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Abstract 

In this paper, the multi-area environmental economic dispatch (MAEED) problem with 

reserve constraints is solved by proposing an enhanced particle swarm optimization (EPSO) 

method. The objective of MAEED problem is to determine the optimal generating schedule 

of thermal units and inter-area power transactions in such a way that total fuel cost and 

emission are simultaneously optimized while satisfying tie-line, reserve, and other 

operational constraints. The spinning reserve requirements for reserve-sharing provisions are 

investigated by considering contingency and pooling spinning reserves. The control equation 

of the particle swarm optimization (PSO) is modified by improving the cognitive component 

of the particle's velocity using a new concept of a preceding experience. In addition, the 

operators of PSO are dynamically controlled to maintain a better balance between cognitive 

and social behavior of the swarm. The effectiveness of the proposed EPSO has been 

investigated on four areas, 16 generators and four areas, 40 generators test systems. The 

application results show that EPSO is very promising to solve the MAEED problem. 

Keywords : contingency spinning reserve, multi-area economic-emission dispatch, particle 

swarm optimization, pooling spinning reserve, tie-line capacity 

1. Introduction

Modern power systems are large, with multiple control areas interconnected through tie-lines. 

Each control area has its own load and generation. Areas of individual utility are 

interconnected through tie-lines to operate with maximum reliability, reserve sharing, 

improved security, and less production cost than when operated as an isolated area [1]. In an 

interconnected power system, several generation companies join to form a power pool with 

an aim to gain economic benefits in their operations. The benefits of the pool depend on 

several factors such as the characteristics of a pool, types of interconnections, tie-line limits, 

and spinning reserve requirements. The regulatory bodies have enforced certain norms to 

keep a definite amount of generation in each area as a contingency spinning reserve to meet 

its own contingencies and a definite amount of generation in the area as pooling reserve. The 

economic benefit of the pool also depends on how the pooling reserve is handled. Moreover, 

regulatory bodies have also imposed limits and penalties on the emission of pollutants due to 

environmental concerns. Therefore, multi-area economic dispatch (MAED) with the 

consideration of emission, transmission capacity constraint, and reserve sharing is more 

practical in the context of modern power systems. 

Some early efforts to attempt the MAED problem can be briefly stated as follows: Sharma 

et al. [2] formulated the MAED problem with area spinning reserve constraints and without 
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the consideration of emission. They established that more economy can be achieved using 

reserve sharing. Shoults et al. [3] suggested import and export constraints between areas that 

can be analyzed on a daily, monthly, and annual basis. Romano et al. [4] formulated the 

economic dispatch problem with line flow constraints and spinning reserves using the linear 

optimization program and solved using the Dantzig-Wolfe decomposition principle. Desell 

et al. [5] described an application of linear programming to transmission-constrained 

generation production cost analysis in power system planning. Wang and Shahidehpour [6] 

proposed a decomposition approach to non-linear multi-area generation scheduling with tie-

line constraints using expert systems. The authors showed the efficiency of their proposed 

approach by testing it on a four-area system, with each area consisting of 26 units [7]. In 

recent years, modern artificial intelligence–based techniques have shown potential to solve 

such complex combinatorial constrained optimization problems due to their ability to obtain 

global or near-global optima. Jayabarathi et al. [7] solved MAED problems with tie-line 

constraints using evolutionary programming. Chen and Chen [8] presented direct search 

method for solving economic dispatch problem considering transmission capacity constraints. 

Manoharan et al. [9] proposed covariance matrix-adapted evolutionary strategy for a multi-

area dispatch where a Karush Kuhun Tucker (KKT) optimality criterion is applied to 

guarantee the optimal convergence. Zhu [10] presented a new non-linear optimization neural 

network approach to study security-constrained interconnected multi-area dispatch problems. 

Basu [11] employed artificial bee colony optimization with a variety of system constraints. 

However, effluent emissions from thermal units have not been given serious consideration by 

these attempts. In the recent past, the optimal multi-area environmental economic dispatch 

(MAEED) problem has been attempted by Wang and Singh [12]. They formulated the 

problem by considering tie-line transfer capacities and area spinning reserve sharing to ensure 

security and improved reliability, respectively. But the norms of regulatory bodies enforce 

utilities to keep a definite amount of reserve, i.e., contingency spinning reserve, in each area 

to meet out their own contingencies. From the literature survey, it is found that MAED with 

the consideration of emission, tie-line constraints, and spinning reserve requirement has not 

been attempted. 

