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ABSTRACT

In an attempt to improve the forecast skill of the austral summer precipitation over South Africa, an

ensemble of 1-month-lead seasonal hindcasts generated by the Scale Interaction Experiment–Frontier Re-

search Center for Global Change (SINTEX-F2v) coupled global circulation model is downscaled using the

Weather Research and Forecasting (WRF) Model. The WRF Model with two-way interacting domains at

horizontal resolutions of 27 and 9 km is used in the study. Evaluation of the deterministic skill score using the

anomaly correlation coefficients shows that SINTEX-F2v has significant skill in precipitation forecasts con-

fined to western regions of South Africa. Dynamical downscaling of SINTEX-F2v forecasts using the WRF

Model is found to further improve the skill scores over South Africa. However, larger improvements in the

skill scores are achieved when the WRFModel is forced by a form of bias-corrected SINTEX-F2v forecasts.

The systematic biases in the original fields of the SITNEX-F2v forecasts are removed by superimposing the

SINTEX-F2v 6-hourly anomalies over the ERA-Interim 6-hourly climatological fields. The WRF Model

forced by the bias-corrected SINTEX-F2v shows significant skill in the forecast anomalies of precipitation

over most parts of South Africa. Interestingly, the WRF Model runs with the bias correction did not help to

improve the SINTEX-F2v forecast of 2-m air temperatures. Perhaps this is because of the large biases in the

precipitation forecast by the WRF Model driven by the bias-corrected SINTEX-F2v. These results are im-

portant for potentially improving seasonal forecasts over South Africa.

1. Introduction

The seasonal forecasting of precipitation of the rain-

fall season is beneficial for the agro-based local econo-

mies of South Africa, which get most of their rainfall

during the austral summer season from December to

February (DJF). It is also the season of high predictability

(Landman and Mason 1999; Landman et al. 2012, 2014)

largely owing to the dominant connections of the region’s

rainfall with the tropical climate variations. The dynam-

ical seasonal forecasting systems in South Africa have

been improved in recent decades (Landman 2014) with

the most recent being the development of a coupled

atmosphere–ocean general circulation model (CGCM)

(Beraki et al. 2014). The CGCM developed in South

Africa was shown to have good skill in forecasting the

surface temperature over southern Africa compared

to the skill in forecasting the precipitation. The pre-

cipitation over South Africa, though dominated by

the tropical climate variations during austral sum-

mer, is also influenced by the subtropical eddies. The

CGCM has shown little skill in forecasting the sub-

tropical eddies making the forecasting of precipitation

over SouthAfrica a challenging task.However, Landman

et al. (2012) found that the CGCM has improved skill

in forecasting seasonal precipitation over southern Af-

rica compared to the two-tier approach of forcing the

atmosphere-only general circulation models (GCMs) by

predictive sea surface temperature (SST). Yuan et al.

(2014) found skill in forecasting precipitation over South

Africa in the retrospective forecasts of a CGCM called
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Scale Interaction Experiment–Frontier Research Center

for Global Change (SINTEX-F1; Luo et al. 2005).

However, the skill in the forecast precipitation was

largely confined to the central and western parts of South

Africa that receive relatively less precipitation during the

season. In this study, we try to see if the technique of

dynamical downscaling can improve the precipitation

forecast skill of the SINTEX CGCM over South Africa.

The technique of dynamical downscaling is often

used to add information to the precipitation simulated

by GCMs (Dickinson et al. 1989; Giorgi and Bates

1989). In dynamical downscaling, a numerical regional

climate model with a high horizontal resolution is often

configured over the region of interest and is driven by

the lateral boundary conditions from the GCM (Yuan

and Liang 2011; Yuan et al. 2012). The regional climate

models are known to improve the GCM-generated out-

put mainly as a result of better representation of the

orography and landscape patterns. However, because of

the large biases in the GCMs, often the value addition

of the regional climate models is masked. The studies of

Yuan andLiang (2011) andYuan et al. (2012) showed the

regional climate model to improve the seasonal fore-

casts generated by the National Centers for Environ-

mental Prediction (NCEP) Climate Forecast System

(CFS) over both the United States and China. The

technique of dynamical downscaling using both the

reanalysis data and AGCM output as the forcing

boundary conditions has been extensively used over

the last decade to simulate the seasonal precipitation

over southern Africa (Joubert et al. 1999; Tadross et al.

2006; Hansingo and Reason 2008; Kgatuke et al. 2008;

MacKellar et al. 2009; Crétat et al. 2011a,b; Ratnam

et al. 2012, 2013, 2015; Ratna et al. 2014). Most of the

studies using the reanalysis datasets as the forcing

boundary conditions showed that the regional climate

models are capable of capturing the precipitation dis-

tribution realistically over South Africa during the

austral summer season. There have been few attempts

to downscale the GCM output (e.g., Landman et al.

