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ABSTRACT 

In an earlier paper the results of a simulation of unstable 

flow phenomena in vertical condensing flows were presented. 

The horizontal condensing flow model was extended to include 

gravitational effects. The simulation of the non-linear model 

revealed existence of limit-cycle type of oscillations of large 

amplitude, including possibilities of flow reversals, as were 

observed on horizontal flows. The simulations also revealed that 

the gravitational effects have an attenuating effect on the 

oscillatory behavior in downward flows, and an enhancing effect 

on the upward flows. Matlab/Simulink tools were used for the 

system simulations. In the present paper the non-linear model 

was linearized, leading to an identification of the stable and 

unstable domains of operation for vertical condensing flows in 

both upward and downward flow directions. The stability 

boundary for the horizontal condensing flows lies in between the 

stability boundaries for vertical flows. The downward 

condensing flow is more stable and has a narrower unstable 

region than the horizontal flow. By comparison the vertical 

condensing upward flow is more unstable than both horizontal 

and downward flows. These observations are in correspondence 

with those of the non-linear model. A linear stability criterion 

including effects of gravity for vertical flows, that is an extension 

of such a criterion for horizontal flows, is presented.    

 

INTRODUCTION 
The two-phase region in condensing flow, undergoing 

complete condensation inside a tube, acts as an amplifier of any 

small internal or external disturbances. The time dependent 

characteristics of condensing flows are important in a variety of 

applications like reheat and re-boiler systems in conventional or 

nuclear power plants, reactor cooling systems, space power 

generation, refrigeration systems, moisture separators, and 

chemical processing. A sufficiently large excursion or oscillation 

could affect the performance of the processes taking place, cause 

damage to the mechanical equipment and endanger the safety of 

such systems. Large oscillations in the sub-cooled liquid region 

at the condenser outlet, including the possibilities of flow 

reversals, are likely associated with large impulse loads that may 

cause substantial damage to the piping and other components of 

the overall system.  

The dynamic characteristics of condensing flows may be 

categorized into two classes. The first is the result of externally 

forced changes in a particular input variable, and the second is a 

phenomenon of internally induced self-sustained oscillations of 

large amplitude. These studies have been done on horizontal, 

single or multi tube, condensing flows [1-4] as well as vertical 

condensing flows [5-7].  

The self-sustained condensing flow oscillations are internally 

induced solely by the processes taking place within the flow 

system and aided or abated by the coupling that exists between 

the condenser and other systems components. These represent a 

particular unstable mode of operation when the steady state 

parameters of the condensing flow assume some specific values. 

Once the condenser is left to itself at this operating level, one 

may see an initiation, a growth, and finally a limit cycle type of 

sustained oscillations of very large amplitude, including the 

possibility of flow reversal. Bhatt and Wedekind [1] made a 

systemic study of this oscillatory condensing flow instability 

from a fundamental perspective. This study was done on a 

horizontal condensing flow. Both the experimentally observed 

linear stability boundary and the non-linear limit cycle behavior 

were predicted using the system mean void fraction model. 

Since many condensing flows involve vertical flows, 

including substantial nuclear reactor safety issues involving such 

systems, it is necessary to study such flows under the influence 

of gravity in both down flow as well as up flow configurations. 

A simulation of such flows using system mean void fraction 

model with non-linear elements was reported in [7]. Fig 1 and 2 

show such a simulation for both a horizontal as well as vertical 
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condensing flows. This was done using Matlab/Simulink tools in 

solving non- linear system of equations.  

 

 
  

                  Horizontal Flow (Larger amplitude) 

                        --------     Vertical Down Flow 
 

Figure 1 Comparison of Horizontal and Vertical Down Flow 

 

 
               Horizontal Flow     

          ---------     Vertical Up Flow (Larger amplitude) 

 

Figure 2 Comparison of Horizontal and Vertical Up-flow 

 

However, from a practical perspective it is necessary to 

develop a criterion for stable and unstable operation. This is 

achieved by linearizing the governing set of equations.  

