergence is defined as a solution of 
which the results for stress or deformation 
congregate to a single value through the 
prescribed time-steps and iterations, and the 
oscillation of the results stabilises within the 
given convergence tolerances.

The benchmarks from, amongst others, 
Bhattacharjee and Léger (1994) and Carpinteri 
et al (1992) were arranged and conducted, and 

described comprehensively in Durieux (2009), 
according to the level of complexity:

■■ Simple tensile specimen 
■■ 2-D standard beam test
■■ 2-D standard shear beam
■■ Model gravity dam
■■ Full-size concrete gravity dam.

One benchmark of a model gravity dam (as 
shown in Figure 7), 2.4 m high, of Carpinteri 
et al (1992) is summarised by way of illustra-
tion. This benchmark was chosen because 
information on the physical laboratory model 
and the results of a fracture mechanics study 
by Bhattacharjee and Léger (1994), same FE 
model as illustrated in Figure 7, were available.

Figure 7 Schematic presentations of the model gravity dam and the EQPS in notch at a force of 750 kN
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Bhattacharjee and Léger (1994) analysed 
this model dam applying a non-linear 
fracture mechanics crack propagation cri-
terion. A ‘fixed crack model with variable 
shear resistance factor’ (FCM-VSRF) was 
employed. In this model, the local reference 
axis system is first aligned with the principal 
strain directions at the instance of softening 
initiation, and kept non-rotational for the 
rest of an analysis. The shear resistance fac-
tor is derived using the strain components 
corresponding to the fixed local axis direc-
tions. The variable shear resistance factor 
takes account of deformations in both lateral 
and normal directions to the fracture plane.

The DP NL FEM was loaded with a 
triangular load representing the point loads 
on the model concrete dam. The boundary 
conditions were applied directly on the base 
of the wall. No uplift loading was modelled. 
The total load of the triangularly distributed 
load was ramped from zero to 1 500 kN. The 
parameters used in the DP benchmark model 
are from Bhattacharjee and Léger (1994) and 
are given in Table 1.

The values for the crack mouth opening 
displacement (CMOD), for the pre-assigned 
notch, were computed by the authors utilising 
the DP NL FEM and the results compared 
with the experimental data. From Figure 8 it 

can be seen that the CMOD values compared 
well with the experimental model. It can be 
noted that the theoretical fixed-crack model 
with variable shear resistance factor (FCM-
VSRF) is less ‘stiff ’ than the DP NL FEM.

With the maximum load of 1 500 kN, the 
DP NL FEM model exhibits two zones where 
plastic strain has occurred, as illustrated by 
the EQPS, and here material failure can be 
expected. From the results in Figure 8 it can 
be seen that the CMOD of the DP NL FEM 
correlated well with the experimental data of 
the concrete model by Carpinteri et al (1992).

Models of the DP NL FEM were also 
prepared by Durieux (2009) to evaluate the 
sensitivity of peak stresses at singularity 
points for a variation in mesh density. These 
results showed that the DP NL FEM is sig-
nificantly less sensitive (than the linear FEM) 
to a variation in mesh density.

Finally, to calibrate the mass concrete mate-
rial parameters for the DP NL FEM, Durieux 
(2009) studied the laboratory-tested material 
properties of 12 existing DWS dams. The 
average tensile strength of the mass concrete 
used in DWS dams is found to be 3.77 MPa, 
with a standard deviation of 0.8 MPa. The cor-
responding compressive strength is 33.3 MPa, 
with a standard deviation of 12.7 MPa. (This is 
consistent with the traditionally accepted ratio 
for mass concrete where the tensile to com-
pression strength ratio is approximately 10%.)

