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Abstract
In mammals, glucocorticoid (i.e. GC) levels have been associated with specific life-history

stages and transitions, reproductive strategies, and a plethora of behaviors. Assessment of

adrenocortical activity via measurement of glucocorticoid metabolites in feces (FGCM) has

greatly facilitated data collection from wild animals, due to its non-invasive nature, and thus

has become an established tool in behavioral ecology and conservation biology. The aim of

our study was to validate a fecal glucocorticoid assay for assessing adrenocortical activity

in meerkats (Suricata suricatta), by comparing the suitability of three GC enzyme immuno-

assays (corticosterone, 11β-hydroxyetiocholanolone and 11oxo-etiocholanolone) in detect-

ing FGCM increases in adult males and females following a pharmacological challenge with

adrenocorticotropic hormone (ACTH) and biological stimuli. In addition, we investigated the

time course characterizing FGCM excretion, the effect of age, sex and time of day on

FGCM levels and assessed the potential effects of soil contamination (sand) on FGCM pat-

terns. Our results show that the group specific 11β-hydroxyetiocholanolone assay was

most sensitive to FGCM alterations, detecting significant and most distinctive elevations in

FGCM levels around 25 h after ACTH administration. We found no age and sex differences

in basal FGCM or on peak response levels to ACTH, but a marked diurnal pattern, with

FGCM levels being substantially higher in the morning than later during the day. Soil con-

tamination did not significantly affect FGCM patterns. Our results emphasize the importance

of conducting assay validations to characterize species-specific endocrine excretion pat-

terns, a crucial step to all animal endocrinology studies using a non-invasive approach.
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Introduction
In their daily lives, animals often experience aversive stimuli (e.g. aggression with conspecifics,
predator encounters, food restrictions, injuries, disease), which trigger a physiological stress
response. In order to cope with such stressors, adrenocorticotropic hormone (ACTH) from the
pituitary stimulates glucocorticoid (GC) production from the adrenal gland and its secretion
into the bloodstream [1–4]. When produced in connection with short-term stress responses,
GCs have beneficial and protective effects on the individual [5, 6] and thus, can positively influ-
ence its prospects of survival and reproduction (e.g.[7]). However, when production is induced
for prolonged periods of time (i.e. chronically), GCs may negatively affect some physiological
functions [8, 9] related to reproduction [10, 11], cognition [4, 12] and immune defense [5],
which can result in reduced survival probability [13]. For these reasons, assessment of GC lev-
els has become common practice for monitoring reproductive health and welfare of both wild
and captive animals [14–17], particularly in threatened or endangered species (cheetah, Acino-
nyx jubatus:[18], wild dog, Lycaon pictus: [19], brown hyaena, Hyaena brunnea; [20], Western
lowland gorilla, Gorilla gorilla gorilla: [21]). Consistently, a growing body of data has empha-
sized how GCs can be involved in the modulation of a wide variety of behaviors including anti-
predator [22, 23], competitive [24], cooperative ([25] but see also [26, 27]), and affiliative
behaviors [26], and thus can potentially have important effects on the display and maintenance
of social relationships in animal societies.

GC levels can be measured directly from blood (plasma, serum) and saliva, or indirectly via
assessment of their metabolite (GCM) concentrations excreted in urine and feces [28]. The
choice of hormone matrix for sample analysis generally depends on the questions at hand, prac-
ticality of collection, the amount needed per sampling event, and the frequency of collection
required [29]. While blood and saliva are most useful in studies investigating immediate changes
in circulating GCs, urine and feces can be collected without direct contact and provide more
integrative information on GC production, making those matrices better suited for the assess-
ment of longer term variations in hypothalamic-pituitary-adrenal (HPA) axis activity [28].

The collection of feces for GC measurement presents several important benefits compared
to other sample types: 1) feces are easy to collect, 2) can be collected once the subject has
moved away from the site, allowing collection with minimum disturbance, 3) since feces collec-
tion does not influence the focal subject’s behavior, it allows for endocrine and behavioral data
to be collected in parallel, and theoretically 4) an unlimited number of samples can be collected
from each focal animal providing longitudinal information with flexible time frames. These
benefits are particularly important when studying populations of wild animals, as they enable
researchers to study the relationship between GC production and various ecological (e.g. rain-
fall, temperature, food availability) and socio-behavioral factors (e.g. social rank, aggression,
communication, vigilance and response to predation etc.) within a natural setting [30].

Patterns, rates and paths of excretion as well as types of metabolites formed can differ sub-
stantially between species [31, 32], sexes [32–34], social rank [35–37], diet [38], season [39, 40],
time of day [34, 41] and temperature [42]. It is thus essential to validate methodologies and
understand the patterns of GC production and excretion for each studied species in order to
generate biologically meaningful results [15, 39].

Meerkats (Suricata suricatta) are small, obligatory, cooperative breeding mammals that live
in arid zones of southern Africa [43]. Groups are composed of a dominant pair and subordi-
nate adults, sub-adults and juveniles of both sexes and varying degrees of relatedness [44, 45].
Females are philopatric [46], while males eventually disperse from their home territories in
search of mates [47, 48]. Within a group, the dominant pair typically monopolizes reproduc-
tion, yet all group members contribute to the raising of the offspring, take turns looking out for
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predators, and contribute to burrow renovation [49–51]. Thus, meerkats present an ideal study
system in which to assess links between GC and a variety of behaviors that are typical of animal
societies in general and of cooperative breeding species in particular. In addition, the social and
curious nature of the species makes meerkats very popular with the wider public and they are
thus, commonly found in zoos the world over. Understanding meerkat physiological response
to stressors will therefore also enable better monitoring of individual health and welfare of cap-
tive colonies.