Therefore the objective of this paper is to capitalize on the 

success achieved earlier on horizontal flows [1] and extend that 

approach in developing a linear stability criterion for vertical 

condensing flows incorporating the gravitational effects.  

NOMENCLATURE 

tA     cross-sectional area of the tube;
2m                                  

D      inside diameter of tube; m  

qf      heat flux; 
2/ mw  

 g        acceleration due to gravity, 𝑚2 

 h       enthalpy of saturated liquid; kgJ /  

 h       enthalpy of saturated vapor; kgJ /  

 𝑘𝑖       inlet orifice coefficient  

 ok      outlet orifice coefficient 

L        total length of condenser; m  

m       steady state mean mass flow rate; skg /  

𝑚𝑜(𝑡)  vapor mass flow rate at Z=0; kg/s 

 tmL  sub-cooled liquid mass flow rate at exit; kg/s 

 tms   inlet vapor mass flow rate; skg /  

 P         inside perimeter of tube; m  

 𝑝𝑐         condensing pressure in two-phase region;  

 𝑝𝑖         pressure upstream of inlet orifice, Pa 

 𝑝𝑎        average pressure across inlet orifice, Pa  

 𝑝𝑜         pressure downstream of outlet valve, Pa 

 t          time; sec 

sV         upstream vapor volume; m3    

 

Greek Symbols  

s   system mean void fraction (smvf)  

 𝛾       𝑑𝜌′/dp  
22 / ms  

𝜂̅𝑚  steady state position of the effective point of complete   

condensation; m   

𝜂̅(𝑡)   non-fluctuating effective point of  complete   condensation 

      density of saturated liquid; 
3/ mkg  

     density of saturated vapor; 
3/ mkg  

 𝜌′𝑎    average vapor density across inlet valve; 
3/ mkg  

c      condensing flow time constant; sec             

 Nc, Ni, No   dimensionless numbers, equation (26) 

 𝑘𝑖
∗     linearized valve resistances at inlet, 2(ki/ρa’ At

2)𝑚̅; 

KN.s/m2.gm 

 𝑘𝑜
∗       linearized valve resistances at inlet, 

 2(ko/ρ At
2)𝑚̅; KN.s/m2.gm 

 

2. THEORETICAL ANALYSIS: 
Only a brief overview of the analysis and its proposed 

extension to the vertical flows will be presented here. The 

backbone of this modeling technique is the incorporation of a 

system mean void fraction in integral formulation of the 

governing conservation equations. Consider a generalized 

schematic of a condensing flow system as shown in Fig 3. This 

schematic depicts a coupling between the two phase region of 

the condenser and upstream vapor volume, downstream liquid 

inertia, and the upstream and downstream flow resistances.  

The non-fluctuating system mean void fraction, [1, 2, 3], 

within the two-phase region is expressed as 
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  𝛼̅𝑠 =  
1

𝜂̅ (𝑡)
  ∫ 𝛼̅𝑎

𝜂 ̅(𝑡)

𝑧=0
 (z,t)dz                                                               (1) 

Where 𝛼̅𝑎  is the local area mean void fraction, at an arbitrary 

location, z, within the two-phase region and η ̅(t) is the time 

dependent length of the two-phase region. 

 

   
 

 
 

 

Figure 3 Schematic of a Vertical Two-Phase Condensing Flow 

 

Assuming a time invariant system mean void fraction, [1,2], 

and incorporating it into the conservation equations, the 

following system of equations is obtained for the various regions 

of the condensing flow system irrespective of the flow direction. 

 

Upstream Vapor Region     
𝑑𝜌′(𝑡)

𝑑𝑡
=

1

𝑉𝑠
[𝑚𝑠(𝑡) − 𝑚𝑜(𝑡)]                          (2)                                                                                                                         

     

Where 𝜌′ is the density of  vapor 

 

Pressure drop across the inlet flow resistance: 

𝑝𝑖  -  p (t)  =  
𝑘𝑖

𝜌′𝐴𝑡
2  𝑚̅𝑠

2 (𝑡)                                  (3)                                                                                                                                        

       

Where ki is the inlet flow coefficient and 𝐴𝑡 is the cross-sectional 

area of the tube. 