2009; Kgatuke et al. 2008; Ratnam et al. 2013). Ratnam

et al. (2013) showed the regional climate to improve

the precipitation forecasts of the SINTEX-F1 CGCM.

An improvement was seen in the spatial distribution of

the precipitation as well as in the skill scores such as the

equitable threat score. The study was confined to only

one season of DJF 2011/12. In this study an attempt

is made to systematically evaluate the SINTEX-F2v

(Doi et al. 2014), an improved version of SINTEX-F1

CGCM, with downscaled forecasts generated by a re-

gional climate model, the Advanced Research version

of the Weather Research and Forecasting (WRF)

Model (ARW; see Skamarock et al. 2005).

The systematic biases in the GCMs, when assigned

untreated to a regional climate model through the

boundary conditions, amplify (Christensen et al. 1998)

and as a result negatively impact the skill of the regional

forecasts. The drift in the mean climatology is one such

major issue in the GCM biases. To partly overcome this

problem, the GCM’s outputs are treated for their drift

by replacing the climatology of the GCM with the ob-

served climatology (Misra andKanamitsu 2004; Holland

et al. 2010; Xu and Yang 2012; White and Toumi 2013;

Bruyère et al. 2014). Misra and Kanamitsu (2004) pro-

posed the methodology of anomaly nesting, in which the

anomalies from the driving GCM are superimposed on

the observed climatology, often based on the reanalysis

data. This method reduces the drift of the model but

allows the evolution of the GCM-simulated anomalies.

Misra and Kanamitsu (2004) found that this methodol-

ogy significantly improved the precipitation simulation

over SouthAmerica compared to the simulationwithout

bias correction. Holland et al. (2010) and Bruyère et al.

(2014) showed an improvement in the simulation of

tropical cyclones in a regional climate model driven by a

mean bias-corrected GCM field. White and Toumi

(2013) found the linear mean bias correction to be more

reliable and accurate compared to nonlinear quartile–

quartile bias correction of the RCM input.

In this study, we downscale the 1-month-lead seasonal

retrospective forecasts of the SINTEX-F2vCGCM from

DJF 2000/01 to DJF 2012/13 using the regional WRF

Model. The WRF Model is configured with two-way

interacting domains at horizontal resolutions of 27 and

9km. Two experiments are carried out: the first is with

the WRFModel using the SINTEX-F2v output without

any bias correction (WRFsint) and the second using the

same outputs but with mean bias corrections to force the

WRFModel (WRFsintcorr). The aim of these exercises

is to find out how the bias correction approach may be

able to improve on seasonal forecasts over South Africa.

In the following sections, themodel andmethods used in

the study are described followed by the results.

2. Model and methodology

The regional model used for the dynamical down-

scaling of the SINTEX-F2v hindcasts is ARW, version

3.6.1 (Skamarock et al. 2005), run with two-way in-

teracting domains at horizontal resolutions of 27 and

9 km and with 30 vertical levels. The first domain was

over the area covering the region 8.48–44.68S, 18–608E,
and the second domain covered the area 19.48–36.58S,
108–388E (Fig. 1a). The WRFModel was configured to

use the Rapid Radiative Transfer Model (RRTM) for

the longwave radiation (Mlawer et al. 1997), a simple
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FIG. 1. (a) WRF domains used in the study. The topography of the region is shaded. Precipitation (mmday21)

averaged over the period from DJF 2000/01 to DJF 2012/13. (b) TRMM estimate, (c) GPCP estimate, (d) ARC2

estimate, (e) ensemble mean SINTEX-F2v, (f) ensemble meanWRFsint, and (g) ensemble meanWRFsintcorr. The

names of the provinces of South Africa are shown in (b), and the names of countries neighboring South Africa are

shown in (c).
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cloud-interactive shortwave radiation scheme (Dudhia

1989), the Betts–Miller–Janjić cumulus parameterization

scheme (Betts and Miller 1986; Janjić 1994), the Yonsei

University (YSU) planetary boundary layer scheme

(Hong et al. 2006), and the WRF single-moment 3-class

(WSM3) microphysics scheme (Hong et al. 2004). The

choice of these physics packages is similar to that in

Crétat et al. (2011b), Ratnam et al. (2012), Ratna et al.

(2014), and Ratnam et al. (2014) for the simulation of

regional climate of southern Africa.