 

In the light of the above discussion, a new formulation of economic emission dispatch is 

proposed in this paper by extending the economic dispatch problem to an MAEED problem 

with the consideration of transmission capacity constraints and with a new reserve sharing 

approach. This formulation increases the complexity of the dispatch problem that arises due 

to conflicting nature of cost and emission objectives, stringent area power balance 

constraints, tie-line constraints, and area spinning reserve constraints, in addition to the other 

operational constraints [2]. The proposed formulation is solved using an improved particle 

swarm optimization (PSO)-based method proposed in this paper. A new concept is also 

proposed to share spinning reserve requirement, which results in substantial saving in overall 

spinning reserve requirement. 

 

PSO is a swarm intelligence-based meta-heuristic optimization technique that has shown its 

proven potential to solve diverse engineering optimization problems. Researchers are 

attracted toward this technique due to its simplicity, convergence speed, and robustness. 

However, PSO has an inherent tendency of local trapping. Several modified versions of PSO 

have been reported in the recent past to enhance its performance by modulating inertia weight 

[13–17], improving cognitive and social behavior [14, 17–20], using constriction factor 

approach [21, 22], modifying the control equation of the PSO [13, 16, 20, 23–27], or 

squeezing the search space [26, 27], etc. However, some of these versions of PSO require 

exhaustive experimentations for parameter setting and some additional mechanism to avoid 
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local trapping. Some others employed empirical formulae to regulate particle's velocity in 

order to maintain a better balance between cognitive and social behavior of the swarm. 

 

In this paper, an improved variant of PSO, i.e., EPSO, is proposed by exponentially varying 

inertia weight, cognitive, and social components of particles' velocities in such a way that a 

proper balance is maintained between cognitive and social behaviors of the swarm throughout 

the computational process. For this purpose, the concept of preceding experience and 

exponentially varying constriction functions are suggested, which are not yet reported in the 

literature. A constraint handling algorithm is also proposed especially to deal with inter-area 

constraints related to inter-exchange of power, tie-line constraints, and spinning reserve 

requirements. A new scheme for inter-area spinning reserve sharing is proposed to cater 

contingency reserve requirements of each area. 

 

The proposed method effectively regulates the velocity of particles during their flights so as 

to enhance its exploration and exploitation potentials. The economic and environmental 

objectives of ED problem are combined in a fuzzy framework to solve this multi-objective 

optimization problem. The effectiveness of the proposed method has been investigated on 

two four-areas test systems of different dimensions considering various operational 

constraints such as valve-point loading effects, power balance, tie-line capacity, and spinning 

reserves. The performance of the proposed method is compared with other established 

methods. 

2. Problem Formulation 

A large interconnected power system is generally composed of different areas or zones based 

on various criteria such as geographical, operational, planning, and organizational. Each of 

these areas is interconnected to its neighboring areas through tie-lines. Each area has its own 

generation, load, and spinning reserve. These areas were planned for exchange of operational 

surpluses among different control areas. From a market point of view, these areas are 

decentralized. However, for technical reasons, there is one independent system operator 

(ISO) that imposes certain operational restrictions on these control areas for the purpose of 

grid security such as tie-line constraints and total spinning reserve constraints. In a 

deregulated power system, generally different power generation companies of different areas 

pool together with the objective to achieve the most economical generation policy that could 

supply the local demands without violating certain operational constraints imposed by the 

ISO. The proposed approach assumed that there is pooling of different generation companies 

of different areas to achieve the common goal of maximizing their profits. The aim of the 

MAEED is therefore to dispatch the generators of a power pool for the forecasted load in 

such a fashion that optimizes the fuel cost and pollutant emissions from thermal units while 

satisfying operational constraints, contingency reserve constraints, and transmission capacity 

constraints. In the proposed formulation, the non-contingency reserved is shared. The 

mathematical formulation of MAEED is described further. 

2.1. Generator Fuel Cost Function 

The generator cost function is generally considered as quadratic when valve-point effects are 

neglected. However, large turbine generators usually have a number of fuel admission valves 

that are operated in sequence to meet out the increased generation. The opening of a valve 

increases the throttling losses rapidly and thus the incremental heat rate rises suddenly. This 

valve-point effect introduces ripples in the heat-rate curves and can be modeled as sinusoidal 
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function in the cost function. Therefore, the objective function for the MAED problem may 

be stated as to minimize the following:  

 

                                           (1)  

where amj, bmj, cmj are the cost coefficients, and emj and fmj are the valve point effect 

coefficients of the jth generator in area m, PGmj is the real power output of the jth generator in 

area m, P
min 

Gmj is the minimum generation limit of the jth generator in area m, M is the 

number of areas, and NGm is the number of generating units in the system in area m. 

2.2. Pollutant Emission Function 

The pollutant emission produced by thermal plants can be expressed as a sum of a quadratic 

and an exponential function as follows:  

                                                    (2)  

where, αmj, βmj, and γmj are the emission coefficient of the jth generator in area m. 