 
Compressibility of the vapor: 

 
𝑑𝜌′(𝑡)

𝑑𝑡
  =  𝛾 

𝑑𝑝

𝑑𝑡
                                                      (4)                                                                                                                                                                                                  

      

Where, gamma, γ, is  
𝑑𝜌′

𝑑𝑝
 

 

 

Two-Phase region: 

 

Conservation of mass: 

[𝐴𝑡 𝜌 (1 − 𝛼̅𝑠) +  𝜌′𝛼̅𝑠]
𝑑𝜂 ̅(𝑡)

𝑑𝑡
+      

        𝐴𝑡 𝛼̅𝑠𝜂̅ (𝑡)
𝑑𝜌′

𝑑𝑡
=   𝑚̅𝑡 (𝑧, 𝑡)𝑧=0 − 𝑚̅𝑡

∗                              (5)                                                           

 

Conservation of mass and energy: 

𝐴𝑡 𝜌
′(ℎ́ − ℎ)𝛼̅𝑠

𝑑𝜂 ̅(𝑡)

𝑑𝑡
+ 𝐴𝑡 (ℎ́ − ℎ)𝛼̅𝑠𝜂̅ (𝑡)

𝑑𝜌́

𝑑𝑡
 =  

          − 𝑓𝑞̅ P 𝜂̅ (𝑡) +  (ℎ́ − ℎ) 𝑚̅𝑡 (𝑧, 𝑡)𝑧=0                                       (6)  

 

Where, 𝑓𝑞  is the spatially averaged heat flux. 

 

Sub-cooled Region          

 

Conservation of mass: 

-𝜌  𝐴𝑡 
𝑑𝜂 ̅(𝑡)

𝑑𝑡
 =   𝑚̅𝑡

∗  −  𝑚̅𝐿(𝑡)                                                     (7)                                                                                                                                            

 

Where 𝑚𝑡
∗ is the flow rate of the liquid leaving the two-phase 

region relative to the moving boundary, 𝜂(𝑡). 
Pressure drop in the sub-cooled liquid region is sum of the 

friction, inertia, and gravitational components:  

 

𝑝𝑐  (𝑡) − 𝑝𝑜 =
𝑘𝑜

𝜌𝐴𝑡
2  𝑚𝐿

2(𝑡) +   
[𝐿−𝜂(𝑡)]

𝐴𝑡

𝑑𝑚𝐿  (𝑡)

𝑑𝑡
+ ∆𝑝𝑔(t)                (8)                            

 

3. LINEARIZATION OF GOVERNING EQUATIONS: 
A digital simulation of the above set of non-linear equations 

was carried out using Matlab/Simulink. For example, the results 

of such non-linear simulations [7] are depicted in figures 1 and 

2. 

The characteristics of non-linear simulations are useful in 

understanding the physical mechanisms involved in the 

condensing flow systems. However, from a practical perspective 

it is more useful to delineate stable and unstable regions based 

on a linear stability boundary. Such an approach was followed 

for horizontal condensing flow [1]. That led to a determination 

of relevant non-dimensional groups encompassing the effects of 

physical parameters affecting the stability of condensing flow 

systems.  

An extension of above approach, for vertical flows involving 

gravitational effects, was carried out by linearizing the governing 

equations. The following assumptions were made: 

 

1. The coefficient of all differential terms were assumed to 

be represented by their mean values. 

2. Non-linear flow resistances at the inlet and outlet were 

assumed to be piecewise linear around a given operating point. 

Based on the above assumptions the governing equations of 

previous section lead to the following sets of linear equations.  