The WRF Model was driven by the outputs of the

SINTEX-F2v ensemble seasonal prediction system (Doi

et al. 2014). It is based on the SINTEX-F2 GCM (Sasaki

et al. 2013, 2014, 2015). The atmospheric component is

ECHAM5 (Roeckner et al. 2003), and the oceanic

component is the Nucleus for European Modelling of

the Ocean (NEMO) system (Madec 2006). The atmo-

spheric component has T106 horizontal resolution (ap-

proximately horizontal resolution of 125km at equator)

with 31 vertical levels. The oceanic component employs

the ORCA05 grid, which uses a tripolar grid with 0.58
zonal resolution and 0.58 cosine (latitude) meridional

resolution with 31 vertical levels. The atmospheric and

oceanic components are coupled with data exchanged

every 2 h, including SST, sea ice fraction, freshwater,

surface heat, surface current, and momentum fluxes,

by means of the Ocean Atmosphere Sea Ice Soil,

version 3 (OASIS3; Valcke et al. 2004), coupler. We

adopted the SST-nudging coupled initialization

scheme; model SSTs are strongly nudged toward daily

observations by applying three large negative feed-

back values (22400, 21200, and 2800Wm22 K21) to

the surface heat flux since 1 January 1982 in a coupled

mode. These negative feedback values correspond to

1-, 2-, and 3-day restoring times for temperature in a

50-m surface mixed layer, respectively. We used daily

SST observational data interpolated from weekly

NCEP analysis with 1.08 latitude 3 1.08 longitude global

grid (Reynolds et al. 2002). Concerning uncertainties in

ocean vertical mixing estimations, ocean physics is per-

turbed in two different ways by considering or neglecting

ocean vertical mixing induced by small vertical-scale

structures (SVSs) within and above the equatorial ther-

mocline (Sasaki et al. 2012). Therefore, our ensemble

prediction system attempts to measure uncertainties of

both initial conditions and model physics for forecasts.

Based on this semimultimodel ensemble prediction sys-

tem, we have used six-member retrospective forecasts

with a 6-month lead from the first day of eachmonth from

January 2000 to December 2014 by SINTEX-F2v.

We dynamically downscaled 1-month-lead 6-hourly

hindcasts of six members of SINTEX-F2v CGCM using

the WRF Model over the period from DJF 2000/01 to

DJF 2012/13. An ensemble of the WRF hindcasts was

generated by initializing the model using the conditions

on 1 November of each year and the model was in-

tegrated to the end of February to cover the peak rain-

fall period of DJF over South Africa.

An ensemble of WRF hindcasts was also generated

after bias correcting the driving SINTEX-F2v fore-

casts (i.e., WRFsintcorr). All the fields required to

drive the WRFModel are bias corrected. The 6-hourly

CGCM data of each ensemble member are broken

down into a mean seasonally varying climatological

component and a perturbation component. The mean

climatological component is defined over the base pe-

riod from DJF 2000/01 to DJF 2012/13 (i.e., the period

covering the SINTEX-F2v hindcasts). ERA-Interim is

similarly broken down into a seasonally varying mean

climatological component and a 6-hourly perturbation

component. The ERA-Interim climatology is based on

the period from DJF 1985/86 to DJF 1999/2000. The

bias-corrected 6-hourly SINTEX-F2v data are prepared

by superimposing the SINTEX-F2v-generated 6-hourly

anomalies onto the 6-hourly ERA-Interim climatologi-

cal fields. This approach is similar to the one used in the

previous studies of Misra and Kanamitsu (2004), Holland

et al. (2010), White and Toumi (2013), and Bruyère et al.
(2014). The SSTs used in the runs are from SINTEX-F2v.

For the WRFsintcorr experiment, the systematic bia-

ses are corrected with the ERA-Interim 6-hourly SST

climatology.

Themodel-generated precipitation is validated against

the Tropical Rainfall Measuring Mission (TRMM)-

estimatedmonthly precipitation (3B43V7; Huffman et al.

2007; ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/

3B43_V7/) at 0.258 resolution. Because of uncertainties

in the estimated precipitation over South Africa, the

WRF Model forecasts are also compared with pre-

cipitation estimates from the Climate Prediction Center

(CPC) Famine Early Warning System (FEWS) Rainfall

Estimation, version 2 [RFEv2; also known as African

Rainfall Climatology, version 2 (ARC2); Novella and

Thiaw (2013); ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/

africa/arc2/bin/], at 0.18 resolution and with the 18 pre-

cipitation from the Global Precipitation Climatology

Project (GPCP; Huffman et al. 2001; ftp://rsd.gsfc.nasa.

gov/pub/1dd-v1.2/). The large-scale atmospheric fields

simulated by the models are compared with ERA-Interim

(Dee et al. 2011) at 0.758 resolution. The SINTEX-F2v

forecasts and theobserveddatasets are linearly interpolated

to the WRF Model grid for the purpose of comparison.