Subject to the following constraints. 

2.3. Power Balance Constraints 

In area m, the total power generation of all generators must be equal to the area power 

demand PDm with the consideration of imported and exported power [1] and can be stated as 

follows:  

                                                                    (3)  

where PDm is the power demand of area m; PTmk is the tie-line real power transfer from area m 

to area k. PTmk is positive when power flows from area m to area k and is negative when 

power flows from area k to area m. 

2.4. Generator Constraints 

For stable operation, power output of each generator is restricted within its minimum and 

maximum limits. The generator power limits are expressed as follows:  

                                                                                                     (4)  

where P
min 

GmjandPGmj
max 

are the minimum and maximum generation limits of the jth 

generator in area m.  
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Figure 1 The conventional trapezoidal fuzzy membership function. 

2.5. Tie-line Capacity Constraints 

The transfer of real tie-line power PTmk from area m to area k should not exceed the maximum 

tie-line limit for security consideration and it is expressed as below:  

                                                                                                 (5)  

where P
max 

Tmkis the maximum tie-line power limit from area m to area k. 

2.6. Area Spinning Reserve Constraints 

In a power pool, generally a fixed reserve is kept in each area to meet the contingency 

requirement of that area. This reserve may be called as contingency spinning reserve of the 

area. In addition, a pooling spinning reserve is also kept to meet the emergency requirement 

of the power pool such as loss of generation in any area of the pool. This pooling spinning 

reserve can either be kept in one area as a supplementary reserve or it may be contributed by 

multiple areas of the pool. When this reserve is kept in each area, the total specified spinning 

reserve in each area is the sum of contingency reserve and supplementary reserve of that area. 

In Ref. [12], the contingency reserve of an area and contribution of that area to pool reserve 

are combined and termed as specified/required spinning reserve of that area. However, if only 

contingency reserve of an area is kept as specified reserve of that area and the pool reserve is 

shared among all areas of the pool, it may result in less spinning reserve requirement in each 

area and thereby reducing the overall reserve requirement of the pool. It is therefore proposed 

that the spinning reserve requirement of an area i should satisfy the following equation:  

                                                                          (6)  

where Smj is the available reserve on the jth unit of mth area, Scm is the contingency spinning 

reserve in the mth area, Spm is the pooling spinning reserve in the mth area, and RCmk is the 

pool reserve contributed from area m to area k. 
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2.7. Multi-objective Formulation in Fuzzy Framework 

In fuzzy domain, each objective is associated with a membership function. The membership 

function indicates the degree of satisfaction of the objective. The trapezoidal fuzzy function, 

as shown in Figure 1, provides a linear and continuous relationship between the fuzzy 

membership function and the fuzzy index of the concern objective and assigns any 

membership value between 0 and 1 to the objectives. The conventional trapezoidal fuzzy 

membership function [28–31] is used to combine various objectives. 

Mathematically,  

                                                                    (7)  

The lower and upper bounds of the desired objective are xmini and xmaxi, respectively, and can 

be varied according to the preferences of different operators. If xi ≤ xmini, a unity membership 

value and if xi ≥ xmaxi, a zero membership value is assigned. The coefficients M and C are 

decided by the lower and upper bounds of the fuzzy index xi and are given by  

                                                                                 (8)  

                                                                           (9)  

Now a single objective function can be used to solve this MAEED problem as to  

                                                                                                       (10)  

where μ1 and μ2 denote fuzzy membership functions for the fuel cost and pollutant emission, 

respectively, and μ is the overall fuzzy membership function for two objectives. 

Subject to the generator constraints defined by (3)–(6). 

3. Proposed EPSO 

The conventional PSO is initialized with a population of random solutions and searches for 

optima by updating particle positions. The velocity of the particle is influenced by three 

components, namely, initial, cognitive, and social components. Each particle updates its 

previous velocity and position vectors according to the following model of [32].  

                                                (11)  

                                                         (12)  

where vik is the velocity of ith particle at kth iteration, rand1() and rand2() are random 

numbers between 0 and 1, si
k
 is the position of ith particle at kth iteration, C1, C2 are the 

acceleration coefficients, pbesti
k
 is the best position of ith particle achieved based on its own 

experience, gbest
k
 is the best particle position based on overall swarm experience, Δt is the 
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time step, usually set to 1 sec, and W is the inertia weight and is allowed to decrease linearly 

as follows:  

                                                                            (13)  

where Wmin and Wmax are the respective minimum and maximum bounds of the inertia weight, 

itrmax is the maximum number of iterations, and itr is the current iteration. 

