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Abstract 

Biotic interactions are known to affect the composition of species assemblages via several 

mechanisms, such as competition and facilitation. However, most spatial models of species 

richness do not explicitly consider inter-specific interactions. Here, we test whether 

incorporating biotic interactions into high-resolution models alters predictions of species 

richness as hypothesised. We included key biotic variables (cover of three dominant arctic-

alpine plant species) into two methodologically divergent species richness modelling 

frameworks – stacked species distribution models (SSDM) and macroecological models 

(MEM) – for three ecologically and evolutionary distinct taxonomic groups (vascular plants, 

bryophytes and lichens). Predictions from models including biotic interactions were 

compared to the predictions of models based on climatic and abiotic data only. Including 

plant–plant interactions consistently and significantly lowered bias in species richness 

predictions and increased predictive power for independent evaluation data when compared 

to the conventional climatic and abiotic data based models. Improvements in predictions were 

constant irrespective of the modelling framework or taxonomic group used. The global 

biodiversity crisis necessitates accurate predictions of how changes in biotic and abiotic 

conditions will potentially affect species richness patterns. Here, we demonstrate that models 

of the spatial distribution of species richness can be improved by incorporating biotic 

interactions, and thus that these key predictor factors must be accounted for in biodiversity 

forecasts. 

Global environmental change requires enhanced predictions of how biotic and abiotic 

conditions impact biodiversity. As currently implemented, the two frameworks most 

commonly used for modelling species richness – stacked species distribution (SSDM) and 

macroecological models (MEM; Ferrier and Guisan 2006) – are fundamentally limited. Their 

main weakness is that neither routinely considers biotic interactions as a key community 

assembly process (Pearson and Dawson 2003, Soberón and Peterson 2005, Kearney and 

Porter 2009, Wisz et al. 2013). These correlative models are thus a priori critically flawed, 

both in theory and in practice, for addressing one of ecology's core questions (Brown 1995, 

Gaston 2000): how does biodiversity vary through space and time? Answering this question 

1



is a key to addressing the impact of global environmental change on biodiversity and 

ecosystems. For an accurate answer, both frameworks, SSDM and MEM, need modifications 

as in their current forms they neglect these important drivers that impact on biodiversity. 

The SSDM framework creates individual species distribution predictions and subsequently 

models total species richness by blindly stacking the predicted species occurrences (Ferrier 

and Guisan 2006). Stacking predicted species occurrences (based on threshold values for 

transforming probabilities of occurrence to presence–absence values), however, consistently 

overpredicts species richness (Newbold et al. 2009, Dubuis et al. 2011, Pottier et al. 2013; 

Fig. 1a, although see Calabrese et al. 2014 for stacking probabilities of species occurrence to 

restrict the overprediction of SSDMs). A proposed explanation for this systematic 

overprediction in stacked species richness predictions is that the models do not account for 

biotic interactions, which act as filters determining which subset of species co-occur in an 

area under certain environmental conditions (Guisan and Rahbek 2011). By omitting biotic 

interactions, stacked species distribution models are built under the expectation that no 

intrinsic environmental carrying capacity exists which limits the number of species that can 

coexist (Dubuis et al. 2011). The inclusion of biotic interactions is thus expected to reduce 

the distribution of some species (although facilitation may also enlarge a species 

distributional range), and thus limit the number of co-occurring species (i.e. lowering species 

richness) when stacking the predicted occurrences of individual species. In contrast, the 

MEM models species richness values directly through a single model that implicitly 

considers the environment to be limiting the number of species (Ferrier and Guisan 2006), 

sacrificing all information about community composition and species identities (Dubuis et al. 

2011). Therefore, MEM cannot distinguish between sites that have similar abiotic conditions 

but very different biotic composition. In contrast to SSDM, MEM tends to overpredict 

richness in species-poor sites and underpredict richness in species-rich sites (Newbold et al. 

2009, Dubuis et al. 2011; Fig. 1b). SSDM and MEM frameworks thus both have limitations 

as currently implemented. Indeed, these limitations appear to result from a common cause in 

both cases: biotic interactions remain unquantified and treated as a uniform neutral 

background in the models. 

 

Figure 1. Hypothesized effect of inclusion of biotic interactions into species richness models for (a) stacked 

species distribution modelling ( = SSDM) and (b) macroecological modelling ( = MEM). The solid ellipse 

represents the relationship between predicted and observed species richness, generally reported from 

conventional models. The dotted ellipse represents the same relationship as expected after the explicit inclusion 

of key biotic interactions: for SSDM the inclusion of biotic interactions is expected to filter the number of co-

occurring species under certain environmental conditions (i.e. reflecting an inherent environmental carrying 

capacity) and thus, in general, reduce species richness. In MEM, the inclusion of biotic interactions assists to 

identify the areas with similar abiotic, but differing biotic conditions, and thus correct the bias in both end of the 

gradient. A 1:1 relationship represents a perfect prediction, i.e. predicted values match the observed values. 
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Biotic interactions, both positive and negative, are known to shape species realized 

environmental niches via several mechanisms, including competition, mutualistic interactions 

and facilitation, especially at fine scales (Callaway 1995, Aerts 1999, Anderson et al. 2002, 

Case et al. 2005, Araújo and Guisan 2006). As observed species occurrence patterns are 

determined by both abiotic and biotic drivers, these two components must both be accounted 

for in species richness models. Indeed, recent species distribution model (SDM) studies have 

started incorporating biotic interactions into models for individual species, showing how 

biotic interactions can reduce bias in occurrence predictions (Davis et al. 1998, Araújo and 

Luoto 2007, Heikkinen et al. 2007, Meier et al. 2010, Pellissier et al. 2010, le Roux et al. 

2012, 2013c, Giannini et al. 2013, González-Salazar et al. 2013). Consequently, it is equally 

likely that, through the accumulated impacts on individual species, biotic interactions can 

also strongly shape species assemblages and community richness patterns (Lortie et al. 2004, 

Guisan and Thuiller 2005, Gotelli et al. 2010, Kissling et al. 2012, Thuiller et al. 2013, Wisz 

et al. 2013). 

We therefore hypothesize that explicitly incorporating the cover of dominant species as 

proxies for biotic interactions should improve predictions of species richness, both for SSDM 

and MEM (following the approach of le Roux et al. 2014). These frameworks differ 

considerably in their underlying theoretical basis, methodology and working assumptions 

(Ferrier and Guisan 2006, Dubuis et al. 2011, Guisan and Rahbek 2011). As a consequence, 

the effects of incorporating biotic interactions in species richness predictions may also differ 

between the two modelling frameworks. We expect that for SSDM, considering biotic 

interactions will reduce overprediction at all richness levels (Guisan and Rahbek 2011; Fig. 

1a), while in MEM the inclusion of biotic interactions will correct bias at both ends of the 

richness gradient (Fig. 1b). Thus, for both frameworks, the inclusion of biotic interactions is 

expected to provide predictions closer to observed species richness (i.e. 1:1 line in Fig. 1), 

which, if verified, would demonstrate the importance of biotic interactions on predictions of 

species richness. 