 

Equation (3) and (8) become: 

11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

196



  

  

𝑝𝑖 − 𝑝(𝑡) = 𝑘𝑖
∗ 𝑚𝑠 (𝑡) + 𝑐𝑖                                           (9) 

𝑝(𝑡)−𝑝𝑜 =  [𝑘𝑜
∗  𝑚𝐿(𝑡) + 𝑐𝑜] +

𝐿𝑜

𝐴𝑡
 

𝑑𝑚𝐿(𝑡)

𝑑𝑡
−

                                      [𝐿 − 𝜂(𝑡)]𝜌𝑔                             (10)   

𝑝𝑖 − 𝑝𝑜= constant                                                     (11)  

and is given by, 

𝑝𝑖 − 𝑝𝑜 =  𝑘𝑖
∗ 𝑚𝑠 (𝑡) +  𝑘𝑜

∗  𝑚𝐿(𝑡) + 

          
𝐿𝑜

𝐴𝑡
 
𝑑𝑚𝐿(𝑡)

𝑑𝑡
− [𝐿 − 𝜂(𝑡)]𝜌𝑔 + 𝑐                                               (12)             

Where,c = 𝑐𝑖 + 𝑐𝑜 , are constants. 

Re-arranging equation (12), 

𝑚𝑠 (𝑡) =  
1

𝑘𝑖
∗ [

(𝑝𝑖 − 𝑝𝑜)− 𝑘𝑜
∗  𝑚𝐿(𝑡) −

(
𝐿𝑜

𝐴𝑡
) 

𝑑𝑚𝐿(𝑡)

𝑑𝑡
+ [𝐿 − 𝜂(𝑡)]𝜌𝑔 − 𝑐

]                 (13)  

Equation (4) and (10) lead to  

𝑑𝜌′

𝑑𝑡
= 𝛾 [𝑘𝑜

∗  
𝑑𝑚𝐿(𝑡)

𝑑𝑡
+ (

𝐿𝑜

𝐴𝑡
)

𝑑2𝑚𝐿(𝑡)

𝑑𝑡2 +  𝜌𝑔 
𝑑𝜂(𝑡)

𝑑𝑡
]                       (14) 

 

Combined conservation of mass gives, 

−𝐴𝑡(𝜌 − 𝜌′)𝛼𝑠

𝑑𝜂(𝑡)

𝑑𝑡
+ (𝐴𝑡𝛼𝑠𝜂(𝑡) + 𝑉𝑠)

𝑑𝜌′

𝑑𝑡
= 

            𝑚𝑠 (𝑡) − 𝑚𝐿(𝑡)                                (15) 

Conservation of energy, equation (5) along with (2) gives, 

𝑑𝜂(𝑡)

𝑑𝑡
+

1

𝜏𝑐
 𝜂(𝑡) =  

𝑚𝑠 (𝑡)

𝐴𝑡𝜌′𝛼𝑠
−  (

1

𝐴𝑡𝜌′𝑉𝑠
) (𝑉𝑠 +

                                        𝐴𝑡𝛼𝑠𝜂𝑚)
𝑑𝜌′

𝑑𝑡
                             (16) 

Where, 𝜏𝑐 =  
𝐴𝑡𝜌′𝛼𝑠 (ℎ′−ℎ)

𝑓𝑞𝑃
 

An alternate form of equation (16) is 

𝑑𝜂(𝑡)

𝑑𝑡
+  (

𝜌′

𝜌
)

1

𝜏𝑐
 𝜂(𝑡) =  

1

𝐴𝑡𝜌′𝛼𝑠
𝑚𝐿(𝑡)                             (17) 

 

Equations (12), (15) and (16) are solved simultaneously for 𝜂(𝑡). 

When 𝜂(𝑡) is substituted  in equation (17) this leads, after 

considerable analysis, to the following differential equation that 

has been non-dimensionalized as indicated below. 