Previous studies have already emphasized the importance of FGCMmeasurements for bet-
ter understanding meerkat biology (e.g. [22, 52]). In these studies, an assay using an antibody
against corticosterone was applied to monitor FGCM output. Although this approach has been
validated [52], it is unlikely that corticosterone is the major circulating glucocorticoid in this
species. Several studies have shown that in the majority of mammals cortisol is predominant
over corticosterone in circulation (e.g. [53–55]), exceptions being some rodent species in which
corticosterone predominates (e.g. [56, 57]). There is thus good reason to believe a priori that
cortisol is also the main glucocorticoid produced by the adrenal gland in meerkats. In support
of this, several studies have demonstrated that blood cortisol in the species is responsive to con-
ditions in the environment indicative of ‘stress’ and that levels of cortisol are related to a num-
ber of ecological, social, or individual-state variables in meerkats [22, 25, 26, 58, 59]. It is
therefore conceivable that in meerkats FGCMmeasurements based on the analysis of metabo-
lites originating from cortisol may provide a more sensitive measure of adrenocortical function
than the measure of corticosterone immunoreactivity previously used [52].

Therefore, the overall aim of our study was to evaluate a new test system for monitoring
FGCM alterations in male and female adult meerkats. More specifically, we aimed to 1) deter-
mine stress-related physiological responses in meerkat feces by performing an adrenocortico-
tropic hormone (ACTH) stimulation test, 2) evaluate the suitability of the previously used
corticosterone assay [52] by comparing its performance with that of two group-specific assays
that measure metabolites of cortisol, 3) characterize the metabolites measured by the different
assays using HPLC analysis, 4) determine the time course of FGCM excretion, 5) test the valid-
ity of the most reliable assay to detect FGCM increases following social stimuli, and 6) evaluate
the potential impact of soil contamination (sand) of the feces upon FGCM excretion patterns.
Using a captive meerkat colony, we conducted these validations in a controlled environment
that allowed us to collect multiple daily samples per individual and to assess potential effects of
age, sex, and time of day on FGCM excretion.

Materials and Methods

Ethics Statement
This experiment was done according to Swiss law, with ethical approval given by the relevant
authority, i.e. the Swiss Animal Welfare Agency (permit numbers 30/2012 and 233/2014). No
other permit was needed for handling the meerkats. This study did not involve any endangered
or protected species. All details on sampling methods are given below.

Animals and housing conditions
We collected fecal samples from male and female adult meerkats (age range: 11–58 months)
housed at the University of Zurich in an outdoor-indoor enclosure (250m2). During the study,
the colony was exposed to natural fluctuations in photoperiod and natural outdoor tempera-
tures, although heat lamps are available both indoors and outdoors for extra warmth. Water
was provided ad libitum and individuals were fed three times daily, with a mix of fruit, vegeta-
bles, mealworms, crickets, hard-boiled eggs and dead chicks. The captive colony originally
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started with four adults (1 female and 3 males) in 2011 and increased in size to 17 individuals
throughout the time of the study. Information regarding the sexes, dates of birth and manipu-
lation participation of all study animals is presented in Table 1.

ACTH challenge
We conducted ACTH challenge tests in April 2012 (4 males, 1 female) and May 2013 (5 males,
5 females, Table 1). To establish basal FGCM levels we collected 1–3 fecal samples per day
from each individual 5–9 days prior to the pharmacological challenge (pre-treatment levels).
On the day of injection, we distracted the subjects by spreading mealworms on the ground and
injected intramuscularly a single dose (5 IU per kg body weight) of synthetic ACTH (Synacthen
Depot ampule 1mg/ml, Novartis Pharma Schweiz AG, Bern) on the thigh [52]. The focal indi-
viduals were well habituated to close human presence, which allowed ACTH administration
without capture or restrain. On the day of injection and the three days thereafter, we attempted
to collect three samples per day and individual. Subsequently, we collected two samples per day
and study subject for up to two weeks after ACTH administration. Concurrently with the sec-
ond ACTH challenge in 2013, we injected four males with distilled water (0.5ml/kg body
weight) to assess the effect of the injection procedure on glucocorticoid production.

Natural stressor: subordinate male eviction
To assess FGCM alterations in response to biologically relevant stressors, we opportunistically
collected samples from 10 adult individuals (six males and four females) around the time of
intense attack on one group member, which culminated in its permanent eviction from the
group and relocation to a local zoo. In total, we collected 12 samples (from five individuals)
prior to the observed aggressive interactions and 12 and 32 samples (from 10 individuals)
within 48 h and 5 weeks after the observed attack, respectively. In addition, we collected fecal
samples from the attacked male before and during the time when he was attacked.

Table 1. Individual ID, rank, sex and date of birth of all subjects used in the ACTH challenge tests I and II as treated individuals or as water-injected
controls (water). F = female, M = male, ACTH I: April 2012, ACTH 2: May 2013.