We test these hypotheses by incorporating the cover of three dominant arctic-alpine plant 

species (Empetrum nigrum ssp. hermaphroditum, Betula nana, Betula pubescens ssp. 

czerepanovii; nomenclature following Hämet-Ahti et al. 1998), which are previously 

identified as important biotic predictors in the study area (le Roux et al. 2013c, 2014), into 

high-resolution SSDM and MEM species richness models based on climatic (mean 

temperature of coldest quarter, growing degree days, water balance) and local abiotic (soil 

quality, solar radiation and soil wetness) predictor variables. To assess the impact of 

including biotic interactions on the model's prediction bias, we averaged the cross-validated 

results of three statistical techniques (generalized linear models (GLM), generalized additive 

models (GAM) and generalized boosting methods (GBM)) for both species richness 

modelling frameworks (Araújo and New 2007, Elith and Graham 2009, Guisan and Rahbek 

2011), and ran the analysis for three ecologically and evolutionary distinct taxa: vascular 

plants, bryophytes and lichens. We used a large dataset (n = 1080) from arctic-alpine 

northern Fennoscandia, a system characterized by broad environmental gradients with 

relatively few interacting species (le Roux et al. 2013c). It therefore represents a powerful 

study system to test the importance of biotic interactions on species richness (Wisz et al. 

2013). 
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Material and methods 

Study area and data collection 

The study area is situated in north-western Finland and Norway (ca 69°N, 20°50′E) with an 

annual mean temperature of −1.9°C (January −12.9°C, July 11.2°C) at the nearby Kilpisjärvi 

meteorological station (Finnish Meteorological Inst.). In the study area vegetation consists of 

arctic- alpine tundra with some boreal features at lower elevations (Virtanen et al. 2010). 

Species data were collected from 270 sites, along 18 elevational transects at 20 m intervals 

during 2008–2011. Four 1 m
2
 plots, located 5 m from the centre of each site, were surveyed, 

resulting in a total of 1080 plots for analysis. Maximum distance between sites was 80 km, 

with altitude ranging between 460 and 1360 m a.s.l. In each plot, the cover and identity of all 

vascular plants, bryophytes and lichens were recorded (see Virtanen et al. 2010, le Roux et al. 

2012 for more details). Individuals were identified to species level, with the exception of a 

few groups that could not be distinguished reliably or have unresolved taxonomy (∼3.5% of 

records; including Taraxacum spp. some Bryum and Stereocaulon spp.). Cover data was 

transformed to presence–absence data (species noted as present if cover > 0%) and presences 

were summed to determine species richness per plot for each taxon separately. 

Environmental predictor variables for modelling were selected from three different groups of 

variables: climatic, local abiotic and local biotic, based on previous studies in this area 

(Sormunen et al. 2011, le Roux et al. 2012, 2013b; see also Guisan and Zimmermann 2000). 

The three climatic variables used were mean air temperature of the coldest quarter (TCQ: 

December–February), growing degree days (GDD3: sum of the days when air temperature > 

3°C) and water balance (WAB: ratio of precipitation to evaporation). Temperature- and 

moisture-related climatic variables represent broad-scale environmental drivers that have a 

strong impact on vegetation, although their variability, and therefore potential explanatory 

power, at finer scales is more moderate (Pearson et al. 2002, Virtanen et al. 2006). The 

variables were downscaled for each 1 m
2
 plot following Aalto et al. (2014) using a digital 

elevation model (DEM; National Land Survey of Finland) with a resolution of 5 × 5 m. The 

method provides adequate climatic data by accounting for, in addition to geographic location, 

the effects of topography and land cover when modelling temperature. Climatic data were 

derived from 61 weather stations, which cover the northern parts of Fennoscandia (Finnish 

Meteorological Inst., Norwegian Meteorological Inst., Swedish Meteorological and 

Hydrological Inst. and Abisko Scientific Research Station) for the normal period 1971–2000 

(most recent normal period from which climatic data from all 61 weather stations were 

available; see comparison for normal period 1981–2010 for eight weather stations in 

Supplementary material Appendix 1). 

Local abiotic variables included in models were soil quality (SQ), soil wetness (WET) and 

solar radiation (SOL), which were derived using GIS techniques in ArcGIS (ESRI 2012). Soil 

quality reflects patterns in bedrock composition, which exert considerable influence over the 

distribution of calciphilous and acidophilous plant species (Baack et al. 2006) and affects 

nutrient availability for generalist species. Bedrock composition was estimated from the 

proportion of calcareous (nutrient-rich) and silicaceous (nutrient-poor) bedrock with data 

extracted from a bedrock map (Korsman 1997) at a resolution of 100 m and interpolated 

using the ArcGIS interpolation tool (ESRI 2012). Soil moisture is a key determinant of 

species richness in arctic and alpine areas, and can show high heterogeneity over short 

distances due to finescale variation in topography and physical soil properties (le Roux et al. 

2013a). Relative soil moisture at each plot was estimated by calculating the topographic 
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wetness index (TWI; Beven and Kirkby 1979) from the same DEM using the ArcView 

Spatial Analyst extension (ESRI 2012). TWI was calculated as:  

 

with slope angle measured in radians. Variation in the fine-scale intensity of incident solar 

radiation is strongly determined by topographic variables, and therefore often varies 

considerably in rugged high latitude and altitude environments, often creating pronounced 

fine-scale soil temperature gradients (Billings and Mooney 1968, Dymond and Johnson 

2002). Potential annual solar radiation (Mj cm
−2

 yr
−1

) for each plot was calculated from the 

DEM using Solar Analyst extension in ArcView (McCune and Keon 2002, ESRI 2012). This 

value reflects the maximum potential radiation, assuming clear skies, based on slope aspect 

and angle. 

Biotic variables added to the species richness models comprised the cover of Empetrum 

nigrum ssp. hermaphroditum, Betula nana and Betula pubescens ssp. czerepanovii which are 

dominant species in the area with demonstrated impacts on the distribution of other species 

(Grytnes et al. 2006, Pellissier et al. 2010, le Roux et al. 2014), also from other taxa, i.e. 

bryophytes and lichens (Cornelissen et al. 2001, Pajunen et al. 2011). Empetrum nigrum is an 

evergreen dwarf shrub that is a strong competitor in low-nutrient, acidic arctic-alpine 

ecosystems due to its allelopathy and dense growth form (Tybirk et al. 2000, Aerts 2010). 

This species has positive effects on some co-occurring species by providing shelter from the 

wind, trapping protective snow cover and creating a beneficial microclimate (Williams 1988, 

Shevtsova et al. 1995, Mod et al. 2014). Betula nana is a deciduous dwarf shrub, and like E. 

nigrum, one of the dominant species in the study area (Eskelinen et al. 2009). It is 

hypothesized to be a potential competitor, but as a tall and dense dwarf-shrub it also provides 

sheltered and shaded conditions for short stature species (Pellissier et al. 2010). Betula 

pubescens forms the tree line in the region at ca 600–700 m a.s.l. (Eskelinen et al. 2009), and 

strongly buffers abiotic conditions, favouring many boreal species and therefore affecting the 

distribution of some species at lower elevations. 