𝑎𝑜
∗ 𝑑3𝑚𝐿

∗ (𝑡)

𝑑𝑡3∗ +  𝑎1
∗ 𝑑2𝑚𝐿

∗ (𝑡)

𝑑𝑡2∗ +  𝑎2
∗ 𝑑𝑚𝐿

∗ (𝑡)

𝑑𝑡∗ +  𝑎3
∗𝑚𝐿

∗(𝑡) = 𝑏𝑜
∗            (18) 

Where,         𝑚𝐿
∗ =  

𝑚𝐿

𝑚̅
,      𝑡∗ =  

𝑡

𝑇1
(

𝜌′

𝜌
), 

              1/𝜏𝑐
′ =(1/𝜏𝑐+𝜌𝑔/𝜌′𝑘𝑖

∗𝛼𝑠𝐴𝑡) 

              
1

𝑇1
=  [

1

𝜓 𝜏𝑐
′ +  

𝜌𝑔

𝜙 𝑘𝑖
∗] 

𝜓 = 1 + 𝑤𝛾𝜌𝑔,   𝑤 =  [
𝑉𝑠+𝐴𝑡𝛼𝑠𝜂𝑚

𝐴𝑡𝜌′𝛼𝑠
],          

𝜙 = (𝜌 − 𝜌′)𝐴𝑡𝛼𝑠 − 𝑉′𝛾𝜌𝑔, 

 𝑉′ =  𝐴𝑡𝛼𝑠𝜂𝑚 + 𝑉𝑠   

To investigate the condition for marginal stability [1] a Laplace 

transform of equation (18), the characteristics equation in the 

Laplace variable, is given by  

𝑎𝑜
∗  𝑠3 + 𝑎1

∗𝑠2 +  𝑎2
∗𝑠 + 𝑎3

∗ = 0                                        (19) 

𝑎1
∗𝑎2 

∗ − 𝑎𝑜
∗ 𝑎3

∗  ≥ 0 for stability                                                              (20) 

The equality sign is for marginal stability and associated 

dimensionless frequency is given by:  

ωn
∗ 2 =  

𝑎3
∗

𝑎1
∗ =

𝑎2 
∗

𝑎𝑜
∗                                                     (21) 

Where,  

𝑎𝑜
∗ = (

𝜌′

𝜌
)

3 1

𝑇1
2  (

𝛾𝑤𝐿𝑜𝜙

𝐴𝑡
+  

𝛾𝑉′𝐿𝑜

𝐴𝑡
)                                                           (22) 

𝑎1
∗ =  (

𝜌′

𝜌
)

2
1

𝑇1
 (

𝐿𝑜𝜙

𝜓𝜌′𝛼𝑠𝐴𝑡
2 𝑘𝑖

∗ +  𝛾𝑤𝑘𝑜
∗ 𝜙 +

                                                  𝛾𝑉′𝑘𝑜
∗ +  

𝐿𝑜

𝐴𝑡𝑘𝑖
∗) +

                (
𝜌′

𝜌
)

3 1

𝑇1𝜏𝑐
(

𝛾𝑤𝐿𝑜𝜙

𝐴𝑡
+  

𝛾𝑉′𝐿𝑜

𝐴𝑡
)                                                    (23) 

𝑎2
∗ =     (

𝜌′

𝜌
) (

𝑘𝑜
∗ 𝜙

𝑘𝑖
∗𝜓𝜌′𝛼𝑠𝐴𝑡

+  
𝑘𝑜

∗

𝑘𝑖
∗ + 1) + 

(
𝜌′

𝜌
)

2
1

𝜏𝑐
 (

𝐿𝑜𝜙

𝜓𝜌′𝛼𝑠𝐴𝑡
2 𝑘𝑖

∗ +  𝛾𝑤𝑘𝑜
∗ 𝜙 + 𝛾𝑉′𝑘𝑜

∗ +  
𝐿𝑜

𝐴𝑡𝑘𝑖
∗)                      (24) 

𝑎3
∗ =

𝜙

𝜌𝛼𝑠𝐴𝑡
+  (

𝜌′

𝜌
) (

𝑇1

𝜏𝑐
) (

𝑘𝑜
∗ 𝜙

𝑘𝑖
∗𝜓𝜌′𝛼𝑠𝐴𝑡

+
𝑘𝑜

∗

𝑘𝑖
∗ + 1)                 (25)                                     