The deterministic skill of the forecasts is calculated by

the anomaly correlation coefficient (ACC) between the

model forecast and the verification datasets. The

anomalies of both the forecasts and observations are
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calculated based on climatology from DJF 2000/01 to

DJF 2012/13. For probabilistic forecasts a warning is issued

when the percentage of the members agreeing exceeds a

certain threshold. Probabilistic forecasts for above (be-

low)-normal precipitation are evaluated using the relative

operating characteristic (ROC) score (Mason andGraham

1999, 2002). ROC curves show the ratio between the hit

rate and false alarm rate when the probability of the

ensemblemembers agreeing with the condition of above

(below) normal is varied gradually. The area under the

ROC curve gives the ROC score. An ROC score of

greater than 0.5 (50% chance) is considered skillful in

forecasting the above- and below-normal precipitation.

For calculating the ROC curve, the forecast precipitation

values averaged over the South Africa landmass, over the

period from DJF 2000/01 to DJF 2012/13, are arranged

from high to low values. The above (below)-normal con-

ditions refer to the values’ upper (lower) tercile. The

reliability diagrams (Wilks 1995) are also plotted for

the forecast precipitation. For the reliability diagram,

all the points over the South Africa landmass and over

the time period from DJF 2000/01 to DJF 2012/13 are

considered, which comes to 21658 points. The pre-

cipitation over all the points is ranked with highest values

at the top. The upper tercile of the precipitation values

are considered as above normal, and the values less than

the lower tercile are considered as below-normal pre-

cipitation for the reliability diagram.

3. Results

a. SINTEX-F2v forecast climatology

The TRMM-estimated mean precipitation (from DJF

2000/01 to DJF 2012/13) (Fig. 1b) shows the austral

summer precipitation to be confined to the eastern re-

gions of South Africa with a precipitation peak of larger

than 4mmday21 over the Mpumalanga and KwaZulu–

Natal provinces as well as northern parts of Eastern

Cape. Although the precipitation estimates of GPCP

(Fig. 1c) and ARC2 (Fig. 1d) agree with the TRMM

estimates for the spatial distribution of the precipitation

over South Africa, differences in the magnitudes of the

precipitation are found among the datasets. Both GPCP

and ARC2 disagree with TRMM on the peak in pre-

cipitation over Mpumalanga province. The ensemble

mean SINTEX-F2v forecast precipitation (Fig. 1e) largely

overestimates the precipitation over Mpumalanga,

KwaZulu–Natal, Free State, and Eastern Cape. Pre-

cipitation of greater than 5mmday21 is forecast over

these provinces. However, the SINTEX-F2v forecast

precipitation could well capture the east–west gradient

in precipitation over South Africa similar to what is

observed in the verifying datasets. The earlier version,

SINTEX-F1, also had a similar wet bias in precipitation

forecasts over South Africa (Yuan et al. 2014). Similar

to SINTEX-F2v, the ensemble mean WRFsint (Fig. 1f)

and WRFsintcorr (Fig. 1g) forecasts overestimate the

precipitation over the eastern provinces of South

Africa. The WRF Model precipitation (Figs. 1f,g) is

greater than 5mmday21 over Limpopo, Gauteng,

Mpumalanga, KwaZulu–Natal, Free State, North

West, and Eastern Cape.

The root-mean-square error (RMSE) between the

ensemble mean SINTEX-F2v forecast and TRMM

estimates shows large errors in KwaZulu–Natal and

northern parts of Eastern Cape (Fig. 2a, shaded),

corresponding to positive precipitation bias (Fig. 2a,

contour) over the region. The RMSE between the

SINTEX-F2v forecast and GPCP (Fig. 2b) shows a

similar distribution of error. Because of the un-

derestimation of precipitation in the ARC2 dataset

compared to TRMM and GPCP, the RMSE between

SINTEX-F2v and ARC2 (Fig. 2c) shows larger error

over Mpumalanga, KwaZulu–Natal, and Eastern

Cape. The errors are due to positive biases (contour

in Fig. 2) in the SINTEX-F2v forecast precipitation.

The RMSE between WRFsint and TRMM (Fig. 2d),

GPCP (Fig. 2e), and ARC2 (Fig. 2f) estimates shows

large values over the Mpumalanga, KwaZulu–Natal,

Gauteng, and NorthWest provinces corresponding to

large positive biases in the forecast precipitation. The

WRFsintcorr shows large RMSE values over most of

the eastern provinces of South Africa as a result of large

forecast biases in comparison to all three verifying pre-

cipitation estimates (Figs. 2g–i). The RMSE is largest in

WRF forced by bias-corrected SINTEX-F2v.