Statistical analysis 

To test our hypothesis that the inclusion of biotic interaction improves predictions of species 

richness, we applied the two prevailing species richness modelling frameworks, stacked 

species distribution models (SSDM) and macroecological modelling (MEM) using three sets 

of different explanatory variables. As a result three different models were run (Eq. 1, 2, and 

3, following Zimmermann et al. 2009 and le Roux et al. 2013c):  

(1) 

(2) 

(3) 

To account for different modelling algorithms giving different predictions, three alternative 

state-of-the-art techniques were used: generalized linear models (GLMs), generalized 

additive models (GAMs) and generalized boosting method (GBM; Elith et al. 2008, Franklin 

and Miller 2009, Dubuis et al. 2011, Guisan and Rahbek 2011). All three modelling 
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algorithms were used both for SSDM and MEM and repeated for all models and species 

groups. All analyses were conducted in R (R Development Core Team). GLMs were fitted 

using the stats package (R Development Core Team), and GAMs using the mgcv package 

(Wood 2011). For GAMs, the initial degrees of smoothness for each univariate term were set 

to four. GBMs were fitted using functions from the gbm and dismo packages (Ridgeway 

2005, Elith et al. 2008), setting interaction depth to six, learning rate to 0.001 (reduced for 

species where inadequate trees were calculated) and bagging fraction to 0.75. In SSDM, for 

single SDMs all three modelling algorithms were used, applying a logit link function and 

assuming a binomial distribution of errors for GLM and GAM and a Bernoulli distribution 

for GBM. Predicted probabilities of occurrence were converted to presence/absence 

predictions using the threshold value maximizing sensitivity and specificity (Liu et al. 2005, 

Levinsky et al. 2013). For the MEM, a logarithmic link function was applied assuming a 

Poisson distribution of errors for all modelling algorithms. 

To account for different algorithms giving different predictions, we averaged their results by 

using ensemble averaging methods for both frameworks (Ferrier and Guisan 2006, Heikkinen 

et al. 2006, Araújo and New 2007, Algar et al. 2009). For SSDM, committee averaging was 

used, which is an ensemble forecasting method that assigns a presence prediction only when 

the majority of models (i.e. ≥ 2) predicts a presence (Gallien et al. 2012). For MEM, to 

average the results based on different algorithms, their arithmetic mean was calculated 

(consensus method) (Araújo and New 2007, Dubuis et al. 2011). 

A linear regression was fitted to the plot of predicted vs observed species richness to compare 

the fit of different models (assessed by examining the slope, intercept and adjusted R² values 

of the regression, with slope = 1 and intercept = 0 indicating perfect prediction; following 

Guisan and Rahbek 2011). The statistical significance of changes in slope, intercept and R² of 

the regression between different models were assessed by using bootstrapping procedure for 

the linear models with 199 permutations and post-hoc-Tukey test using boot and multcomp 

packages in R (R Development Core Team). To test model improvement we examined the 

Spearman correlation (for MEM) and area under curve (AUC) and true skill statistics (TSS; 

for SSDM) for all three levels of model complexity. 

All models were run using four-fold cross-validation with random assignment to quantify the 

predictive power of the models (Fielding and Bell 1997). Using cross-validation also robustly 

accounts for possible non-independence (i.e. spatial autocorrelation) of the data (Hijmans 

2012). To examine spatial autocorrelation, correlograms (Moran's I) with a lag of 50 m were 

calculated for observed species richness and for the residuals of the models. Only species 

with at least 12 presence records in each calibration dataset and 8 presence records in each 

validation dataset were included in analyses (excluding E. nigrum, B. nana and B. 

pubescens), resulting in 91 vascular plant species, 67 bryophyte species and 54 lichen species 

being modelled. 

Based on the SSDM and MEM, species richness was projected for a 3.1 × 5.2 km subarea in 

the centre of the study region (see also le Roux et al. 2013b for details). The area was divided 

in 25 × 25 m cells, with a 1 m
2
 plot in the centre of each cell used for all calculations and 

predictions. 
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Results 

The inclusion of biotic variables in both SSDM and MEM improved species richness 

predictions for all three taxonomic groups, as robustly assessed by four-fold cross-validation 

(Fig. 2, 3 and Supplementary material Appendix 2, Fig. A1–A4). Results thus support our 

hypothesis about the importance of biotic interactions in species richness modelling. Species 

richness predictions from SSDM without biotic interaction constantly overpredicted richness, 

resulting in an overall positive bias. In contrast, MEM mainly overpredicted species richness 

in low-diversity cells, but constantly underpredicted in high-richness cells. Nonetheless, for 

both frameworks the inclusion of biotic variables reduced these biases, with the linear fit 

between observed and predicted species richness converging towards perfect prediction (i.e. 

the regression slope became significantly closer to unity [ = 1] and the intercept significantly 

smaller [ideally 0]) (Fig. 2, 3). In SSDM, the mean predicted richness declined when adding 

biotic variables to the models for all three taxa (Supplementary material Appendix 3, Table 

A1). 

 

Figure 2. Predicted vs observed vascular plant species richness in 1080 plots in arctic-alpine north-western 

Finland and Norway, based on three levels of model complexity: climate model (3 explanatory variables; left 

column), abiotic model (6 explanatory variables; middle column), and biotic model (9 explanatory variables in 

total; right column). Top row: vascular plant species richness as predicted by stacked species distribution 

modelling (SSDM; committee averaging method). Bottom row: vascular plant species richness as predicted by 

macroecological modelling (MEM; values are the mean of predictions from three modelling techniques). The 

details of the best linear fit between observed and predicted species richness are provided in each panel, with the 

fit represented by a solid line. For perfect prediction regression slope would be 1, and intercept zero, i.e. the 

dashed line, which represents the 1:1 relationship between observed and predicted values. For bryophytes and 

lichens, see Supplementary material Appendix 2, Fig. A1, A2. 
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Figure 3. Bootstrapped linear model parameters (mean ± SD) from regressions of predicted vs observed 

vascular plant species richness (top row: stacked species distribution modelling = SSDM; bottom row: 

macroecological modelling = MEM), using three different levels of model complexity (C = climate model; A = 

abiotic model; B = biotic model). Left column: regression intercept. Middle column: regression slope. Right 

column: coefficient of determination. Regression parameters from the three different models differ significantly 

(p< 0.05) in all comparisons. Inclusion of biotic interactions significantly improved the species richness models, 

both in SSDM and MEM, with the intercept and slope of the regression converging towards zero and one 

respectively. For bryophytes and lichens, see Supplementary material Appendix 2, Fig. A3, A4. 