ID Rank Birth Challenge

ZIF001 Dominant Septermber.2008 I & II

ZIM002 Dominant July.2007 I

ZIM003 Subordinate April.2008 I and water (II)

ZIM004 Subordinate June.2008 I & II

ZIM005 Subordinate May.2011 I & water (II)

ZIM006 Subordinate July.2011 II

ZIF007 Subordinate July.2011 II

ZIM008 Subordinate July.2011 II

ZIF009 Subordinate July.2011 II

ZIM010 Subordinate February.2012 II

ZIM011 Subordinate February.2012 II

ZIF012 Subordinate February.2012 II

ZIF013 Subordinate May.2012 II

ZIM014 Subordinate May.2012 water (II)

ZIM015 Subordinate May.2012 water (II)

doi:10.1371/journal.pone.0153161.t001
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Fecal sample collection
In total, we analyzed 406 samples, which were collected while the animals remained in their
group. Before each meal we fed each individual a food item covered with a unique combination
of different colored indigestible glitter or chrome dioxide [60] and food dye to enable fecal
sample identification and reliable assignment of samples to individuals. We inspected the
enclosure for new feces every couple of hours and, if we did not find any samples from a partic-
ular individual, before the next meal, we gave it another food item with its respective glitter/
food dye combination to improve our chances of collecting the aimed number of samples per
individual per day. Upon collection, samples were placed into labeled plastic bags and stored at
-20°C within 15 min. The material remained at -20°C until shipment (on dry ice) to the Endo-
crinology Laboratory at the German Primate Center for FGCM analysis.

Hormone extraction and accounting for sample soil contamination
We processed and extracted all fecal samples following Heistermann et al. [61]. Briefly, samples
were lyophilized for 72 h, pulverized, and 0.10–0.12 g of the fecal powder were extracted in 3
ml of 80% aqueous methanol by vortexing the suspension for 15 min. The applied protocol is
strongly recommended by Palme and colleagues [53] who have shown that 80% aqueous meth-
anol proved best suited for extraction of naturally occurring glucocorticoid (and other steroid
hormone) metabolites from feces of virtually all mammalian species tested so far, yielding high
recoveries (e.g. 80–90%) and precision [62–65]. Following extraction, we centrifuged the sus-
pension, recovered the supernatant and stored it at -20°C until FGCM analysis [66].

Since feces were often deposited onto sandy ground, most samples were covered in a layer
of soil. To minimize this “contamination” and thus aid in reducing non-biological variance in
FGCM levels [67], we manually rubbed off the soil as best as possible before the samples were
pulverized. We assessed the potential impact of the remaining sample “contamination” with
soil on overall FGCM excretion patterns by determining in the samples from 2013 (n = 176
samples from 10 ACTH challenges, see “ACTH challenge” in Methods section) the amount of
soil and subsequently comparing between fecal hormone concentrations (for both the CCST
and 11β-hydroxyetiocholanolone EIA assays) uncorrected and corrected for soil content, i.e.
expressed per fecal mass without soil (see [67]). Following centrifugation of the fecal suspen-
sions for extraction (see above) and drying the fecal matter under a fume cabinet for>14 days,
we separated the organic fecal material from the soil and determined a soil-free fecal dry weight
for each sample. We then used this weight to calculate hormone concentrations per pure
organic fecal mass.

Steroid analyses
Fecal extracts resulting from the ACTH challenge in 2012 were measured for immunoreactive
FGCMs using three different enzyme immunoassays (EIAs) detecting corticosterone (CCST)
[68] and cortisol metabolites with a 5β-3α-ol-11-one structure (11oxo-etiocholanolone, [63]
and 5β-3α,11β-diol-structure (11β-hydroxyetiocholanolone, [69]. The CCST EIA used the
same antibody that had been used in the CCST RIA system validated for stress hormone assess-
ment in meerkats by Young et al. [52]. Detailed information on antibody characteristics, stan-
dards, and hormone labels as well as on other assay details, e.g., data on assay sensitivities, are
given in Heistermann et al. [68].

Fecal extracts resulting from the ACTH challenge II and water injections from 2013 were
analyzed with the CCST and 11β-hydroxyetiocholanolone EIA only. This decision was based
on the results from 2012 (see Table 2), which showed that 1) the values generated by the 11β-
hydroxyetiocholanolone and 11oxo-etiocholanolone assays correlated strongly with each other
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for each of the 5 tested individuals (all r = 0.71–0.98; p< 0.0001) thus providing very similar
response patterns to adrenocortical stimulation, 2) time lags of responses were identical for the
two assays, but 3) peak increase in levels in response to the challenge was, on average, twice as
large (13.6 vs. 6.1 fold) for 11β-hydroxyetiocholanolone than for 11oxo-etiocholanolone, indi-
cating a higher sensitivity of the former to stressful events. The remaining fecal extracts from
the subordinate male eviction event (see “Natural stressor: subordinate male eviction” in Meth-
ods section) were assayed only in the 11β-hydroxyetiocholanolone EIA, because the data from
the two ACTH challenge tests as well as the control water injection tests indicated that this
assay is more sensitive than the CCST assay for monitoring FGCM patterns in meerkats (see
“ACTH challenge” in Results section).

We performed all EIAs on microtiter plates according to the procedure described in detail by
Heistermann et al. [68, 70]. Prior to steroid measurement, we diluted fecal extracts 1:10–1:1000

Table 2. Fecal glucocorticoid concentrations in response to ACTH administration in individual meerkats measured using a 11β-hydroxyetiochola-
nolone, a corticosterone (CCST), and a 11β-oxo-etiocholanolone assay.