Case study
The following case study of a dam recently 
constructed was chosen, because it was 
designed in accordance with the latest 
design criteria and reviewed by a panel of 
specialist dam engineers in South Africa. 
The dam shape was optimised by the CM 
in agreement with the recommended design 
memorandum (RDM) of the Professional 
Design Team (2005). The objectives of the 
case study were to illustrate:

■■ the contrast in the stress distributions 
between a linear static analysis and a 
DP NL FE analysis for an extreme load 
condition

■■ the region where material yielding is 
expected for an extreme load condition

■■ the stress distribution along the base of 
the wall when a long-term, or residual, 
material property was used

■■ the variation in the factor of safety (FOS) 
against sliding calculated for the CM and 
the DP NL FEM, as exhibited by a failure 
domain graph.

Figure 9 is an artist’s impression of the dam. 
The dam has a centre OG spillway and 
roller-compacted concrete flanks.

For the purpose of this paper three types 
of analyses were done for comparison:

Figure 9 Artist’s impression of the case study gravity dam

Figure 10 �Geometry, boundary conditions and pressure loads of the case study
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■■ Classical method
■■ Static plane strain linear FEM
■■ Static plane strain DP NL FEM.

The geometry, boundary conditions and pres-
sure loads are illustrated in Figure 10. Only a 
static analysis with hydrostatic loads is pre-
sented in this paper. The uplift force or pore 
pressure is for a partial or drained condition.

Classical method
The geometry as presented in Figure 10 
was used to set up the data for the CADAM 
program.

The input parameters for the CM are:
■■ Internal friction angle (peak) at the base 

surface (φ) = 40º
■■ Cohesion (peak) at the base surface (c̀ )	= 

0.6 MPa
■■ Density of mass concrete (ρc) = 2 450 kg/m³
■■ Density of silt (ρs) = 400 kg/m³

Service load case:
■■ Hydrostatic pressure at full supply level 

(FSL = 75.0 m)
■■ Silt load of 40 m
■■ Self-weight
■■ Partial uplift condition (pore pressure 

drained under the base line).

Extreme load case:
■■ Hydrostatic pressure of a safe evaluation 

flood (SEF = 81.5 m)
■■ Silt pressure of 40 m
■■ Tail-water level of 23 m on the down-

stream side for an SEF
■■ Self-weight
■■ Partial uplift condition.

Finite element models
The mesh density for the FEM is illustrated 
in Figure 11 and is a relatively fine mesh at 
the heel of the wall. Note the set elements 
along the base of the wall representing 
a weak material zone. This is, how-
ever not a contact element joint, but a DP 
material zone.

Assumptions of the finite element models
■■ Homogeneous models, i.e. no contact 

elements
■■ No temperature loads
■■ No seismic loads
■■ Use of second-order isoparametric 

elements
■■ Boundary conditions: The structure was 

restrained on the foundation block in the x 
and y directions as illustrated in Figure 10.

The FEM is homogeneous, i.e. no special ele-
ments between the wall and foundation were 
introduced, e.g. contact elements. However, 
at the first layer of elements above the foun-
dation block a separate material property 

was also assigned to represent an old and 
deteriorated contact layer.

The concrete material properties were 
taken from the Professional Design Team 
(2007) laboratory report. An average 
compressive concrete strength of 15 MPa 
was specified. The maximum allowable 
tensile stress was determined from the 
traditional ratio of 1:10 of tensile to 
compressive stress.

Material parameters

Mass concrete:
■■ Modulus of elasticity (Ec)	 20 000 MPa
■■ Poisson’s ratio (υ)	 0.22
■■ Density (ρ)	 2 450 kg/m3

Properties for sliding calculations:
The properties at the base sliding line

■■ Friction angle (φ)	 40º
■■ Cohesion (c’ )	 0.6 MPa

Drucker-Prager parameters:
■■ Normal and long-term (residual) com-

pression stress for concrete fcc = 15.0 MPa

■■ Normal (residual) tensile stress for con-
crete ftc = 1.5 MPa

■■ Long-term (weathered) tensile stress for 
concrete frc = 0.2 MPa

The very low residual material strength 
was chosen to simulate a deteriorated, very 
old concrete. Results of acoustics emission 
laboratory tests have demonstrated that old 
concrete under severe conditions can eventu-
ally reach very low tensile strength values of 
0.2 MPa (Oosthuizen 2007).