Not only did overall species richness predictions improve, but the inclusion of biotic 

interactions also improved other aspects of the SSDM- and MEM-based models. Adjusted R
2
 

(or predictive deviance for GBM) values were improved for all algorithms and taxa when 

comparing biotic models to climatic or abiotic models. For SSDM, when averaged across all 

modelled species, mean AUC values were higher for biotic models than climate or abiotic 

model in seven cases out of nine (six of these being statistically significant) and TSS was 

improved for four out of nine cases (two improvements being statistically significant) (e.g. 

for lichens the improvement in AUC is 0.024 and in TSS 0.021 when comparing climatic and 

biotic GLM improvement; for all taxa and algorithms see Supplementary material Appendix 

3, Table A1, A2). For MEM, Spearman correlations were significantly higher for all biotic 

models compared to climate and abiotic models, indicating less unexplained variance when 

predicting species richness (e.g. mean improvement in correlation coefficients when 

comparing climatic and biotic models for vascular plant species is 0.1; for correlation and 

adjusted R
2
 values for all taxa and algorithms see Supplementary material Appendix 3, Table 

A3). Because spatial autocorrelation was relatively weak in model residuals (especially for 

MEM), we did not consider further evaluation of spatial autocorrelation necessary 

(Supplementary material Appendix 4, Fig. A1–A3). 
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Projections of species richness for a subarea of the study region were refined by including 

biotic variables (Fig. 4 and Supplementary material Appendix 2, Fig. A5, A6). In particular, 

as visually interpreted, overprediction is reduced in SSDM, and both over- and 

underprediction are reduced in MEM in these projections with the incorporation of biotic 

variables. 

 

Figure 4. Incorporation of local abiotic (abiotic model) and biotic variables (biotic model) into the climate 

model generates more fine-scale variability in predictions for vascular plant species, for both the stacked species 

distribution models = SSDM (top row) and macroecological modelling = MEM (bottom row) (for bryophytes 

and lichens, see Supplementary material Appendix 2, Fig. A5, A6). From this visualization it is also evident that 

the predictions of the SSDM and MEM converge (and that the prediction biases are reduced) with the sequential 

addition of the local abiotic and biotic variables. Geographic coordinates are shown in the Finnish coordinate 

system. 

Discussion 

Recent reviews call for the integration of biotic interactions into biodiversity modelling 

(Kissling et al. 2012), especially when using high-resolution data (Wisz et al. 2013). Biotic 

interactions are known to impact individual species distributions, and therefore are expected 

to shape species richness patterns too (Araújo and Luoto 2007, Wisz et al. 2013). Our study is 

the first to provide a formal test whether adding biotic interactions into the two prevailing 

modelling frameworks of species richness, stacked species distribution (SSDM) and 

macroecological modelling (MEM), improves biodiversity estimates. We show 

unambiguously that biotic interactions are important in determining high-resolution patterns 
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of species richness: inclusion of the cover of dominant species as predictor variables reduced 

previously reported biases in richness predictions in both SSDM and MEM of vascular 

plants, bryophytes and lichens (Newbold et al. 2009, Dubuis et al. 2011). Improvements in 

predictions, irrespective of the framework or taxa used, provide clear support for our 

hypothesis that the incorporation of biotic interactions improves species richness models by 

more explicitly considering community-level assembly processes (Pearson and Dawson 

2003). 

Due to fundamental differences between the SSDM and MEM frameworks, the incorporation 

of biotic interactions improves species richness predictions in markedly different ways. 

Conventional SSDM using only abiotic predictors treat each species in isolation, modelling 

its occurrence under the assumption that other species do not affect its presence in the 

environment (Dubuis et al. 2011, Guisan and Rahbek 2011). In other words, each species 

distribution is predicted without considering competition for resources or space (Pearson and 

Dawson 2003, Guisan and Thuiller 2005) or other interactions (Araújo and Luoto 2007, 

Pellissier et al. 2010). The inclusion of biotic interactions into individual species distribution 

models generally constrain species predicted ranges (although broader distributions may also 

be predicted; see also le Roux et al. (2012)), because the species probability of occurrence 

becomes contingent on both the abiotic and biotic variables in the models. Consequently, this 

may result in a reduction of overprediction of stacked richness predictions. 

In contrast, MEM relates total species richness directly to explanatory variables (Ferrier and 

Guisan 2006, Thuiller et al. 2006, Rahbek et al. 2007, Algar et al. 2009). The resources or 

limitations expressed by the explanatory variables are assumed to influence the whole pool of 

species alike, adopting an approach that is fundamentally different from SSDM where 

explanatory variables are correlated with each individual species (Dubuis et al. 2011, Guisan 

and Rahbek 2011). The inclusion of biotic interactions into MEM had the effect of reducing 

the biases previously reported as affecting both ends of the richness gradient, with at least 

two distinct mechanisms involved. The biotic variables help to distinguish sites that have 

similar abiotic conditions but different species composition, and therefore different levels (or 

dominant types) of inter-specific interactions. For example, in our study system, the cover of 

the three dominant species are assumed to provide an estimate of the level of competition at 

each site (following le Roux et al. 2014). Thus, under abiotically-favourable conditions, 

higher total richness is associated with low dominant cover (i.e. lower competition), while 

fewer species co-occur in plots with a high cover of dominants. 

The inclusion of biotic interactions improved predicted species richness of all three taxa, 

underlining the potential for biotic interactions to determine species richness in diverse taxa. 

However, there was some variability in the intensity of the effect of biotic interactions 

between taxa. Vascular plants and lichens responded more strongly to biotic interactions than 

bryophytes, suggesting bryophytes’ greater independence from the impact of the three 

dominant species. Such differences between bryophytes and vascular plant species and 

lichens has been demonstrated in other studies too: Grytnes et al. (2006) found that altitude 

did not impact bryophyte species richness, suggesting that these species respond more 

strongly to fine-scale environmental drivers, including possibly soil moisture. For vascular 

plant species both positive and negative responses towards other species, including E. nigrum 

and B. pubescens in tundra environments, have been demonstrated in multiple studies 

(Grytnes et al. 2006, Pellissier et al. 2010, le Roux et al. 2013c, Mod et al. 2014). In these 

studies a range of different potential mechanisms were suggested as driving the interactions, 

including allelopathy and providing shelter from disturbance and extreme microclimatic 
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conditions. For lichens, the impact of biotic interactions presumably results from shading, 

which decreases above treeline (Cornelissen et al. 2001, Grytnes et al. 2006). Varying 

outcomes between taxa also suggested that other classifications (e.g. based on species traits) 

may more accurately group species by their sensitivity to biotic interactions (see also 

Pellissier et al. 2010, le Roux et al. 2012, Thuiller et al. 2013) and thus further improve 

species richness predictions for these subgroups. 

Despite the fundamental differences between the two frameworks and the three taxa, 

incorporating the cover of three dominant species as a proxy for biotic interactions into the 

models consistently significantly improved species richness predictions. This approach is 

cost-efficient and statistically simple where suitable data is available (although, see 

Ovaskainen et al. 2010 and Kissling et al. 2012) for other methods to incorporate biotic 

interactions to the models); no additional data or analyses are required and results are easy to 

interpret. Therefore our approach could be successfully implemented in other frameworks; 

for example to supplement ecological assembly rules (Götzenberger et al. 2012) in spatially 

explicit species assemblage modelling (Guisan and Rahbek 2011). This methodology can 

account for both negative and positive interactions (Araújo and Luoto 2007, Pellissier et al. 