Animal 3α,11β-dihydroxy-CM CCST 3α,11oxo-CM

Preb Peakc Deltad Lage Pre Peak Delta Lag Pre Peak Delta Lag

ACTH 2012

F1a 0.360 4.89 13.6 27 0.080 4.50 56.3 7 0.950 5.80 6.1 27

M2a 0.501 4.21 8.4 22 0.080 0.29 3.6 7 0.995 2.75 2.8 22

M3 0.294 0.90 3.1 70 0.055 0.05 0.9 — 0.585 2.04 3.5 70

M4 0.194 2.74 14.4 22 0.026 0.13 5.0 7 0.462 4.24 9.2 22

M5 0.244 17.0 70.8 22 0.068 2.88 42.4 7 0.348 16.4 46.9 22

Median 0.294 4.21 13.6 22 0.068 0.29 5.0 7 0.585 4.24 6.1 22

ACTH 2013

F1 0.589 4.50 7.7 22 0.123 1.01 8.2 6

F7 0.071 1.48 20.9 25 0.036 0.34 9.4 3

F9 0.065 7.49 107.0 25 0.042 3.04 72.4 8

F12 0.052 0.48 9.1 33 0.100 0.31 3.1 33

F13 0.190 13.26 69.7 22 0.067 6.37 95.5 22

M4 0.099 2.24 22.6 25 0.024 0.20 8.4 6

M6 0.137 5.14 36.7 25 0.073 1.09 14.9 25

M8 0.059 0.17 2.9 22 0.100 0.55 5.5 22

M10 0.183 7.17 39.2 22 0.141 3.31 23.5 22

M11 0.162 1.00 6.3 27 0.030 0.09 3.0 27

Median 0.118 3.37 21.8 25 0.064 0.78 8.9 22

Water injections

M3 0.124 0.38 3.1 22 0.034 0.07 2.2 22

M5 0.061 2.08 34.4 29 0.172 0.47 2.8 29

M14 0.099 0.69 7.0 25 0.041 0.22 5.4 25

M15 0.111 12.22 110.5 22 0.161 4.35 27.0 22

Median 0.105 1.39 20.7 24 0.101 0.35 4.1 24

aF = female, M = male,
bpre-treatment levels (mean) in μg/g feces (see Methods),
cpeak levels in response to ACTH administration in μg/g,
dx-fold increase of peak levels above mean pre-treatment concentrations,
elag-time in hours between administration of ACTH and peak CG response.

doi:10.1371/journal.pone.0153161.t002
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(depending on concentration and assay) in assay buffer. All samples were run in duplicate and
samples with a coefficient of variation>7% between duplicates were re-measured. Serial dilu-
tions of fecal extracts gave displacement curves parallel to those obtained with the respective
standard in each assay. Intra- and inter-assay coefficients of variation of high- and low-value
quality controls for each assay were<10% and<15%, respectively. All final hormone concen-
trations are given as μg/g fecal dry weight.

HPLC analysis
To characterize the immunoreactive metabolites measured by the CCST and 11β-hydroxy-
etiocholanolone assays, we performed reverse-phase high-pressure liquid chromatography
(RP-HPLC) using the procedure previously described in detail by Möhle et al. [71] and Heister-
mann et al. [68]. We performed HPLC on a male and a female sample, each representing peak
FGCM response to the ACTH challenge, to evaluate possible sex differences in the characteris-
tics of excreted cortisol metabolites (c.f. [39, 72]). HPLC also enabled us to assess whether cer-
tain fecal androgen metabolites, which could potentially be detected by antibodies raised
against cortisol metabolites [31, 68, 69], were co-measured by the two EIAs. We measured each
HPLC fraction in the two aforementioned assays to generate the profiles of immunoreactivity.

Data analysis
We generated composite (average) profiles of FGCM response to ACTH for the CCST and
11β-hydroxyetiocholanolone assay by calculating the percentage change in FGCM levels (rela-
tive to the mean pre-treatment baseline levels; set as 100%) across 8–12 h intervals following
ACTH injection for each individual and averaging values across all individuals. We excluded
M3, who clearly did not respond to the ACTH stimulation (see Table 2), from this and all
other analyses.

We determined the time course of FGCM excretion as the lag time from the administration
of ACTH (or water) to peak FGCM response, separately for each individual and assay. To
investigate for a possible sex effect in FGCM response to the ACTH challenge, we compared
the magnitude of peak FGCM elevation between sexes using a Mann-Whitney U-test.

To examine the effects of sex, age and time of day (morning (AM): 8-11am, midday (MD):
11:30-2pm, afternoon (PM): 3-6pm) on basal FGCM levels, we used all fecal samples collected
during pre-ACTH challenge control periods (i.e. samples reflecting baseline FGCM levels),
numbering 128 samples from 13 individuals. In this analysis, values were log-transformed to
conform to assumptions of linearity, and linear mixed effects models (NLME package version
3.1–118 in R) were used to account for ACTH challenge (I and II) and individual identity as
random factors, because two individuals were tested in both challenges (F1 and M4) and
because we had multiple samples per individual which were not evenly distributed among the
three day time periods.

The effect of the subordinate eviction on FGCM levels was assessed in multiple steps to
maximize the information from our available data, due to uneven sample sizes between time
periods. We used a Friedman test to assess overall individual changes in FGCM levels. Pre and
post-attack “control” levels, and during- and post-attack attack levels were compared using
Wilcoxon signed-rank-tests.

We determined the percentage of soil content of a sample by dividing the mass of soil per
sample by the total mass of extracted fecal material. We assessed the correspondence between
FGCM levels expressed per mass extracted feces and those expressed per “soil-free” fecal mass
(see “Hormone extraction and accounting for sample soil contamination” in Methods section)
by calculating Spearman rank correlations for each individual and separately for the CCST and
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11β-hydroxyetiocholanolone assays. To examine whether the two assays differed in their
degree of correspondence, we compared their correlation coefficients using the Wilcoxon
signed-rank test. To further evaluate the influence of soil contamination on characteristics of
FGCM pattern, we compared the magnitude of responses to ACTH (peak to baseline ratio)
between uncorrected and “soil-corrected” FGCM profiles as well as the variability in pre-treat-
ment FGCM baseline levels (calculated as coefficient of variation, CV) under the two condi-
tions. Both comparisons were carried out using Wilcoxon signed-rank tests. All statistical tests,
carried out in R Studio Version 0.98.1102 and SPSS (IBM SPSS Statistics for Macintosh, version
22.0), were two-tailed and the statistical significance level was set at 0.05.