 

For better performance of PSO, the particles must fly with higher velocities during the early 

flights to enhance global search and should gradually slow down during later flights of the 

journey to improve the local search. Therefore, with appropriate regulation of particle's 

velocity, the performance of PSO can be improved. This requires a proper balance between 

cognitive and social behaviors of the swarm. Initially, the cognitive component must 

dominate over the social component to ensure global exploration of the search space. 

However, during the later part of the journey, the social component must dominate over the 

cognitive one so as to divert all particles toward the global best to improve the local 

exploitation. This is essential for a good balance between exploration and exploitation as 

suggested by [10]. 

 

In the conventional PSO, only the initial velocity component is regulated by inertia weight. 

However, the cognitive and social behavior of the swarm, though randomized to ensure 

diversity, is statically controlled by assigning constant values to acceleration coefficients. 

These cognitive and social components of velocity are added in the regulated initial velocity 

component to decide the movement of particles. This probably causes uncontrolled particle 

velocities during the whole computation process and thus results in insufficient exploration 

and exploitation of the search space. As a consequence, the conventional PSO inherently 

exhibits poor convergence due to local trapping. Therefore, a modified control equation is 

suggested for dynamically regulating particle's velocity by suggesting suitable exponential 

constriction functions δ1 and δ2. Moreover, the cognitive and social components are modified 

by considering the preceding experience. The suggested control equation for the proposed 

EPSO may be expressed as  

                       (14)  

where C1b and C1p are acceleration coefficients representing cognitive behavior for the best 

and preceding experiences and pprecedingi
k
 is the preceding position of the ith particle for the 

kth iteration. In the proposed method, the inertia weight is modified to regulate the tradeoff 

between the global exploration and the local exploitation of the swarm. The preceding 

experience has been added to improve the cognitive component. Further, dynamic 

acceleration coefficients have been introduced using constriction functions to regulate the 

cognitive and social behaviors of the swarm. These proposed modifications are discussed in 

the following sections. 
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3.1. Inertia Weight Update 

The trend of linear modulation of inertia weight of [33] is followed to solve optimization 

problems using PSO by many researchers till date [23, 24, 34, 35]. For large-scale 

optimization problems, there exist a large number of local optima in the close vicinity of the 

global optima. Therefore, the exploitation potential of the search algorithm should be 

sufficient to obtain better solutions. Therefore, the inertia weight has been intuitively varied 

exponentially with respect to iterations. Modulations suggested to update the inertia weight is 

governed by the following relation:  

                                             (15)  

3.2. Updating Preceding Experience 

The cognitive behavior was split in [24] by considering also the worst experience in addition 

to the best experience of the particle to provide some additional diversity, but it results in 

poor local exploitation unless supported by a local random search. Therefore, the concept of 

the preceding experience is suggested where the current fitness of each particle is compared 

with its fitness value in the preceding iteration, and if it is found less, it will be treated as the 

preceding experience. The preceding experience of the particle produces much less diversity 

than the worst experience and thus can provide better exploration and exploitation of the 

search space without employing any additional local random search or else. 

3.3. Dynamic Control of Acceleration Coefficients 

The cognitive and social behaviors introduced in the conventional PSO play an important role 

in searching the promising area where the global optima may exist and thereafter approaching 

toward the global optima. In conventional PSO, these behaviors are governed by static 

acceleration coefficients. However, many researchers [14, 17–20, 36] suggested that these 

acceleration coefficients must be dynamically controlled with iterations to regulate particle's 

velocity during the whole computation process. In the present work, following the logic of 

dynamic inertia weight, the acceleration coefficients are dynamically controlled by 

introducing two exponential constriction functions δ1 and δ2. These constriction functions 

dynamically regulate the cognitive and social behaviors of the swarm, thus limiting particles' 

velocities during their whole course of the flight and are proposed as  

                                                                                                       (16)  

                                                              

                       (17)  

 

The constriction functions help to maintain the dynamic behaviors of cognitive and social 

components. In the beginning, the cognitive component dominates over the social one. As the 

iterations proceed, the cognitive component drops sharply, whereas the social component 

builds up gradually. After a certain iteration count, they attain same values. Let these 

components become equal when ε is εt, and then the constriction factor kc is given by  

 

                                                                                           (18)  

Beyond εt, the social component dominates over the cognitive component till the end of the 

search. Let it become ks when the iteration count is exhausted, and is given by  
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                                                                                                             (19)  

 

From (18) and (19)  

 

                                                                                            (20)  

 

Interestingly, ks is independent of C2, but it is the function of C1b. In the light of [16], ks 

cannot be more than C1b and thus εt should be more than 0.5. Further, the cognitive 

component will not be perceptible for μ to be five or more [37]. The coefficients of exponents 

terms μ and the constriction factor kc dynamically govern the cognitive and social 

components of particles' velocities. Therefore, both are responsible to maintain a proper 

balance between cognitive and social behavior of the swarm during the whole course of the 

flight. For the given values of static acceleration coefficients, both μ and εt can be optimized 

to determine the optimal value of ks using (20) and then the optimal value of kc can be 

obtained using (18). These alterations in the control equation of the conventional PSO 

regulates particles' velocities without any additional formulation as reported in many 

improved versions of PSO [19, 27, 38, 39], yet preserving diversity due to the stochastic 

nature of cognitive and social behaviors of the swarm. 