2010) and for plant–animal (le Roux et al. 2013c) and predator–prey (Sandom et al. 2013) 

interactions, even though in our study negative interactions appear to dominate (presumably 

due to the higher frequency of the species having negative responses to the three dominant 

plant species) and the hypothesis was tested for plant–plant interactions. Further, the data 

used in this study emphasise the importance of detailed and field-quantified data, as well as 

the need for identifying and incorporating relevant biotic interactions (i.e. potentially 

competitive and/or facilitative species) when implementing high-resolution studies (see also 

Wisz et al. 2013). As our research demonstrates the increased accuracy of high-resolution 

models when accounting for biotic interactions, we believe this approach should be utilized 

where possible; while it may require slightly more time-consuming data collection, this cost 

is offset by the benefit of more accurate models of species richness. 

While the improvements in species richness predictions were highly significant, unexplained 

variation remains (i.e. slope and intercept estimates for the regression between observed and 

predicted species richness did not reach one and zero, respectively, after including biotic 

interactions into the models). Ecological theory suggests that species richness patterns are 

affected by a diversity of factors in addition to environmental conditions and biotic 

interactions (e.g. other remaining biotic processes and dispersal; Graves and Rahbek 2005, 

Field et al. 2009, Gotelli et al. 2009, Thuiller et al. 2013). Further improvements to MEM 

could include adding important environmental constraints on the number of species that can 

coexist through, e.g. accounting more explicitly for differences in local and regional species 

pools (Tofts and Silvertown 2002). For SSDM, further improvements would be the addition 

of dispersal limitations and population dynamics for individual species (Lortie et al. 2004, 

Guisan and Thuiller 2005, Guisan and Rahbek 2011, Thuiller et al. 2013). In this study, 

however, dispersal processes likely have little impact, since neither the geographical context 

nor the spatial extent of our study area are expected to pose serious barriers to the dispersal of 

these species over long time periods. 

To fully understand ecosystem dynamics and, thus, the potential impacts of environmental 

change thereon, the factors determining biodiversity patterns need to be accurately 

characterized. Species richness modelling studies are still mainly based solely on climatic 

data, although the importance of other variables and processes for the distribution of species 

have been demonstrated in myriad of studies (Araújo and Luoto 2007, Meier et al. 2010, le 
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Roux et al. 2013b, Lenoir et al. 2013). This study provides strong evidence that interspecific 

interactions, in combination with abiotic factors, are important drivers of species richness 

(although, it does not rule out the impact of other additional drivers). Furthermore, the 

methodology used here provides a practical solution to account for biotic interactions in 

species richness models, offering the promising potential for more robust species richness 

predictions. With the extensive data and suitable methods currently available, modelling 

approaches disregarding biotic predictors are short-sighted and may lead to serious 

misinterpretations in predictions of biodiversity. 

Acknowledgements 

We acknowledge funding from the Academy of Finland (Project Number 1140873). HKM 

received also funding from Research Foundation of the Univ. of Helsinki. We also thank R. 

Virtanen for distribution data, and T. Rämä for assistance with the field work. 

References 

Aalto, J. et al. 2014. The meso-scale drivers of temperature extremes in high-latitude 

Fennoscandia. – Clim. Dyn. 42: 237–252. 

Aerts, R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-

offs and plant–soil feedbacks. – J. Exp. Bot. 50: 29–37. 

Aerts, R. 2010. Nitrogen-dependent recovery of subarctic tundra vegetation after simulation 

of extreme winter warming damage to Empetrum hermaphroditum. – Global Change Biol. 

16: 1071–1081. 

Algar, A. C. et al. 2009. Predicting the future of species diversity: macroecological theory, 

climate change, and direct tests of alternative forecasting methods. – Ecography 32: 22–33. 

Anderson, R. P. et al. 2002. Using niche-based GIS modeling to test geographic predictions 

of competitive exclusion and competitive release in South American pocket mice. – Oikos 

98: 3–16. 

Araújo, M. B. and Guisan, A. 2006. Five (or so) challenges for species distribution 

modelling. – J. Biogeogr. 33: 1677–1688. 

Araújo, M. B. and Luoto, M. 2007. The importance of biotic interactions for modelling 

species distributions under climate change. – Global Ecol. Biogeogr. 16: 743–753. 

Araújo, M. B. and New, M. 2007. Ensemble forecasting of species distributions. – Trends 

Ecol. Evol. 22: 42–47. 

Baack, E. J. et al. 2006. Ecological factors limiting the distribution of Gilia tricolor in a 

California grassland mosaic. – Ecology 87: 2736–2745. 

Beven, K. and Kirkby, M. 1979. A physically based, variable contributing area model of 

basin hydrology. – Hydrol. Sci. J. 24: 43–69. 

12



Billings, W. D. and Mooney, H. A. 1968. The ecology of arctic and alpine plants. – Biol. 

Rev. 43: 481–529. 

Brown, J. H. 1995. Macroecology. – Univ. of Chicago Press. 

Calabrese, J. M. et al. 2014. Stacking species distribution models and adjusting bias by 

linking them to macroecological models. – Global Ecol. Biogeogr. 23: 99–112. 

Callaway, R. 1995. Positive interactions among plants. – Bot. Rev 61: 306–349. 

Case, T. J. et al. 2005. The community context of species’ borders: ecological and 

evolutionary perspectives. – Oikos 108: 28–46. 

Cornelissen, J. H. C. et al. 2001. Global change and arctic ecosystems: is lichen decline a 

function of increases in vascular plant biomass? – J. Ecol. 89: 984–994. 

Davis, A. J. et al. 1998. Individualistic species responses invalidate simple physiological 

models of community dynamics under global environmental change. – J. Anim. Ecol. 67: 

600–612. 

Dubuis, A. et al. 2011. Predicting spatial patterns of plant species richness: a comparison of 

direct macroecological and species stacking modelling approaches. – Divers. Distrib. 17: 

1122–1131. 

Dymond, C. C. and Johnson, E. A. 2002. Mapping vegetation spatial patterns from modeled 

water, temperature and solar radiation gradients. – ISPRS J. Photogramm. 57: 69–85. 

Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY do they differ? On finding 

reasons for differing performances of species distribution models. – Ecography 32: 66–77. 

Elith, J. et al. 2008. A working guide to boosted regression trees. – J. Anim. Ecol. 77: 802–

813. 

Eskelinen, A. et al. 2009. Links between plant community composition, soil organic matter 

quality and microbial communities in contrasting tundra habitats. – Oecologia 161: 113–123. 

ESRI 2012. ArcGIS 10.1. – Environment Systems Research Inst. 

Ferrier, S. and Guisan, A. 2006. Spatial modelling of biodiversity at the community level. – J. 

Appl. Ecol. 43: 393–404. 

Field, R. et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. – J. 

Biogeogr. 36: 132–147. 

Fielding, A. H. and Bell, J. F. 1997. A review of methods for the assessment of prediction 

errors in conservation presence/absence models. – Environ. Conserv. 24: 38–49. 

Franklin, J. and Miller, J. A. 2009. Mapping species distributions: spatial inference and 

prediction. – Cambridge Univ. Press. 

13



Gallien, L. et al. 2012. Invasive species distribution models – how violating the equilibrium 

assumption can create new insights. – Global Ecol. Biogeogr. 21: 1126–1136. 