Results

ACTH challenge
In absolute terms, basal FGCM levels measured by the 11β-hydroxyetiocholanolone EIA were
substantially (2–4 fold) higher compared to levels measured by the CCST assay (Table 2). In 14
of the 15 ACTH challenges conducted, we detected with both assays a strong response to the
treatment denoted by a minimum 3-fold increase in FGCM levels (Table 2; Fig 1). The two
assays, however, differed in their magnitude of the resultant increase, with 11β-

Fig 1. Representative profiles of immunoreactive 11β-hydroxyetiocholanolone (black circles) and CCST (white triangles) in two female (top) and
male (bottom) meerkats after administration of ACTH at time 0. Data points before time 0 represent median ± SE concentrations (μg/g) of pre-treatment
samples collected 5–8 days before ACTH injection.

doi:10.1371/journal.pone.0153161.g001
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hydroxyetiocholanolone presenting an overall median 17.7-fold peak response increase and
CCST an 8.9-fold average increase (Table 2). In 10 out of the 14 cases, the increase measured
by the 11β-hydroxyetiocholanolone assay was higher than that measured by the CCST assay
(Table 2). For each assay, the magnitude of response varied between subjects (Table 2; see also
Fig 1), but peak elevation in FGCM levels to ACTH administration was not statistically differ-
ent between males and females for either assay (median ± SE fold increase in 11β-hydroxyetio-
cholanolone: males: 18.5 ± 8.1, females: 17.3 ± 16.7, U = 21, p = 0.755; CCST fold increase:
males: 7.0 ± 4.8, females: 32.9 ± 16.0, U = 14, p = 0.228).

All four control individuals injected with water also showed an increase in immunoreactive
CCST and 11β-hydroxyetiocholanolone levels in response to the treatment. For both measures,
the increases were in the same range as those reported for the ACTH treated animals (Table 2).
Similar to the findings of the ACTH challenges, the response was stronger for 11β-hydroxyetio-
cholanolone compared to CCST in all four cases (Table 2).

Time course of FGCM excretion
The timing of FGCM peak elevation varied between subjects and FGCMmeasure. Peak
response was highly consistent across individuals for the 11β-hydroxyetiocholanolone assay,
occurring on average 23.5 ± 0.9 hours (median ± SE, range 22–33 hours) after ACTH adminis-
tration (Table 2, Fig 2), although levels already increased above baseline levels within 8 hours
of the stimulation (see Figs 1 and 2). A lag time to peak response of about 24 hours

Fig 2. Percentage of response in immunoreactive fecal 11β-hydroxyetiocholanolone and CCST levels to ACTH administration in meerkats.Data
points represent mean ± SE values calculated for 8-12-h intervals across the 14 individuals that responded to the ACTH challenge. Percentages were
calculated in relation to pre-treatment baseline values (pre = 100%).

doi:10.1371/journal.pone.0153161.g002
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(median ± SE: 24.5 ± 1.7, range: 22–29 hours) was also recorded in the four animals receiving
water injections only (see “ACTH challenge” in Results section; Table 2). By contrast, the tim-
ing of the CCST response to ACTH was much more variable, with the peak elevation occurring
between 3–8 hours in 8 cases and between 22–33 hours in the remaining 6 cases of the ACTH
challenges (Table 2; see also Fig 1). In the four control animals that received water injections,
the lag time ranged between 22–29 hours (Table 2). The composite profile depicted in Fig 2
demonstrates this overall temporal pattern in FGCM excretion and the differences between the
two GC measures in this respect and shows that for both measures, FGCM levels had returned
to pre-injection baseline values at about 40–50 hours (see also Fig 1).

HPLC analysis
HPLC analysis indicated that in both GC assays the vast majority of immunoreactivity (>90%)
was detected as three distinct peaks between fractions 9 and 32 (Fig 3)–positions where cortisol
metabolites in our HPLC system elute [68]. The positions of the three peaks, however, differed
between the two assays. While the major peak of immunoreactivity in the CCST assay was
found at fraction 10, representing an unknown metabolite of high polarity, the major peak mea-
sured by the 11β-hydroxyetiocholanolone EIA was found at fraction 25, the elution position of
authentic 11β-hydroxyetiocholanolone, indicating a high abundance of this metabolite of corti-
sol in the feces of meerkats. The presence of negligible amounts of immunoreactivity measured
after fraction 40 (positions where certain potentially cross-reacting gonadal and adrenal andro-
gen metabolites elute [68, 69], suggests a low degree of co-measurement of these androgens in
our assay (Fig 3). For both assays, HPLC profiles were similar between males and females in
terms of both number and elution position (i.e. characteristics) of metabolites measured.