3.4. Particle Encoding and Initialization 

The solution of an MAED problem is the set of the most optimal generations and the 

connected tie-lines of that area for the desired objective (s) bounded by certain operational 

constraints. In the proposed PSO, the particles are encoded in real numbers as the set of 

current generations and the connected tie-lines of that area in MW, as shown in Figure 2.  

 

 

 

Figure 2 Particle encoding for the proposed EPSO. 

The initial population is randomly created with predefined number of particles to maintain 

diversity. Each of these particles satisfies the problem constraints defined by (3)–(6). 

Infeasible particles, whenever appeared, are corrected employing a constrained handling 

algorithm as described later in the section. The fitness of each particle is evaluated using (10) 

and then pbest, ppreceding, and gbest are initialized. The initial velocity of particles is 

assumed to be zero. 
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3.5. Constrained Handling 

The velocity and position update may create infeasible solutions. In the proposed method, 

infeasible individuals are not rejected but are corrected to feasible ones using a constrained 

handling algorithm. For this purpose, the generations of all generators are adjusted by their 

respective bounded generation limits, tie-line, and area spinning reserve constraints as given 

in Eqs. (3)–(6). If the generations are lesser or greater than minimum or maximum generation 

level, then the corresponding generation is set at minimum or maximum bound limits as in 

(4). Similarly, if the transfer of real tie-line power from area i to area k exceeds its limit, then 

the corresponding tie-line power is set at tie-line bound limits as in (5) for security 

consideration. For area spinning reserve constraint, every area has to fulfill its respective 

reserve requirement as per (6), and if not satisfied, then the difference amount of reserve is 

distributed equally among all generating units and the connected tie-lines of that area till it is 

satisfied. The power balance error is calculated using (3). The error in the power is also 

equally distributed among all generators and the procedure is repeated till the error is reduced 

to a predefined mismatch value, say 0.001 MW. 

3.6. Elitism and Termination Criterion 

In stochastic-based algorithms like PSO, the solution with the best fitness in the current 

iteration may be lost in the next iteration. Therefore, the particle with the best fitness is kept 

preserved for the next iteration. The algorithm is terminated when either all particles reach to 

the global best position or the predefined maximum iteration number is reached. 

4. Simulation Results and Discussion 

The proposed algorithm is tested on two test systems, i.e., four areas, 16 generators system 

and four areas 40 generators system. The value of acceleration coefficients C1b, C1p, and C2 

for these test systems are taken as 1.6, 0.4, and 2.0, respectively, as in [24]. The value of 

maximum and minimum bounds of the inertia weight is taken as 0.9 and 0.1, respectively. 

The swarm size and maximum iteration count have been obtained after usual tradeoff. A 

swarm size of 20 and 100 is taken for these test systems, respectively, and the maximum 

iteration count is taken as 1000 and 2500. The proposed algorithm has been developed using 

MATLAB and the simulations have been carried on a personal computer of Intel i5, 3.2 GHz, 

and 4 GB RAM. 

 

To determine the optimal value of ks, several experimentations have been performed by 

varying μ and εt in the expected range [5, 5.5] and [0.5, 0.75] for test system 1. The results 

obtained for MAED on the basis of average fuel cost and its standard deviation (STD) 

after100 independent trials of EPSO are presented in Table 1. The table shows that the 

optimal value of ks is 0.2 and the corresponding values of μ and εt are found to be 5.2 and 

0.70, respectively. The proposed EPSO is now applied on each test systems with following 

three different cases.  
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Table 1 Optimizing ks 

ks Average fuel cost ($/hr) STD 

0.1 2144.714787 0.006806 

0.2 2143.824856 0.006575 

0.3 2144.749566 0.006837 

0.4 2146.536661 0.006939 

0.5 2152.244788 0.008060 

   

1. Case 1: Without inter-area aid 

2. Case 2: Inter-area aid with reserve sharing 

3. Case 3: Inter-area aid with proposed reserve sharing 

In case 1, all areas are assumed not be interconnected by tie-lines and every area has to 

individually satisfy its own reserve requirement. In case 2, the areas are interconnected and 

individual area reserves are mutually shared, whereas in case 3, the areas are interconnected 

and reserve sharing is allowed while keeping intact the contingency and pooling spinning 

reserve constraints. The application results obtained by the proposed PSO after 100 

independent trials are presented and compared with other existing population-based 

techniques. 