From the equations presented, the values 
for the DP parameters were calculated:

■■ Normal concrete: ftc = 1.5 and 
fcc = 15 MPa: DP parameters: αtc = 0.247 
and σtc = 2.14 MPa.

■■ Deteriorated concrete: ftc = 0.2 and 
fcc = 15 MPa: DP parameters: αtc = 0.283 
and σtc = 0.298 MPa.

Foundation rock properties (for 
slightly weathered rock):

■■ Modulus of elasticity (fractured) (Erock)	
10 000 MPa

■■ Poisson’s ratio (υ)	 0.25
■■ Density (ρrock)		  zero

Table 2 Results of the CADAM classical method

Load case 
(partial uplift)

Stress at heel (MPa) Stress at toe (MPa) FOSsliding

Result Norm Result Norm Result Norm

Service load –0.38 < 0.0 –1.10 > –3.0 2.88 > 3.0

Extreme load –0.05 < + 0.5 –1.21 > –3.0 2.47 > 1.5

Note: Tensile stress is (+) and compressive stress is (-)

Figure 11 �Finite element mesh of the wall, foundation block and soft joint
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Drucker-Prager parameters for rock:
ft_rock = 1.5 MPa, fc rock = 15 MPa: DP para
meters: αrock = 0.247 and σrock = 2.14 MPa.

Load cases for the linear and 
non-linear analyses
In order to obtain the correct stresses (for 
full convergence in the FEM) for the non-
linear analysis, the loads were stepped or 
ramped up through the different steps.

Service load case: time-steps 1 to 3
■■ Time-step 1 – the gravity load is ramped 

from zero to maximum.
■■ Time-step 2 – the hydrostatic pressure is 

ramped from empty to FSL.
■■ Time-step 3 – partial or drained uplift 

pressure is applied, as well as the silt load 
(silt level = 40 m).

Extreme load case: time-step 4
■■ Time-step 4 – The water overspill is 

ramped from FSL to SEF, and the corre-
sponding tail-water pressure is applied as 
well (max tail-water = 23 m) (FSL = 75.0 m 
and SEF = 81.5 m as before).

The factor of safety (FOS) against sliding was 
determined along the horizontal contact line 
using the vertical normal stress Sy to calcu-
late the Coulomb friction resistance.

Discussion of CASE 
STUDY analysEs

Classical method
The stresses at the heel and toe were calculated 
with the CADAM software. The results of the 
service and extreme load cases are represented 
in Table 2. The criterion for stability utilising 
the CM is by evaluating:

■■ The tensile stress (with CM compression) 
at the heel of the wall

■■ The compression stress at the toe of the 
wall

■■ The factor of safety (FOS) against sliding.
For both the service and extreme load cases 
no tensile stresses were found at the heel 
of the wall. This implies that this wall is 
stable against over-turning for the static load 
conditions. The factor of safety against slid-
ing is also within the allowable range for the 
extreme load, but slightly low for the service 
load. This can be contributed to the fact that 
a relatively low cohesion was used.

Finite element methods
The FE method uses a quite different 
approach than the CM to evaluate the safety 
of a gravity wall. The loads in the FEM are 
divided into different load-steps. For this 
analysis four load-steps were selected, as 
illustrated in the previous paragraph. The first 

analysis presented is a linear static analysis 
with the load-steps from zero to the full sup-
ply level and followed by the eventual extreme 
load case for the SEF. The next analysis is the 
DP NL FEM for the same load-steps.

In Table 3 the normal stress Sy is used since 
it is comparable with the stress calculated 

for the CM. From Table 3 it can be observed 
that the tensile stress at the heel of the wall is 
reduced due to the yielding of the material.

Figure 12 is a contour plot of the maximum 
principal stresses at the heel of the wall for 
the linear FEM. This is the position where the 
maximum tensile stress occurs and can be 

Figure 12 �Extreme load case – maximum principal stresses for linear FEM with the zone at the 
heel inserted
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compared with the stress distribution of the 
DP NL FE analysis results. Note the restricted 
area where the high tensile stresses are located.