To understand the reason for large positive biases in

the precipitation forecasts, the number of wet days

with precipitation intensity of greater than 5mmday21

is extracted (Fig. 3). The number of wet days in the

period between DJF 2000/01 and DJF 2012/13 is about

150–400 over the eastern provinces and about 400 in

the KwaZulu–Natal province of South Africa in the

TRMM (Fig. 3a), GPCP (Fig. 3b), and ARC2 (Fig. 3c).

However, the number of wet days forecast by the

SINTEX-F2v is more than 650 over the KwaZulu–

Natal province (Fig. 3d). The WRF Model (Figs. 3e,f)

shows more than 650 wet days over most eastern parts

of South Africa. The SINTEX-F2v and the WRF

Model wet bias is shown by the higher number of wet

days forecast by the models.

SINTEX-F2v and the WRF Model have systematic

positive bias in the forecast precipitation due to higher

numbers of wet days simulated by the models. The wet

bias in the simulated precipitation over the region is
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known to exist in the numerical models in earlier

reported studies (e.g., Joubert and Hewitson 1997).

To exclude the systematic biases in the model fore-

casts, predicted anomalies are verified against the

estimated precipitation anomalies and presented in

the next section.

b. Forecast precipitation anomalies and skill

As discussed in the previous section, SINTEX-F2v

and theWRFModel have systematic bias in forecasting

wet conditions over South Africa. The precipitation

anomalies of SINTEX-F2v and WRF Model experi-

ments are derived from their respective climatologies

and compared with the anomalies fromTRMM,GPCP,

and ARC2 estimates. Figure 4a shows the interannual

variation of the area-averaged precipitation anomalies

of the verifying datasets and the model forecasts. The

area average is over the South Africa landmass ob-

tained by masking out precipitation over other regions.

As seen from Fig. 4a, all three verifying datasets agree

on the phase of the anomalies in most years, though

there is a difference in the amplitudes. South Africa

FIG. 2. RMSE of the ensemble mean SINTEX-F2v DJF forecast precipitation (mmday21) with respect to (a) TRMM, (b) GPCP, and

(c) ARC2. RMSE of theWRFsint forecast precipitation with respect to (d) TRMM, (e) GPCP, and (f) ARC2. RMSE of theWRFsintcorr

forecast precipitation with respect to (g) TRMM, (h) GPCP, and (i) ARC2. The model forecast bias in the forecast is shown as contours.
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experienced below-normal precipitation in the austral

summer seasons of 2000/01, 2001/02, 2002/03, 2006/07,

and 2011/12 and above-normal precipitation in DJF

2005/06, 2007/08, 2008/09, and 2010/11. The ensemble

mean SINTEX-F2v forecast anomalies are smaller in

magnitude compared to the verifying datasets in all the

years and differ in sign from the observed anomalies in

half the number of years (Fig. 4a) considered in the

study. The SINTEX-F2v forecast anomalies show a low

ACC (Table 1) of 0.45, 0.38, and 0.36 with respect to the

TRMM, GPCP, and ARC2 anomalies, respectively.

The Spearman’s rank correlation coefficients have

values of 0.49, 0.39, and 0.38 with respect to TRMM,

GPCP, and ARC2 anomalies (Table 1). The WRF

Model driven by the uncorrected SINTEX-F2v fore-

casts (WRFsint) improves on the amplitudes of the

SINTEX-F2v precipitation anomalies and shows im-

provedACCs of 0.637, 0.635, and 0.636 and Spearman’s

rank correlation coefficients of 0.73, 0.66, and 0.68 with

respect to the three verifying precipitation anomalies

of TRMM, GPCP, and ARC2, respectively (Table 1).

But most importantly the precipitation anomalies

forecast by the WRF Model driven by the mean bias-

corrected SINTEX-F2v forecasts (i.e., WRFsintcorr)

have a significant improvement in the ACCs with values

of 0.76, 0.77, and 0.75 with respect to TRMM, GPCP,

and ARC2 anomalies, respectively. The Spearman’s

rank correlation coefficients also show a higher value of

0.769, 0.697, and 0.675 with respect to TRMM, GPCP,

and ARC2 anomalies (Table 1).