Effect of sample soil contamination on FGCM values and ACTH
response characteristics
Across all fecal samples tested (n = 182), soil contamination ranged from as low as 5.4% to as
high as 81.2% of each sample’s total mass. Across animals, on average, 59.6% (range 55.1–65.2%)
of the total fecal sample mass extracted was composed of soil. Removing the soil from the sam-
ples and expressing FGCM concentrations per soil-free fecal mass rather than per total mass
extracted fecal material generally did not change response patterns to ACTH (Fig 4) nor did it
affect the variability in pre-treatment basal levels and magnitude of FGCM elevation to ACTH
significantly (Fig 5). Specifically, FGCM profiles uncorrected and corrected for soil contamina-
tion correlated strongly in each of the 10 animals tested, with mean r- values of 0.90 (range: 0.69
to 1.0) for the CCST and 0.95 (range: 0.88 to 1.0) for the 11β-hydroxyetiocholanolone measure.
The correlations were significantly higher for the 11β-hydroxyetiocholanolone compared to the
CCSTmeasure (W = 1, p = 0.021). Correction for soil contamination did not significantly affect
variability (expressed as CV-value) of basal FGCM levels for neither 11β-hydroxyetiocholano-
lone (median CV ± SE with soil: 70.7 ± 9.9%; without soil: 70.4 ± 12.7%; W = 15, p = 0.232) nor
CSST (with soil: 48.0 ± 6.8%; without soil: 45.3 ± 8.2%; W = 26.5, p = 0.959). Furthermore, the
magnitude of peak FGCM elevation to ACTH did not differ significantly using FGCM values
corrected for soil contamination compared to those uncorrected for soil contamination for either
FGCMmeasure (11β-hydroxyetiocholanlone: median ± SE with soil: 21.8 ± 10.5; without soil:
23.1 ± 8.3, W = 34, p = 0.557; CCST: 8.9 ± 10.3; without soil: 8.3 ± 9.8, W = 31, p = 0.770).

FGCM response to subordinate male eviction
FGCM levels of individuals attacking a single male differed significantly between prior, during,
and post the event (Friedman: X2 = 7.6, exact p = 0.024, n = 5; Fig A in S1 File), with median
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Fig 3. HPLC profiles of immunoreactivity detected with the CCST (top) and 11β-hydroxyetiocholanolone EIA (bottom) for a male and a female
meerkat. Samples tested were those that showed peak GCmetabolite concentrations after the ACTH challenge. Arrows and numbers show the elution
positions of associate reference standards: 1) cortisol (fractions 14–15), 2) corticosterone (22), 3) 11β-hydroxyetiocholanolone (25), 4)
11-oxoetiocholanolone (30), 5) 5β-androstane-3,11,17-trione (36), 6) testosterone (43), 7) androstendione, dehydroepiandrosterone (55–56), 8)
epiandrosterone, 5β-DHT, 5b-androstane-3β-ol-17-one (72), 9) 5β-androstane- 3α-ol-17-one (82).

doi:10.1371/journal.pone.0153161.g003
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FGCM concentrations being almost 6-fold higher during the attack (median ± SE:
1.102 ± 0.175 μg/g) compared to pre-attack levels (median ± SE: 0.141 ± 0.065 μg/g), and
4-fold higher compared to post-attack levels (median ± SE: 0.185 ± 0.044 μg/g). Pre- and post-
attack FGCM levels did not differ significantly (Wilcoxon rank-test: Z = 0.135, exact p = 1.0,
n = 5). Using the full data set (n = 10) to compare during- and post- attack levels confirmed
that FGCM levels within 48 hours of the attack were significantly higher than levels in samples
collected about 1 month after the attack (median ± SE; within 48 hours: 0.810 ± 0.145 μg/g; 1
month after attack: 0.202 ± 0.028 μg/g; Wilcoxon rank-test: Z = 2.599, exact p = 0.006, n = 10).

Fig 4. Representative FGCM (11β-hydroxyetiocholanolone) profiles of a female (top) andmale
(bottom) meerkat after administration of ACTH in samples uncorrected for soil contamination (with
soil) and those corrected for soil content (without soil).Data points before time 0 indicate median ± SE
concentrations of pre-treatment samples collected 5–8 days before ACTH injection. Profiles for CCST
showed a similar degree of correspondence between the two conditions (see text).

doi:10.1371/journal.pone.0153161.g004
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Averaged FGCM levels of the evicted male (n = 2 samples; median ± SE: 1.737 ± 0.099 μg/g)
were the highest within 48 hours of the attack (Fig A in S1 File).

Effect of sex, age and time of day on FGCM values
Overall, males and females did not differ significantly in their basal FGCM levels
(median ± SE; males: 0.17 ± 0.05 μg/g, females: 0.13 ± 0.09 μg/g; t = 1.04, p = 0.316; Table 2).
Age (in months) was not significantly associated with basal FGCM values although there was a
tendency for FGCM’s to increase with age (LMM: t13.65,123 = 1.78, p = 0.09). We found a signif-
icant effect of time of day on basal FGCM, with levels being significantly higher in the morning
(8-11AM) period compared to midday (11:30-2PM) (LS Means: AM-MD: t = 2.60, p = 0.02)
and showed a tendency to be higher than in the evening (3-6PM) period (LS Means: AM-PM:
t = 1.01, p = 0.07). Midday and evening FGCM levels did not differ (LS Means: MD-PM:
t = 0.224, p = 0.32, Fig B in S1 File).

Discussion
Monitoring of glucocorticoid excretion patterns of animals via fecal analysis has become an
established method in the study of stress physiology of wild populations due to its non-invasive
nature (e.g. [15]). In the current study, we assessed the suitability of two group-specific cortisol
metabolite assays in comparison to a formerly used corticosterone (CCST) assay for tracking

Fig 5. Magnitude of 11β-hydroxyetiocholanolone and CCST elevation to ACTH (peak to baseline ratio; graphs on the left) and variability in 11β-
hydroxyetiocholanolone and CCST (pre-treatment) baseline values (coefficients of variation (CV) of baseline variability; graphs on the right) in
samples uncorrected for soil contamination (with soil) and those corrected for soil content (without soil) in 10 meerkats.

doi:10.1371/journal.pone.0153161.g005
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adrenocortical activity from fecal samples of meerkats, and examined the potential influence of
intrinsic (age, sex) and extrinsic (time of day, contamination of feces by soil) factors on fecal
glucocorticoid measurements. We show that all three assays tested were able to detect the glu-
cocorticoid response to pharmacological stimulation of the adrenal gland by ACTH. We dem-
onstrate, however, that the group-specific measurement of metabolites of cortisol using an
11β-hydroxyetiocholanolone assay produced more consistent results and presents greater bio-
logical sensitivity than the CCST measurement previously used to study meerkat stress physiol-
ogy [52]. We also show that time of day but not age or sex influence FGCM excretion and that
soil contamination of fecal samples does not affect FGCM patterns to a significant extent. Our
study therefore provides important new information for researchers interested in using FGCM
analysis to monitor the stress physiology in captive and wild meerkats, and highlights the
importance of conducting extensive assay validations to gain a more comprehensive under-
standing of any species’ adrenocortical function.