An order of magnitude analysis was done on 

coefficients 𝑎𝑜
∗ , 𝑎1

∗, 𝑎2
∗  and 𝑎3

∗  of equation (22-25), assuming: 

𝜙 ≈ (𝜌 − 𝜌′)𝐴𝑡𝛼𝑠  
1/𝜏𝑐 ≈ 1/ 𝜏𝑐′  

11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

197



  

  

𝑇1 ≈ 𝜓𝜏𝑐 

Therefore neglecting insignificant terms, equation (20) reduces 

to: 

[𝑁𝑐 + 𝑁𝑖]  ≥  𝑁𝑜                               (26) 

     

𝑁𝑐 =  
𝜏𝑐

𝛾𝑉′𝑘𝑖
∗                                (27) 

    

𝑁𝑖 =  
𝐴𝑡𝜏𝑐𝑘𝑜

∗  

𝐿𝑜
                                (28) 

     

𝑁𝑜 =
1+(

𝜌′
𝜌 ⁄ )(𝜓−1)

(
𝜌

𝜌′ ⁄ ) (
𝑘𝑜

∗

𝑘𝑖
∗⁄ )+𝜓

− 
1

𝜓
 (

𝜌′
𝜌 ⁄ )                             (29) 

 

The gravitational effects are encompassed in equation (29). 

For horizontal flows, when g=0, equation (29) reduces to 

equation (32) of [1]. A plot of equation (26) delineates stable and 

unstable regions as shown in Figure [4]. 

.  

  

 

 

 
 

Figure 4 Stability boundaries for horizontal and vertical  

condensing flows 

 

Common Data for Figure 4 
Fluid: Freon-12     
D=0.00762 m, 𝜌𝑎

′ = 58.278kg/ 𝑚3, 𝑚̅ = 2.72 kg/s, 𝑝𝑖= 1388.73 

kpa, 𝑝𝑜= 643.46 kpa, 𝜌= 1245.9 kg/𝑚3 𝑘𝑜= 44.905 

𝑘𝑖= 12217, 𝜌′=37.0694 kg/𝑚3, 𝛼𝑠= 0.83, 𝑉𝑠= 3.45*10−4𝑚3, 
𝛾 =5.7*10−5𝑠2/𝑚2, 𝜂̅= 2.0703m, 𝑓𝑞=7.5878103j/s 𝑚2 

𝜏𝑐=1.0684 s, L=8.595 m. 

 

It is interesting to note that the stability boundaries for the 

horizontal condensing flow is in between the condensing down 

flow and the condensing up flow. The condensing down flow 

appears to be more stable than up flow, with a narrower unstable 

domain in comparison to both horizontal and vertical up flow. 

This is also suggested by the non-linear simulations presented in 

figs 1 and 2. 

CONCLUSION  
This paper was primarily concerned with linearization of the 

non-linear model that was developed earlier to simulate self-

sustained oscillatory flow phenomena in vertical two-phase 

condensing flows both in the downward as well as upward flow 

directions. The non-linearized model simulations were done 

using Matlab/Simulink tools. However, from a practical stand 

point, a linearized model is more useful. It identifies the 

boundary between the stable and unstable domains, through a 

set of non- dimensional parameters, which were developed as 

an extension of the analysis for horizontal flows. The stability 

boundary for horizontal condensing flow is in between the 

stability boundaries for the vertical down flow and vertical 

upward condensing flows. This observation is in 

correspondence with simulations of the non-linear model.  The 

vertical down flow is more stable than the horizontal 

condensing flow and has a narrower unstable region. By 

comparison the vertical up flow appears to be more unstable 

and has a wider unstable region in comparison to both the 

horizontal and vertical downward condensing flow. However, 

the reflux flow that can occur in vertical upward condensing 

flows was not investigated in the present study 
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