To justify theWRFsintcorr performance over SINTEX-

F2v, we plot the spatial distribution of the precipitation

anomalies and moisture flux anomalies for the seasons

DJF 2005/06 and DJF 2006/07 (i.e., the seasons with ex-

treme precipitation anomalies). The spatial distribution

for DJF 2002/03 for which WRFsintcorr forecast the

correct sign of precipitation anomalies is also shown in

Fig. 4. During DJF 2002/03, an El Niño Modoki year

(Ratnam et al. 2014), South Africa experienced below-

normal precipitation (Fig. 4a). The spatial distribution

of the precipitation anomalies during the season shows

negative anomalies over South Africa with larger am-

plitudes overLimpopo,Mpumalanga,Gauteng,KwaZulu–

Natal, and Eastern Cape (Fig. 4b). The 850-hPa moisture

flux anomalies showmoisture diverging from South Africa

(Fig. 4b). The SINTEX-F2v forecast precipitation anoma-

lies show positive values over South Africa except over

KwaZulu–Natal, Gauteng, and parts of the Eastern Cape

FIG. 3. The number of wet days with intensity greater than 5mmday21 over the period from DJF 2000/01 to DJF 2012/13 estimated by

(a) TRMM, (b) GPCP, (c) ARC2, (d) ensemble mean SINTEX-F2v forecast, (e) ensemble mean WRFsint forecast, and (f) ensemble

mean WRFsintcorr forecast.

15 APRIL 2016 RATNAM ET AL . 2821



FIG. 4. (a) Interannual variation of area-averaged precipitation (mmday21) anomalies over South Africa during

the period fromDJF 2000/01 to DJF 2012/13. The year corresponds to the year to which December belongs. TRMM-

estimated precipitation anomalies and ERA-Interim 850-hPa moisture flux (g kg21 m s21) anomalies for DJF of

(b) 2002/03, (e) 2005/06, and (h) 2006/07. (c),(f),(i) As in (b),(e),(h), but for the SINTEX-F2v forecast anomalies.

(d),(g),(j) As in (b),(e),(h), but for the WRFsintcorr forecast precipitation and moisture flux anomalies.
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and Northern Cape (Fig. 4c). The moisture flux anoma-

lies from the tropics are seen flowing into South Africa

leading to positive precipitation anomalies (Figs. 4a,c).

WRFsintcorr, the experiment in which the SINTEX-

F2v anomalies are allowed to evolve though the mean

was corrected, shows large positive precipitation

anomalies over Northern Cape (Fig. 4d), similar to the

SINTEX-F2v forecast, due to convergence of the

tropical moisture over the region (Fig. 4d). However,

because of the divergence of the moisture, the pre-

cipitation over the eastern parts of South Africa shows

large negative precipitation anomalies similar to the

TRMM-estimated anomalies (Fig. 4b). DuringDJF 2005/

06, the season in which South Africa received the most

precipitation in the period of study, the moisture flux

from the tropical regions is seen converging over South

Africa, resulting in positive precipitation anomalies over

South Africa (Fig. 4e). SINTEX-F2v, however, forecast

negative precipitation anomalies over the Limpopo,

North West, Mpumalanga, and KwaZulu–Natal prov-

inces (Fig. 4f), resulting in a smaller value of area-

averaged positive precipitation anomaly during the

season (Fig. 4a). The WRFsintcorr experiment (Fig. 4g),

interestingly, forecast the precipitation similar to the

observed though with a smaller magnitude. South Africa

experienced a large deficit in precipitation during DJF

2006/07 (Figs. 4a,h) with 850-hPamoisture flux anomalies

showing divergence of the flux from the South Africa

landmass. SINTEX-F2v model though could capture the

negative precipitation anomalies of the season (Fig. 4a),

forecasting positive precipitation anomalies over the

North West, Free State, KwaZulu–Natal, and Eastern

Cape provinces (Fig. 4i). The precipitation anomalies

forecast by WRFsintcorr are negative over South Africa,

similar to the TRMM-estimated anomalies during DJF

2006/07. These results show that bias correcting the mean

state of SINTEX-F2v and forcing WRF with those fields

results in an improvement of the anomalies forecast by

the WRF Model.

The spatial distribution of the seasonal mean pre-

cipitation anomaly correlation coefficients between en-

semble mean SINTEX-F2v 1-month-lead forecast and

the verifying datasets (Figs. 5a–c) during DJF shows

that SINTEX-F2v has significant skill in forecasting

the anomalies over South Africa confined to North-

ern Cape and Eastern Cape. The WRF Model driven

by the SINTEX-F2v fields shows an improvement in

the spatial distribution of the ACC with significant

values over Free State in addition to Northern Cape

and Eastern Cape (Figs. 5d–f). WRFsintcorr shows the

largest improvement in the spatial distribution with

significant values extending to most of the provinces in

South Africa (Figs. 5g–i). Interestingly a very high

correlation of greater than 0.7 is also seen over Bot-

swana, Zimbabwe, and Swaziland outside South Africa

(Figs. 5g–i), showing that the dynamical downscaling of

the bias-corrected SINTEX-F2v forecasts can be useful

for generating seasonal forecasts over SouthAfrica and

also its neighboring countries. The results also indicate

that analyzing the model forecast anomalies rather

than the mean fields forecast by theWRFModel would

give a better understanding of the model performance.