Gaston, K. J. 2000. Global patterns in biodiversity. – Nature 405: 220–227. 

Giannini, T. C. et al. 2013. Improving species distribution models using biotic interactions: a 

case study of parasites, pollinators and plants. – Ecography 36: 649–656. 

González-Salazar, C. et al. 2013. Comparing the relative contributions of biotic and abiotic 

factors as mediators of species’ distributions. – Ecol. Model. 248: 57–70. 

Gotelli, N. J. et al. 2009. Patterns and causes of species richness: a general simulation model 

for macroecology. – Ecol. Lett. 12: 873–886. 

Gotelli, N. J. et al. 2010. Macroecological signals of species interactions in the Danish 

avifauna. – Proc. Natl Acad. Sci. USA 107: 5030–5035. 

Götzenberger, L. et al. 2012. Ecological assembly rules in plant communities – approaches, 

patterns and prospects. – Biol. Rev. 87: 111–127. 

Graves, G. R. and Rahbek, C. 2005. Source pool geometry and the assembly of continental 

avifaunas. – Proc. Natl Acad. USA 102: 7871–7876. 

Grytnes, J. A. et al. 2006. Species richness of vascular plants, bryophytes, and lichens along 

an altitudinal gradient in western Norway. – Acta Oecol. 29: 241–246. 

Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. – 

Ecol. Model. 135: 147–186. 

Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple 

habitat models. – Ecol. Lett. 8: 993–1009. 

Guisan, A. and Rahbek, C. 2011. SESAM – a new framework integrating macroecological 

and species distribution models for predicting spatio-temporal patterns of species 

assemblages. – J. Biogeogr. 38: 1433–1444. 

Hämet-Ahti, L. et al. 1998. Retkeilykasvio (Field flora of Finland). – Finnish Museum of 

Natural History, Botanical Museum. 

Heikkinen, R. K. et al. 2006. Methods and uncertainties in bioclimatic envelope modelling 

under climate change. – Prog. Phys. Geogr. 30: 751–777. 

Heikkinen, R. K. et al. 2007. Biotic interactions improve prediction of boreal bird 

distributions at macro-scales. – Global Ecol. Biogeogr. 16: 754–763. 

Hijmans, R. J. 2012. Cross-validation of species distribution models: removing spatial sorting 

bias and calibration with a null model. – Ecology 93: 679–688. 

Kearney, M. R. and Porter, W. P. 2009. Mechanistic niche modelling: combining 

physiological and spatial data to predict species’ ranges. – Ecol. Lett. 12: 334–350. 

14



Kissling, W. D. et al. 2012. Towards novel approaches to modelling biotic interactions in 

multispecies assemblages at large spatial extents. – J. Biogeogr. 39: 2163–2178. 

Korsman, K. et al. (eds) 1997. Suomen kallioperäkartta (Bedrock map of Finland) 1:1 000 

000. – Geological Survey of Finland. 

le Roux, P. C. et al. 2012. Biotic interactions affect the elevational ranges of high-latitude 

plant species. – Ecography 35: 1048–1056. 

le Roux, P. C. et al. 2013a. Soil moisture's underestimated role in climate change impact 

modelling in low-energy systems. – Global Change Biol. 19: 2965–2975. 

le Roux, P. C. et al. 2013b. Geomorphological disturbance is necessary for predicting fine-

scale species distributions. – Ecography 36: 800–808. 

le Roux, P. C. et al. 2013c. Horizontal, but not vertical, biotic interactions affect fine-scale 

plant distribution patterns in a low energy system. – Ecology 94: 671–682. 

le Roux, P. C. et al. 2014. Incorporating dominant species as proxies for biotic interactions 

strengthens plant community models. – J. Ecol. 102: 767–775. 

Lenoir, J. et al. 2013. Local temperatures inferred from plant communities suggest strong 

spatial buffering of climate warming across northern Europe. – Global Change Biol. 19: 

1470–1481. 

Levinsky, I. et al. 2013. Climate envelope models suggest spatio-temporal co-occurrence of 

refugia of African birds and mammals. – Global Ecol. Biogeogr. 22: 351–363. 

Liu, C. et al. 2005. Selecting thresholds of occurrence in the prediction of species 

distributions. – Ecography 28: 385–393. 

Lortie, C. J. et al. 2004. Rethinking plant community theory. – Oikos 107: 433–438. 

McCune, B. and Keon, D. 2002. Equations for potential annual direct incident radiation and 

heat load. – J. Veg. Sci. 13: 603–606. 

Meier, E. S. et al. 2010. Biotic and abiotic variables show little redundancy in explaining tree 

species distributions. – Ecography 33: 1038–1048. 

Mod, H. K. et al. 2014. Outcomes of biotic interactions are dependent on multiple 

environmental variables. – J. Veg. Sci. 25: 1024–1032. 

Newbold, T. et al. 2009. Climate-based models of spatial patterns of species richness in 

Egypt's butterfly and mammal fauna. – J. Biogeogr. 36: 2085–2095. 

Ovaskainen, O. et al. 2010. Modeling species co-occurrence by multivariate logistic 

regression generates new hypotheses on fungal interactions. – Ecology 91: 2514–2521. 

Pajunen, A. M. et al. 2011. Impact of shrub canopies on understorey vegetation in western 

Eurasian tundra. – J. Veg. Sci. 22: 837–846. 

15



Pearson, R. G. and Dawson, T. P. 2003. Predicting the impacts of climate change on the 

distribution of species: are bioclimate envelope models useful? – Global Ecol. Biogeogr. 12: 

361–371. 

Pearson, R. G. et al. 2002. SPECIES: a spatial evaluation of climate impact on the envelope 

of species. – Ecol. Model. 154: 289–300. 

Pellissier, L. et al. 2010. Species distribution models reveal apparent competitive and 

facilitative effects of a dominant species on the distribution of tundra plants. – Ecography 33: 

1004–1014. 

Pottier, J. et al. 2013. The accuracy of plant assemblage prediction from species distribution 

models varies along environmental gradients. – Global Ecol. Biogeogr. 22: 52–63. 

Rahbek, C. et al. 2007. Predicting continental-scale patterns of bird species richness with 

spatially explicit models. – Proc. R. Soc. B 274: 165–174. 

Ridgeway, G. 2005. Generalized boosted regression models. – <www.i-

pensieri.com/gregr/gbm.shtml>. 

Sandom, C. et al. 2013. Mammal predator and prey species richness are strongly linked at 

macroscales. – Ecology 94: 1112–1122. 

Shevtsova, A. et al. 1995. Growth and reproduction of dwarf shrubs in a subarctic plant 

community: annual variation and above-ground interactions with neighbours. – J. Ecol. 263–

275. 

Soberón, J. and Peterson, A. T. 2005. Interpretation of models of fundamental ecological 

niches and species’ distributional areas. – Biodivers. Inform. 2: 1–10. 

Sormunen, H. et al. 2011. Inclusion of local environmental conditions alters high-latitude 

vegetation change predictions based on bioclimatic models. – Polar Biol. 34: 883–897. 