4.1. Test System 1 

This system consists of four areas, each with four thermal units and the transmission losses 

are neglected. All the four areas are interconnected through six tie-lines as shown in Figure 3. 

The detailed data of this system may be referred from [12]. The system base MVA is 

considered as 100 MVA. The area power demand is 0.3, 0.5, 0.4, and 0.6 p.u., respectively. 

The minimum and maximum limits of tie-lines are considered as in [12].  

 

 

Figure 3 Four areas 16 generators system for test system 1. 
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For case 1, the value of specified spinning reserve of each area is 30% of area power demand 

as in [12]. To show the effectiveness of the proposed EPSO, it is applied for MAED of this 

system. The minimum fuel cost obtained using EPSO is found to be 2143.824 $/hr, which is 

better than 2181.261 $/hr, obtained by the differential evolution with chaotic sequences 

(DEC2) of [2]. The proposed method is then applied for MAEED problem for this system. 

The optimal fuel cost and emission obtained are 2172.522 $/hr and 2.997 ton/hr, respectively. 

The method of [12] provides Pareto solutions for this system with fuel cost variation from 

2191.140 $/hr to 2191.270 $/hr and corresponding emission variation from 3.749 ton/hr to 

3.692 ton/hr. From this result, it is clear that the proposed method provides a much better 

solution for both the objectives in comparison to the existing method [12]. Thus, the proposed 

EPSO has found a solution that dominates over the Pareto front generated by the MOPSO of 

[12]. This verifies the effectiveness of the proposed EPSO. 

 

For case 2, the specified spinning reserve requirement for each area is taken same as in case 

1. The MAEED problem is solved using EPSO. The best solution obtained provides a fuel 

cost and emission as 2165.7987 $/hr and 2.8329 ton/hr, respectively. The Pareto optimal 

solutions obtained by [12] shows extreme end solutions for fuel cost as 2166.8200 $/hr and 

2178.2000 $/hr. The corresponding emissions are obtained as 3.3152 ton/hr and 

3.2301 ton/hr, respectively. Thus, the proposed method provides a better solution than the 

existing method [12]. It may also be observed that the fuel cost is reduced from 2172.522 $/hr 

to 2165.7987 $/hr and the emission is reduced from 2.997 ton/hr to 2.8329 ton/hr when inter-

area flow of power is allowed. 

 

For case 3, the proposed inter-area reserve sharing is employed by considering the 

contingency spinning reserve in each area, and the pooling reserve is contributed by all areas. 

The contingency spinning reserve for each area is taken as 7% of its power demand and the 

pooling spinning reserve is taken as 30% of the power demand of area 4, having the highest 

loading. For this case, the proposed method provides fuel cost and emission as 2164.8558 

$/hr and 2.4304 ton/hr, respectively, which are less than that obtained in case 2. This result 

highlights the importance of reserve sharing as proposed in this paper. Since this reserve 

sharing approach is new, no comparison results are available in the literature. 

Table 2 Contingency, pooling spinning, and available reserves for case 3 

Reserve Area 1 Area 2 Area 3 Area 4 

Contingency spinning reserve (p.u.) 0.0210 0.0350 0.0280 0.0420 

Pooling spinning reserve (p.u.) 0.1800 

Available reserve (p.u.) 0.0618 0.1940 0.7938 0.5067 

 

Table 2 provides a quick reference to check the validity of the reserve sharing constraints 

imposed for the solution obtained. The table shows that the available reserve for each area is 

more than its respective contingency spinning reserve requirement. It can also be seen from 

the table that the sum of available reserves is maintained higher than the sum of contingency 

and pooling spinning reserve requirement. It can also be observed from the table that the total 

reserve to be maintained in case 3 is 0.306 p.u., whereas in case 2 it was 0.54 p.u. Thus, the 

proposed inter-area reserve sharing scheme provides significant reduction in the spinning 

reserve requirements. The optimal generating schedule and the corresponding tie-line flows 

obtained by the proposed method for MAEED may be referred from Table 3. It can be 

observed from the table that the optimal solution satisfied all the problem constraints.  
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Table 3 Optimal generation schedule for test system 1 

Case 1 Case 2 Case 3 

Unit Power (MW) Unit Power (MW) Unit Power (MW) 