WRFsintcorr, which has large values of RMSE over

South Africa (Figs. 2g–i), shows an improved spatial

distribution of anomaly correlation coefficients com-

pared to both the SINTEX-F2v and WRFsint models,

which have smaller RMSE values.

The ROC score of the SINTEX-F2v forecasts for

above-normal conditions is 0.861 (Fig. 6) with respect

to the TRMM estimates. The ROC curve shows a

score of 0.861 and 0.583 for GPCP and ARC2 (Fig. 6),

respectively, showing that the SINTEX-F2v forecast

has skill in forecasting the above-normal precipitation

over South Africa. The WRF Model forced by the

SINTEX-F2v forecasts shows higher ROC scores of

0.792, 0.792, and 0.681 for TRMM, GPCP, and ARC2

(Fig. 6), respectively, which are lower than the ROC

scores of the SINTEX-F2v forecast precipitation. The

WRFsintcorr experiment, in which the mean bias of

the SINTEX-F2v forcing field is corrected, shows higher

scores of 0.958, 0.958, and 0.875 (Fig. 6) across all the

verifying datasets. The ROC scores of the forecast pre-

cipitation are consistent with the ACC values obtained for

the area-averaged precipitation anomalies. The results are

similar for the below-normal conditions (Fig. 6). The

above analysis shows that the WRFsintcorr forecasts,

TABLE 1. Pearson’s and Spearman’s rank correlation coefficients of the SINTEX-F2v,WRFsint, andWRFsintcorr anomalies with respect

to TRMM, GPCP, and ARC2 observed anomalies.

Pearson’s correlation coef Spearman’s rank correlation coef

TRMM GPCP ARC2 TRMM GPCP ARC2

SINTEX-F2v 0.45 0.38 0.36 0.49 0.39 0.38

WRFsint 0.637 0.635 0.636 0.73 0.66 0.68

WRFsintcorr 0.76 0.77 0.75 0.769 0.697 0.675
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forced by the mean bias-corrected SINTEX-F2v fore-

casts, show a significant increase in the skill compared to

the WRF Model, forced by the uncorrected SINTEX-

F2v forecasts. WRFsintcorr also has higher ROC scores

with respect to the verifying datasets in resolving the

below-normal precipitation compared to SINTEX-F2v

and WRFsint forecasts (Fig. 6). The reliability curves

with respect to the TRMM estimates (Fig. 7) for the

above-normal precipitation are below the diagonal

line at the high end of the forecast probabilities and

above the diagonal at the lower end of the forecast

probabilities, indicating that the models show rea-

sonable reliability in the forecast of the above- and

below-normal precipitation.

c. The 2-m air temperature

The mean 2-m air temperature during DJF shows a

west–east gradient over South Africa with tempera-

tures greater than 278C over Northern Cape and about

188–198C in the eastern provinces of South Africa

(Fig. 8a). The RMSE between the ensemble mean

SINTEX-F2v forecast and ERA-Interim shows a

FIG. 5. ACC of the ensemble mean SINTEX-F2v forecast anomalies with respect to (a) TRMM, (b) GPCP, and (c) ARC2 anomalies.

(d),(e),(f) As in (a),(b),(c), but for the ACC of the WRFsint forecast anomalies. (g),(h),(i) As in (a),(b),(c), but for the ACC of the

WRFsintcorr experiment.
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value between 18 and 28C over Limpopo, North West,

Northern Cape, and Free State with a smaller RMSE

over Eastern Cape, Western Cape, KwaZulu–Natal,

and Mpumalanga (Fig. 8b, shaded). The RMSE is

due to positive biases in the 2-m temperature fore-

cast by the model (Fig. 8b, contour). As a result of the

underestimation of 2-m temperature (Fig. 8c, contour)

the WRF Model shows large RMSE values over

FIG. 6. The ROC curve and scores of SINTEX-F2v, WRFsint andWRFsintcorr experiments for (top) above- and (bottom) below-normal

precipitation with respect to TRMM, GPCP, and ARC2.