Thuiller, W. et al. 2006. Predicting patterns of plant species richness in megadiverse South 

Africa. – Ecography 29: 733–744. 

Thuiller, W. et al. 2013. A road map for integrating eco-evolutionary processes into 

biodiversity models. – Ecol. Lett. 16: 94–105. 

Tofts, R. and Silvertown, J. 2002. Community assembly from the local species pool: an 

experimental study using congeneric species pairs. – J. Ecol. 90: 385–393.Tybirk, K. et al. 

2000. Nordic Empetrum dominated ecosystems: function and susceptibility to environmental 

changes. – Ambio 29: 90–97. 

Virtanen, R. et al. 2006. Broad-scale vegetation-environment relationships in Eurasian high-

latitude areas. – J. Veg. Sci. 17: 519–528. 

Virtanen, R. et al. 2010. Recent vegetation changes at the high-latitude tree line ecotone are 

controlled by geomorphological disturbance, productivity and diversity. – Global Ecol. 

Biogeogr. 19: 810–821. 

16



Williams, R. B. G. 1988. The biogeomorphology of periglacial environments. – In: Viles, H. 

(ed.), Biogeomorfology. Blackwell, pp. 222–252. 

Wisz, M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised 

assemblages of species: implications for species distribution modelling. – Biol. Rev. 88: 15–

30. 

Wood, S. N. 2011. Fast stable restricted maximum likelihood and marginal likelihood 

estimation of semiparametric generalized linear models. – J. R. Stat. Soc. B 73: 3–36. 

Zimmermann, N. E. et al. 2009. Climatic extremes improve predictions of spatial patterns of 

tree species. – Proc. Natl Acad. USA 106: 19723–19728. 

17



Appendix 1: Comparison of observed climatic data between the normal periods of 1971-

2000 and 1981-2010. 

Figure A1. Comparison of observed mean annual temperature (mean T; left panel) and temperature 
of coldest quarter (TCQ; right panel) between the normal periods of 1971-2000 and 1981-2010 
from eight weather stations close to the study area. Solid line represents linear fit (simple 
regression) between observed temperatures from the two normal periods and dashed line represent 
1:1 relationship. Correlation between the two datasets is reported in top-left corner of each panel 
(p<0.01). Based on the 8 weather stations average increase in annual mean temperature between 
normal periods is 0.3 C and average increase in TCQ is 0.45 C. As no climatic data from the most 
recent normal period (1981-2010) was available from all used 61 stations, the normal period of 
1971-2000 was chosen for the climatic data. However, the temporal difference between species data 
collection (2008-2011) and climatic data should not reduce the reliability of the results, as climatic 
data from the different time periods shows broadly similar geographic patterns (i.e. despite the 
increase in temperatures, the conditions follow mainly the same spatial patterns in both normal 
periods). 

Supplementary material
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Appendix 2: Corresponding figures for bryophytes and lichens as represented for 

vascular plant species in the article. 

Fig. A1. Predicted vs. observed bryophyte species richness in 1080 plots in arctic-alpine 

north-western Finland and Norway, based on three levels of model complexity: climate 

model (3 explanatory variables; left column), abiotic model (6 explanatory variables; middle 

column), and biotic model (9 explanatory variables in total; right column). Top row: 

Bryophyte species richness as predicted by stacked species distribution modelling (SSDM; 

committee averaging method). Bottom row: Bryophyte species richness as predicted by 

macroecological modelling (MEM; values are the mean of predictions from three modelling 

techniques). The details of the best linear fit between observed and predicted species richness 

are provided in each panel, with the fit represented by a solid line. For perfect prediction 

regression slope would be 1, and intercept zero, i.e. the dashed line, which represents the 1:1 

relationship between observed and predicted values. 
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Fig. A2. Predicted vs. observed lichen species richness in 1080 plots in arctic-alpine north-

western Finland and Norway, based on three levels of model complexity: climate model (3 

explanatory variables; left column), abiotic model (6 explanatory variables; middle column), 

and biotic model (9 explanatory variables in total; right column). Top row: Lichen species 

richness as predicted by stacked species distribution modelling (SSDM; committee averaging 

method). Bottom row: Lichen species richness as predicted by macroecological modelling 

(MEM; values are the mean of predictions from three modelling techniques). The details of 

the best linear fit between observed and predicted species richness are provided in each panel, 

with the fit represented by a solid line. For perfect prediction regression slope would be 1, 

and intercept zero, i.e. the dashed line, which represents the 1:1 relationship between 

observed and predicted values. 
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Fig. A3. Bootstrapped linear model parameters (mean ± SD) from regressions of predicted vs. 

observed bryophyte species richness (top row: stacked species distribution modelling = 

SSDM; bottom row: macroecological modelling = MEM), using three different levels of 

model complexity (C = climate model; A = abiotic model; B = biotic model). Left column: 

regression intercept. Middle column: regression slope. Right column: coefficient of 

determination. Regression parameters from the three different models differ significantly (p < 

0,05) in all comparisons. Inclusion of biotic interactions significantly improved the species 

richness models, both in SSDM and MEM, with the intercept and slope of the regression 

converging towards zero and one respectively.  
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Fig. A4. Bootstrapped linear model parameters (mean ± SD) from regressions of predicted vs. 

observed lichen species richness (top row: stacked species distribution modelling = SSDM; 

bottom row: macroecological modelling = MEM), using three different levels of model 

complexity (C = climate model; A = abiotic model; B = biotic model). Left column: 

regression intercept. Middle column: regression slope. Right column: coefficient of 

determination. Regression parameters from the three different models differ significantly (p < 

0,05) in all comparisons. Inclusion of biotic interactions significantly improved the species 

richness models, both in SSDM and MEM, with the intercept and slope of the regression 

converging towards zero and one respectively. 
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Fig. A5. Incorporation of local abiotic (abiotic model) and biotic variables (biotic model) into 

the climate model generates more fine-scale variability in predictions for bryophyte species, 

for both the stacked species distribution models = SSDM (top row) and macroecological 

modelling = MEM (bottom row). From this visualization it is also evident that the predictions 

of the SSDM and MEM converge (and that the prediction biases are reduced) with the 

sequential addition of the local abiotic and biotic variables. Geographic coordinates are 

shown in the Finnish coordinate system.  
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Fig. A6. Incorporation of local abiotic (abiotic model) and biotic variables (biotic model) into 

the climate model generates more fine-scale variability in predictions for lichen species, for 

both the stacked species distribution models = SSDM (top row) and macroecological 

modelling = MEM (bottom row). From this visualization it is also evident that the predictions 

of the SSDM and MEM converge (and that the prediction biases are reduced) with the 

sequential addition of the local abiotic and biotic variables. Geographic coordinates are 

shown in the Finnish coordinate system.  
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Appendix 3: Model improvement by stacked species distribution models (SSDM) and 

macroecological modeling (MEM) 

Table A1. Mean observed and predicted richness by different models by SSDM. Predicted 

species richness decrease with sequential inclusion of variable sets. 