The maximum principal stress S1 for the 
linear case is 7.2 MPa. The normal stress Sy 
at the same position is 3.01 MPa. The yield 
stress for mass concrete is approximately 
between 2 and 3 MPa, which implies that 
material yielding will occur in the FEM at 
the heel of the wall.

Figure 13 presents the maximum princi-
pal stresses for the DP NL FEM analysis for 
the same load case as in Figure 12 (extreme 
load condition). The stress distributions for 
the linear and non-linear analyses can be 
compared. Note the lower principal tensile 
stress and the redistribution of the tensile 
stress at the heel of the wall.

The maximum principal stress has now 
decreased from 7.2 MPa to 1.635 MPa. This 
indicates that some yielding has occurred at 
the heel of the wall.

To illustrate the yielding, a contour plot 
of the total EQPS for the extreme load case 
is presented in Figure 14. The region of 
non-zero EQPS can be interpreted as the 
region where the material changes from 
the linear to the non-linear state on the 
stress-strain curve.

From Figure 14 it can be seen that the 
EQPS dips into the foundation at approxi-
mately 45° for a distance of approximately 3.5 
m. This is a typical pattern where the material 
properties for the concrete wall and the rock 
foundation are of the same order. This failure 
pattern is also seen in fracture mechanics 
analyses of similar dams (Cai et al 2008).

The NL DP FE yield model can also be uti-
lised in dam analysis where different material 
properties are used. For a worst-case scenario 
the same model was used, but with a weak or 
weathered residual layer of material between 
the concrete wall and the rock. Figure 15 
illustrates the structural behaviour of this 
scenario. The tensile yield stress for the weak 
layer was assumed to be ft = 0.2 MPa. No con-
tact elements were included and the FE mesh 
is thus homogeneous.

From Figure 15 it can be seen that the 
yield zone is along the weak layer and does 
not dip into the rock as in Figure 14. The 
EQPS contour plot shows that yielding 
could occur up to approximately 15.5 m 
(24%) of the base length for such an extreme 
load condition. This is useful to evaluate 
the condition of very old dams founded on 
weathered concrete or rock. Weak founda-
tion layers or deep-seated sliding joints can 
be analysed in a similar manner.

Figure 16 illustrates the maximum prin-
cipal stress (S1) along the base of the wall for 
the extreme load case and for the following 
three analyses:

Table 3 Vertical stresses at the heel and toe of the wall and FOS against sliding

Service load Extreme load

Heel (MPa) Toe (MPa) FOS Heel (MPa) Toe (MPa) FOS

Linear FE +1.77 –1.23 2.98 +3.01 –1.54 2.53

DP NL FE ( ft = 1.5 MPa) +1.20 –1.24 2.97 +1.43 –1.56 2.51

Note: Tensile stress is (+) and compressive stress is (-)

Figure 13 �Extreme load case – maximum principal stresses for DP NL FEM, with the zone at the 
heel inserted
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■■ Linear analysis (indicated as S1-L)
■■ NL DP FEM with equal concrete and rock 

material properties, ft = 1.5 MPa (indi-
cated as S1 ft = 1.5)

■■ NL DP FEM with weathered material 
along the base of the wall ft = 0.2 MPa and 
rock ft = 1.5 MPa (indicated as S1 ft = 0.2).

From Figure 16 it can be seen that the stress 
graphs converge at approximately 15 metres 
from the heel of the wall. The weathered base 
layer produces very low stresses at the heel.

Factor of safety against sliding
The critical factor of safety (FOS) of a gravity 
dam is typically the resistance against slid-
ing. A “failure domain graph” (Oosthuizen 
1985) is useful for determining the safety 
of a wall for given material properties, i.e. 
cohesion (c’) and friction angle (φ), of the 
foundation at the contact surface. The values 
c’ versus φ for the FOS against sliding equal 
to either 1.0 or 2.0 are determined.