FIG. 7. The reliability curve for (top) above- and (bottom) below-normal precipitation, forecast by SINTEX-F2v, WRFsint, and

WRFsintcorr with respect to TRMM, GPCP, and ARC2.
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FIG. 8. (a) Spatial distribution of mean 2-m air temperature (8C) over southern African countries during DJF. The mean is over the

period from DJF 2000/01 to DJF 2012/13. RMSE of 2-m air temperature (8C) of (b) SINTEX-F2v forecast, (c) WRFsint forecast, and

(d) WRFsintcorr forecast with respect to ERA-Interim 2-m air temperature. The biases in forecast 2-m air temperatures are shown as

contours in (b),(c),(d). The ACC of the forecast 2-m air temperature anomalies of (e) SINTEX-F2v, (f) WRFsint, and (g) WRFsintcorr

with respect to ERA-Interim 2-m air temperature anomalies.
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Northern Cape, Eastern Cape, and Limpopo (Fig. 8c,

shaded). The RMSE is between 1 and 3 over the rest of

the provinces (Fig. 8c). The RMSE in the WRFsintcorr

experiment forecast (Fig. 8d) is similar to that seen in the

WRF experiment.

Interestingly, the ensemblemean SINTEX-F2v forecast,

which shows significant values of ACC in the precipitation

confined to only Northern Cape, shows significant ACC

in 2-m temperature anomalies over Limpopo, parts of

Mpumalanga, Western Cape, Eastern Cape, and parts of

Northern Cape (Fig. 8e).WRFsint (Fig. 8f) shows a similar

pattern of ACC in 2-m temperature though with higher

values of coefficients. It is interesting to note that the

bias correction of the mean SINTEX-F2v fields shows a

similar pattern as the SINTEX-F2v forecast ACC, un-

like the ACC in precipitation where the WRF Model

forced with the bias-corrected SINTEX-F2v fields

showed an improvement in the spatial distribution of the

anomaly correlation. The WRFsintcorr experiment

shows reduced anomaly correlation coefficients over

Botswana, Mozambique, and Zimbabwe (Fig. 8g) com-

pared to both SINTEX-F2v and WRFsint experiments.

This is largely due to the large biases in the precipitation

forecast by the WRFsintcorr experiment. The large

precipitation bias results in cooling the lower tropo-

sphere and lowering the mean 2-m temperature. This

shows the limitation of the approach of bias correcting

the CGCM forecasts to downscale.

4. Conclusions

In our pursuit to improve the seasonal forecasts

over South Africa, we carried out dynamical down-

scaling of the 1-month-lead SINTEX-F2v CGCM

forecasts using WRF Model. To do away with the

systematic biases of the SINTEX-F2v CGCM we

configured an experiment wherein the WRF Model

was forced by the mean bias-corrected SINTEX-F2v

CGCM fields. The mean bias correction was to re-

place the SINTEX-F2v 6-hourly climatology with the

corresponding 6-hourly ERA-Interim climatological

fields. But the evolution of SINTEX-F2v anomalies

remained the same in both experiments.

Three datasets (viz., TRMM,ARC, andGPCP) are used

to evaluate the model results. Evaluation of the anomaly

correlation coefficients between the model forecast

anomalies and the verifying datasets showed that theWRF

Model driven by the bias-corrected SINTEX-F2v fields

had the higher skill in precipitation forecast compared

to both the SINTEX-F2v and the WRF Model forced

by the uncorrected SINTEX-F2v fields. The WRF

Model forced with uncorrected SINTEX-F2v fields

shows higher skill compared to the SINTEX-F2v

forecasts, showing the value addition of dynamical

downscaling to the driving CGCM owing to higher

horizontal resolution. The dynamical regional model

forced by a bias-corrected CGCM improves the dy-

namical downscaling. Our study showed that the

probabilistic forecast scores in terms of the ROC

scores could also be improved by dynamical down-

scaling with bias-corrected CGCM forecasts.

Interestingly, SINTEX-F2v forecasts showed significant

skill in forecasting the 2-mair temperature anomalies over

parts of South Africa. The dynamical downscaling of the

SINTEX-F2v forecasts with the uncorrected SINTEX-

F2v forecasts improved the skill in forecasting the 2-m

temperature anomalies. However, the dynamical down-

scaling with the bias-corrected SINTEX-F2v forecasts

could not improve on the spatial distribution of the 2-mair

temperature anomalies over South Africa. This remains a

challenge for the predictability studies of the region.

Nevertheless, this study demonstrates the promising fea-

ture in the downscaling of the seasonal forecasts of pre-

cipitation over South Africa through the mean bias

corrections in CGCM forecasts.
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