Observed Climate Abiotic Biotic 

Vascular 6.6 20.9 17.1 13.6 

Bryophyte 5.2 17.9 15.1 13.4 

Lichen 6.2 18.2 15.4 14.2 
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Table A2. Model improvement based on adjusted R², area under curve (AUC) and true skills 

statistics (TSS) values and their statistical significance for SSDM. (C = Climate model, A = Abiotic 

model, B = Biotic model, Pred. dev. = Predictive deviance). 

Species 
group 

Algo-  C A B (C→A) (A→B) (C→B) 

rithm Metrics Mean (±SE) Mean (±SE) Mean (±SE) p p p 

Vascular GLM Adjusted R² 0.103 (±0.011) 0.125 (±0.011) 0.150 (±0.012) 0.000 0.000 0.000 

  AUC 0.847 (±0.008) 0.860 (±0.008) 0.837 (±0.011) 0.000 0.561 0.028 

  TSS 0.565 (±0.015) 0.583 (±0.015) 0.552 (±0.017) 0.006 0.790 0.072 

 GAM Adjusted R² 0.118 (±0.011) 0.143 (±0.012) 0.162 (±0.012) 0.000 0.000 0.000 

  AUC 0.863 (±0.007) 0.877 (±0.007) 0.878 (±0.007) 0.000 0.069 0.000 

  TSS 0.598 (±0.014) 0.615 (±0.014) 0.598 (±0.014) 0.012 0.827 0.071 

 GBM Pred. dev. 0.622 (±0.015) 0.624 (±0.014) 0.612 (±0.014) 0.526 0.002 0.003 

  AUC 0.880 (±0.008) 0.876 (±0.008) 0.889 (±0.007) 0.834 0.000 0.003 

  TSS 0.532 (±0.016) 0.534 (±0.016) 0.523 (±0.017) 0.601 0.692 0.700 

Bryophyte GLM Adjusted R² 0.081 (±0.010) 0.087 (±0.011) 0.090 (±0.012) 0.007 0.073 0.019 

  AUC 0.807 (±0.012) 0.795 (±0.011) 0.768 (±0.014) 0.057 0.851 0.548 

  TSS 0.499 (±0.021) 0.451 (±0.021) 0.427 (±0.024) 0.804 0.317 0.807 

 GAM Adjusted R² 0.084 (±0.011) 0.098 (±0.011) 0.105 (±0.012) 0.000 0.012 0.000 

  AUC 0.813 (±0.011) 0.825 (±0.010) 0.822 (±0.010) 0.000 0.325 0.008 

  TSS 0.493 (±0.022) 0.507 (±0.020) 0.495 (±0.019) 0.158 0.398 0.183 

 GBM Pred. dev. 0.758 (±0.015) 0.753 (±0.016) 0.748 (±0.016) 0.061 0.011 0.006 

  AUC 0.813 (±0.012) 0.815 (±0.012) 0.815 (±0.013) 0.141 0.202 0.350 

  TSS 0.406 (±0.023) 0.398 (±0.023) 0.394 (±0.025) 0.851 0.673 0.980 

Lichen GLM Adjusted R² 0.090 (±0.011) 0.100 (±0.014) 0.116 (±0.015) 0.007 0.000 0.000 

  AUC 0.775 (±0.011) 0.787 (±0.011) 0.799 (±0.011) 0.000 0.000 0.000 

  TSS 0.444 (±0.021) 0.447 (±0.021) 0.465 (±0.020) 0.108 0.011 0.010 

 GAM Adjusted R² 0.099 (±0.013) 0.104 (±0.013) 0.121 (±0.016) 0.067 0.000 0.000 

  AUC 0.783 (±0.012) 0.798 (±0.010) 0.810 (±0.011) 0.000 0.000 0.000 

  TSS 0.455 (±0.020) 0.456 (±0.020) 0.466 (±0.022) 0.155 0.116 0.031 

 GBM Pred. dev. 0.770 (±0.017) 0.767 (±0.018) 0.754 (±0.019) 0.103 0.001 0.000 

  AUC 0.802 (±0.012) 0.801 (±0.012) 0.811 (±0.012) 0.352 0.001 0.006 

 
 

 TSS 0.425 (±0.022) 0.422 (±0.023) 0.430 (±0.023) 0.625 0.551 0.050 
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Table A3. Model improvement based on Spearman correlation (cross-validated) for MEM approach. 

All correlations were statistically highly significant (p<0,001). (C = Climate model, A = Abiotic 

model, B = Biotic model). 

 Species group Algorithm Metrics C A B 

Vascular GLM Adjusted R² 0.346 0.382 0.552 

  
Cor 0.609 0.633 0.768 

 
GAM Adjusted R² 0.424 0.438 0.585 

  
Cor 0.688 0.708 0.798 

 
GBM Predictive deviance 0.265 0.260 0.239 

  
Cor 0.831 0.840 0.857 

Bryophytes GLM Adjusted R² 0.329 0.350 0.367 

  
Cor 0.539 0.569 0.589 

 
GAM Adjusted R² 0.378 0.405 0.405 

  
Cor 0.591 0.614 0.619 

 
GBM Predictive deviance 0.497 0.501 0.493 

  
Cor 0.664 0.662 0.668 

Lichen GLM Adjusted R² 0.439 0.505 0.577 

  
Cor 0.697 0.727 0.769 

 
GAM Adjusted R² 0.479 0.538 0.612 

  
Cor 0.722 0.749 0.791 

 
GBM Predictive deviance 0.372 0.359 0.338 

  
Cor 0.807 0.818 0.826 
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Appendix 4: Correlograms for observed species richness and residuals of the models for vascular species, bryophytes and lichens. 

 

   
Fig A1. Spatial autocorrelation, expressed as Moran’s I values for observed species richness of vascular plant species (left), bryophytes (middle) 

and lichens (right). Values are with 50 meter lags for the range of 1000 meters. Red dot indicates statistical significance (0,01 < p < 0,05). 
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Fig A2. Spatial autocorrelation, expressed as Moran’s I values for model residuals of stacked species distribution models (SSDM; top row) and 

macroecological models (MEM; bottom row) of vascular plant species based on climatic predictors (left column), climatic and abiotic predictors 

(center column) and climatic, abiotic and biotic predictors (right column). Values are with 50 metre lags for the range of 1000 metres. Red dot 

indicates statistical significance (0,01 < p < 0,05). 
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Fig A3. Spatial autocorrelation, expressed as Moran’s I values for model residuals of stacked species distribution models (SSDM; top row) and 

macroecological models (MEM; bottom row) of bryophytes based on climatic predictors (left column), climatic and abiotic predictors (center 

column) and climatic, abiotic and biotic predictors (right column). Values are with 50 metre lags for the range of 1000 metres. Red dot indicates 

statistical significance (0,01 < p < 0,05). 

30



Fig A4. Spatial autocorrelation, expressed as Moran’s I values for model residuals of stacked species distribution models (SSDM; top row) and 

macroecological models (MEM; bottom row) of lichens based on climatic predictors (left column), climatic and abiotic predictors (center 

column) and climatic, abiotic and biotic predictors (right column). Values are with 50 metre lags for the range of 1000 metres. Red dot indicates 

statistical significance (0,01 < p < 0,05). 
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