1,1 0.128330 1,1 0.120000 1,1 0.119800 

1,2 0.100000 1,2 0.060000 1,2 0.098700 

1,3 0.025700 1,3 0.110000 1,3 0.089900 

1,4 0.045876 1,4 0.110000 1,4 0.119900 

2,1 0.159713 2,1 0.188600 2,1 0.169500 

2,2 0.120000 2,2 0.117600 2,2 0.116700 

2,3 0.108913 2,3 0.132400 2,3 0.129100 

2,4 0.111280 2,4 0.103600 2,4 0.140700 

3,1 0.085696 3,1 0.066000 3,1 0.089900 

3,2 0.079593 3,2 0.063700 3,2 0.076100 

3,3 0.085660 3,3 0.080900 3,3 0.101200 

3,4 0.148953 3,4 0.194100 3,4 0.139000 

4,1 0.110000 4,1 0.094300 4,1 0.110000 

4,2 0.157307 4,2 0.100500 4,2 0.079300 

4,3 0.145921 4,3 0.128300 4,3 0.083400 

4,4 0.186672 4,4 0.125300 4,4 0.130700 

T1,2 — T1,2 0.001000 T1,2 0.001000 

T1,3 — T1,3 0.001000 T1,3 0.001200 

T1,4 — T1,4 0.098100 T1,4 0.126200 

T2,3 — T2,3 0.003400 T2,3 0.001700 

T2,4 — T2,4 0.039800 T2,4 0.055000 

T3,4 — T3,4 0.009000 T3,4 0.009000 

4.2. Test System 2 

This is a four-area 40 units generating system [11], with non-convexity in the cost function 

due to valve-point loading effect and transmission losses being neglected. Each area consists 

of 10 generating units and all four areas are interconnected through six tie-lines as shown in 

Figure 4. The figure also shows area power demands as a percentage of the total power 

demand (PD) of 10,500 MW. The area-wise fuel cost coefficient data may be referred from 

[11] and the pollutant emission coefficient data is taken from [40]. The tie-line limit from 

area 1 to area 2, from area 1 to area 3, and from area 2 to area 3 or vice versa is taken as 

200 MW and that for the remaining each tie-line is taken as 100 MW.  
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Figure 4 Four area 40 generators system for test system 2. 

For case 1 and case 2, the specified spinning reserves for each area are assumed as 20% of its 

power demand. For case 3, the contingency spinning reserve for each area is considered as 

7% of its power demand and the pooling spinning reserve is assumed as 25% of power 

demand of area 2. The best results obtained using EPSO for these cases are presented in 

Table 4. It can be observed from the table that both fuel cost and emission reduce in case 2 

than in case 1 and it further reduces in case 3. In fact, the proposed reserve sharing scheme 

causes a reduction of 1.154% in fuel cost and 5.132% in emission as compared with case 2. 

The Pareto fronts stored in the archive for both test systems are shown in Figure 5. The figure 

shows very closely spaced non-dominated set of solutions for each test system. The Pareto 

fronts obtained are not exactly hyperbolic in shape because the MAEED problem is solved in 

fuzzy framework.  

Table 4 Simulation results obtained using EPSO for all cases of test system 2 

Case Fuel cost ($/hr) Emission (ton/hr) 

1 129324.92 106.5239 

2 128519.35 87.6159 

3 127036.79 83.1192 
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Figure 5 Pareto front for (a) Test system 1 (b) Test system 2. 

Table 5 provides the contingency, pooling spinning, and available reserves for the solution 

obtained using EPSO. The table shows that the available reserve for each area obtained by the 

optimal solution is over and above than its respective contingency spinning reserve 

requirement. It can also be seen from the table that the sum of available reserve of all areas is 

maintained higher than the sum of pooling and contingency spinning reserves of all areas. 

The optimal generating schedule and the corresponding tie-line flows obtained for MAEED 

of case 3 is presented in Table 6. It can be observed from the table that the optimal solution 

satisfied all the problem constraints.  

Table 5 Contingency, pooling spinning, and available reserves for case 3 

Reserve Area 1 Area 2 Area 3 Area 4 

Contingency spinning reserve (MW) 110.25 294 220.5 110.25 

Pooling spinning reserve (MW) 1050 

Available reserve (MW) 183.58 802.54 1060.89 175.00 
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Table 6 Optimal generating schedule and tie-line flows for case 3 

Area, Power Area, Power Area, Power 

Unit (MW) Unit (MW) Unit (MW) 