ACTH challenge and validation of FGCMmeasurements
All three EIAs used detected the predicted FGCM response to the ACTH challenge reliably in
both male and female meerkats. Regarding the CCST measurement, our results confirm and
extend previous findings from a study of Young et al. [52] conducted on a limited number of
wild-living animals (n = 4) using relatively infrequent samples. Our study thus provides confir-
mation for the validity of the fecal CCST measurement as an indicator of adrenocortical func-
tion applied in previous studies on stress physiology in meerkats [47, 52, 73]. Compared to the
CCST measurement, however, the measurement of immunoreactive 11β-hydroxyetiocholano-
lone, a major metabolite of cortisol in mammals (e.g. [68, 69]), presented overall a much stron-
ger response to the ACTH challenge (as well as to the control water injections), indicating an
enhanced biological sensitivity of this assay for detecting changes in HPA axis activity [21, 74–
76] in meerkats. A more sensitive assay enables smaller-scale differences in glucocorticoid pro-
duction to be detected [74, 76], making the 11β-hydroxyetiocholanolone assay potentially
superior over the CCST assay, particularly when stress-related changes in FGCM levels are of
lower magnitude (c.f. [76]). Our findings that peak responses obtained with the 11β-hydroxye-
tiocholanolone assay were more consistent between individuals and had a much less variable
time lag compared to the CCST assay are in support of our conclusion that the 11β-hydroxye-
tiocholanolone assay may track adrenocortical activity in meerkats more accurately than the
CCST EIA, a finding also reported in several other studies [77] (but see [21, 65, 68, 72]).

Moreover, HPLC indicated 11β-hydroxyetiocholanolone to be abundant in the feces of
meerkats, as reported for other species (e.g.[62, 68, 69, 78]). By contrast, only a small portion of
the immunoreactivity measured by the CCST assay could be ascribed to native CCST with the
assay mainly reacting with an unknown compound of high polarity. Whether this polar sub-
stance is a metabolite of cortisol as is 11β-hydroxyetiocholanolone or whether its excretion is
just correlated with GC production is unclear. Solving this question would require more
detailed studies on cortisol metabolism in meerkats using a radioinfusion study in combination
with HPLC (e.g. [79]). Importantly, we did not detect any immunoreactivity after fraction 40
with either assay, suggesting that there was no co-measurement of particular androgens poten-
tially cross-reacting in the FGCM assays as a result of structural similarities between fecal
metabolites of cortisol and testosterone [31, 68, 69, 77].

While it is valuable to show that a selected FGCMmeasure is able to pick up a pharmacolog-
ically induced increase in cortisol, it is similarly important that the measure is sensitive enough
to detect the physiological stress response to more natural biological stressors encountered in
the normal life of an animal [80]. We could demonstrate this for our 11β-
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hydroxyetiocholanolone assay by showing a marked elevation in FGCM levels in response to
agonistic interactions among group members leading to the eviction of a subordinate male (see
also [52]). Moreover, the very short-term stressor of applying pure water injections also trig-
gered significant elevations in 11β-hydroxyetiocholanolone (and CCST) excretion. This finding
demonstrates that the injection procedure itself induced a stress response (see [81] for mice),
even without having restrained the individuals and albeit them being well habituated to human
contact and handling. Researchers should consider this when studying the stress physiology of
wild meerkats where handling animals for various reasons is not uncommon (e.g. [26, 82, 83]).

Time course of FGCM excretion and effect of time of day, age and sex
on FGCM levels
The use of captive animals and collection of multiple daily samples per individual allowed us to
assess the time course in FGCM excretion, examine potential age effects and sex differences as
well as investigate circadian excretion patterns of FGCM, contributing important knowledge to
our understanding of patterns of glucocorticoid excretion in meerkats. The average (i.e.
median) time lag between stressor (ACTH challenge, water injections) and detection of
increased 11β-hydroxyetiocholanolone levels in feces was 24–25 hours which was at the lower
end of the 24–48 hour time lag reported for the FGCMmeasure by Young and colleagues [52].
A time lag of about one day as found here is also in line with FGCM lag times reported for
many other species [84]. Generally, delay times between circulating GCs and their metabolites
in feces vary from as short as 2–3 hours (Tufted capuchin monkeys, Cebus apella: [65]) to as
long as 48 hours (pigs, Sus domesticus: [85]), mainly as a result of species-specific gut passage
times [32].