The calculation for the FOS against slid-
ing is performed in a similar manner as used 
for the CM:

FOS = 
c’. A + (∑V– – U). tan φ 

∑H
� (6)

where:
	∑V–	=	� sum of vertical loads, excluding uplift 

pressures
	 U	=	 force due to uplift pressures
	 A	=	� area of uncracked region along the 

base line
	∑H	=	� sum of all horizontal loads, including 

tail-water pressures
	 c’	=	� cohesion (apparent or real. For 

apparent cohesion a minimum value 
of compressive stress, σn, should 
be specified to determine the com-
pressed area upon which cohesion 
could be mobilised)

	 φ	=	� friction angle (peak value or residual 
value).

The failure domain is the area below the line 
for FOS = 1.0, and the safe domain the area 
above the line FOS = 2.0. Figure 17 illustrates 
the results of the analyses of these domains 
for the CM and the NL DP FEM (indicated 
as FEM) for the case study for the extreme 
load case and a concrete tensile yield of ft = 
1.5 MPa. It is suggested that the NL DP FEM 
provides more reliable values for the required 
cohesion and internal friction angle.

Proposed methodology for 
the analysis of a gravity dam
The following methodology for analysing 
gravity dams using the design criteria of the 
NL DP FEM is proposed:

■■ Initially prepare the CM and the linear 
2-D FEM analyses. For the FEM select a 
relatively coarse mesh (to minimise the 
stress peaks). From these analyses identify 
any problem areas. Aspects to consider 
are the topography, geology and material 
properties.

■■ Perform an NL DP FEM and examine the 
area of non-zero EQPS to identify material 

yielding zones. Identify areas of extensive 
material failure. The safety of the struc-
ture is determined by standards laid down 
by the APP and the design engineer.

■■ For existing dams the back-analysis should 
be compared with information from 
instrumentation and geodetic surveys.

■■ As a first assumption, the material yield-
ing regions, as detected from the EQPS 

Figure 14 �Extreme load case – EQPS at the heel of the wall for DP NL FEM
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plots, should preferably not exceed, say, 
3% of the base width for a service load 
and 10% for an extreme load condition. 
These percentages are recommended 
by the authors and are based on past 
experience. The FOS against sliding is 
calculated from the summation of the 
computed normal stresses Sy, similar to 
the CM.

■■ The 2-D FEM application illustrated 
here can be extended to 3-D analysis 
models. The Drucker-Prager yield model 
is compatible with a 3-D analysis. These 
models could include more aspects of the 
geometry and foundation details, such as 
geological joints and faults. 3-D analysis 
is important for dams where sliding along 
the flanks is of concern, i.e. where the 

wall is founded on steep flank formations 
(Lombardi 2007).

Concluding remarks
The CM is still widely used to analyse grav-
ity dams due to its straightforward approach. 
The CM has, however, limitations for back 
analysis on existing dams for dam safety 
evaluations, especially where weathered 
material is an important concern.

FEM analyses may use fine element meshes 
to incorporate more geometric detail. In the 
linear domain, the FEM is sensitive to mesh 
density and high stress peaks at singularity 
points. The non-linear FEM models analyse 
dams more accurately. For the use of contact 
elements the possible failure path should 
be postulated in advance. The NL fracture 
mechanics method (Cai et al 2008) is possibly 
a more accurate, but extremely complicated, 
method to employ in the design of gravity 
dams. This paper illustrates the possibilities of 
the non-linear Drucker-Prager yield model.

It has been illustrated that gravity dams 
can be analysed with the NL DP FEM with 
more certainty, and that the high stress peaks 
at the singularity points can be overcome. 
One advantage of the NL DP FEM is that the 
DP parameters can readily be obtained from 
standard material laboratory tests.

The NL DP FEM facilitates the design and 
optimisation of dams with more confidence. 
New design criteria related to construction 
materials and different cross-sections can be 
investigated, and safer margins of structural 
stability can be determined.

For the purpose of safety back analysis 
of existing dams, the NL DP FEM (the DP 
parameters based on the in-situ material 
properties) may be used as a precursor to, 
and as a check for, the more complex NL 
fracture mechanics method.
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