1,1 113.9981 2,7 475.2723 4,3 177.8161 

1,2 113.9987 2,8 475.8056 4,4 200.0000 

1,3 119.9993 2,9 436.8372 4,5 200.0000 

1,4 179.7417 2,10 438.1827 4,6 200.0000 

1,5 96.9987 3,1 439.9741 4,7 106.6446 

1,6 136.9723 3,2 439.7863 4,8 105.8255 

1,7 299.9984 3,3 441.0615 4,9 106.9335 

1,8 299.9988 3,4 441.5426 4,10 421.6155 

1,9 299.7135 3,5 441.0398 T1,2 181.5195 

1,10 130.0032 3,6 438.4807 T1,3 134.9021 

2,1 318.0953 3,7 15.6718 T1,4 −99.9991 

2,2 317.5724 3,8 15.7586 T2,3 128.9781 

2,3 402.4054 3,9 15.7953 T2,4 −100.0000 

2,4 394.4399 3,10 97.0000 T3,4 −100.0000 

2,5 394.4111 4,1 178.1622 – – 

2,6 394.4364 4,2 178.0009 – – 

 

From the application results of the proposed method and its comparison with existing 

method, it is clear that the proposed method is computationally very efficient and is capable 

of solving large and complex economic dispatch problems. This is due to the modifications 

suggested in the conventional PSO. To highlight the sequential impact of modifications 

suggested in inertia weight, cognitive and social behaviors of the proposed EPSO, Table 7 is 

presented. The table classifies ‗a‘ as the conventional PSO, ‗b‘ refers ‗a‘ with exponential 

modulations in inertia weight, ‗c‘ refers ‗b‘ with preceding experience, and ‗d‘ refers the 

proposed EPSO for the sake of convenience.  

Table 7 Sequential modifications in the proposed EPSO 

Parameter a b c d 

W Linear Exponential Exponential Exponential 

C1b 2.0 2.0 1.6 1.6 

C1p Not existing Not existing 0.4 0.4 

C2 2.0 2.0 2.0 2.0 

ks Not existing Not existing Not existing 0.1 

 

A comparison of the set of convergence characteristics for PSO and its variants used to solve 

the MAEED problem for test system 2 is shown in Figure 6. This figure shows convergence 

for the best and average fitness, respectively. It can be observed from Figure 6(a) that 

subsequent modifications in the inertia weight, cognitive, and the social component in the 
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control equation of the conventional PSO, the convergence characteristics are progressively 

improved by avoiding more and more local trappings. It can also be observed from the figure 

that except EPSO, the initial shape of convergence is more or less same. It happens because 

the constriction functions suggested in the cognitive and social components of particle's 

velocity play key role for better convergence in EPSO. A similar conclusion may be drawn 

from Figure 6(b). It can be observed from the figure that in EPSO alone, the particles do not 

identify the probable area of global optima during early iterations. In fact, if the promising 

area with global optimum is identified at the earlier stages of the optimization, there is a 

possibility of missing that area without exploitation [24]. Therefore, the EPSO offers 

advantage to exploit this region meticulously and thus converges to global or near-global 

optima.  

 

 

 

Figure 6 Convergence characteristics for (a) best fitness (b) average fitness for test system 2. 

5. Conclusions 

The MAEED problem with reserve constraint provides more economy in power generation, if 

area spinning reserves are also shared mutually among the interconnected areas, keeping their 

respective contingency spinning reserves intact. However, the system security imposes 

restrictions on the inter-area power transactions through tie-lines, making MAEED highly 

complex combinatorial constrained optimization problem. In addition, complexity arises due 
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to the stringent area power balance constraints, tie-line constraints, and area reserve 

constraints. In addition, the cost and emission objectives of thermal plants are conflicting in 

nature, which further increases the complexity of the problem. In this paper, an EPSO method 

has been proposed to solve the complex MAEED problem. Attempts have also been made to 

overcome the drawbacks of the existing PSO methods by proposing EPSO method. In EPSO, 

the control parameters are allowed to vary with iterations in such a fashion that ensures a 

proper balance between cognitive and social behavior of the swarm and thus improves 

exploration and exploitation potentials of the PSO. This results in better convergence, higher 

solution quality, and stronger robustness. The application of the proposed method is 

investigated on two standard test generating systems with different scenarios of spinning 

reserve requirements for reserve sharing provisions by considering contingency and pooling 

spinning reserves. It has been found that the proposed reserve sharing scheme not only 

curtails the total reserve requirement of the system but also reduces fuel cost and pollutant 

emission of thermal units. The application results show that the proposed method is 

consistently efficient and is not trapped in local minima. It is noteworthy that EPSO does not 

require additional mechanism to avoid local trapping or to bound particle's velocities or 

squeezing the search space. Moreover, it is independent of the initial state of particles in the 

search space. The comparison and application results show that the proposed method is 

capable of producing a better solution than the other existing methods. 
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