We found a marked effect of time of day in FGCM excretion with significantly higher basal
FGCM levels in morning samples compared to samples collected later during the day. Diurnal
variation in FGCM has been reported for other species, in particular in those that defecate at
relatively high rates (i.e. providing a higher temporal resolution in the feces; e.g. [72, 80, 81])
and as such our data would support these findings as meerkats also defecate relatively fre-
quently over the day. Nevertheless, our result contrasts, with a report from field studies on
meerkats (e.g. [22]) where no diurnal variation in FGCM was detected. This difference likely
results from two factors. First, differences in eating patterns between captive and wild meer-
kats, as wild individuals forage continuously on small prey items throughout the day while our
captive meerkats are fed three times daily, probably result in different defecation rates. Second,
the higher biological sensitivity and time-frame consistency of the 11β-hydroxyetiocholano-
lone assay (used here) compared to the less sensitive CCST assay used by Voellmy and col-
leagues [22] likely facilitated the identification of this diurnal effect. For these reasons, we
recommend that in future studies time of day be considered as a potential factor influencing
FGCM levels in meerkats. We did not find differences in basal FGCM levels or in response pat-
terns to the ACTH challenge between males and females. We are confident that this is a valid
result given that our HPLC data indicated that the immunoreactive compounds measured in
our assays were similar between the sexes. Thus, FGCM levels reported here seem to not be
biased by cross-reactivity of the antibody with particular sex-specific hormone metabolites or
by sex-specific differences in cortisol metabolism (see [34] for mice), both of which represent-
ing potential major concerns with respect to data interpretation [39, 86]. Absence of a sex-spe-
cific effect on FGCM levels as found here for meerkats has also been reported for other
mammals such as California mice, Peromyscus californicus [87], howler monkeys, Alouatta
pigra [72, 88] and spider monkeys, Ateles hybridus [72]. As with sex, age appeared to have no
significant effect on FGCM excretion in meerkats. However, this finding needs to be treated
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with caution since our study was restricted to adult individuals with a relatively limited age
range. Moreover, our results for an age effect are potentially confounded by a possible rank
effect on FGCM levels as in meerkats dominant individuals are usually also the eldest in each
sex [83, 89].

Effect of soil contamination on FGCM response characteristics
As meerkats naturally inhabit arid, sandy regions of southern Africa and, when in captivity, are
commonly kept in semi-natural enclosures with sandy substrates, we assessed the potential
effects of sample contamination by sand on the pattern of FGCM levels. Although we grossly
removed the sand from the outer layer of the feces, samples were still composed of 50–60%
sand, which can potentially influence the non-biological variation in the FGCMmeasure [67].
However, correcting FGCM concentrations for sand content did not significantly change
FGCM pattern across samples. Specifically, FGCM levels in the samples before and after sand
content “correction” correlated strongly and sand-corrected samples did not show higher mag-
nitudes of peak response to ACTH or lower variability of basal levels. Our simple approach to
rubbing off the sand from the sample prior to pulverization and extraction thus appeared to
have been effective enough to reduce potential FGCM variation due to sand contamination
[67] to an extent that did not impact the results a great deal. Thus, our results show that future
studies investigating FGCM excretion in meerkats do not need to apply extensive methods
(such as fecal combustion) to remove the soil from samples prior to hormone analyses [67],
simplifying procedures and lessening time and cost constraints.

Apart from fecal contamination, other environmental factors have been shown to affect
both FGCM excretion and recovery in mammals. For example, seasonal changes in rainfall
affect FGCM excretion in a number of species (baboons, Papio cynocephalus: [90] white-tailed
deer, Odocoileus virginianus: [91]) as do photoperiod [42] and temperature [92]. Moreover,
FGCM recovery can be affected if fecal samples are not collected immediately after deposition
[93]. To what extent these factors influence excretion patterns and concentrations of FGCM in
meerkats is unknown and thus remains to be examined.

In conclusion, the work presented here provides an extensive and robust methodological
validation of the assessment of adrenocortical activity in meerkats via analysis of FGCM,
extending previous work [52] substantially. The methods and findings described here will facil-
itate the study of links between glucocorticoid production, welfare, social behavior, dispersal
decisions and communication in an already well-understood animal system, in the wild and in
captivity. As meerkats are one of the best studied species in the study of the evolution of mam-
malian societies and cooperative breeding, such knowledge may also provide important
insights into the mediation of social behavior. Furthermore, the results presented here may
potentially be extrapolated to other social mammals and cooperative breeding species that, for
a variety of reasons, may be more difficult to study, especially in their natural habitat. Last but
not least, we hope our work will also contribute to accurate monitoring and improvement of
meerkat welfare in zoos and other captive colonies.

Supporting Information
S1 File. Group FGCM response (median ± SE, μg/g) to a natural attack on a group member
(ZIM005) that resulted in its permanent eviction. The victim showed the greatest FGCM
response to the event. Group FGCM levels returned to baseline levels after the male was
removed from the colony. “Within 48 h” represent FGCM levels measured within 2 days after
the attack on M5 took place. �� = p< 0.01 (Fig A). Average (median ± SE) baseline FGCM lev-
els (μg/g) in fecal samples deposited in the morning (AM), at midday (MD) and late afternoon
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(PM), as measured with the 11β-hydroxyetiocholanolone assay. N = 128 fecal samples from 13
individuals. � = p< 0.05 (Fig B).
(DOCX)
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Supporting Information: 

 

 

 

Figure A: Group FGCM response (median ± SE, µg/g) to a natural attack on a group 

member (M5) that resulted in its permanent eviction. The victim showed the greatest 

FGCM response to the event. Group FGCM levels returned to baseline levels after the 

male was removed from the colony. “Within 48 h” represent FGCM levels measured 

within 2 days after the attack on M5 took place. ** = p < 0.01. 
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Figure B: Average (median ± SE) baseline FGCM levels (µg/g) in fecal samples 

deposited in the morning (AM), at midday (MD) and late afternoon (PM), as 

measured with the 11ß-hydroxyetiocholanolone assay. N = 128 fecal samples from 13 

individuals. * = p < 0.05. 
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