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Abstract Combining spectrum sensing (SS) and primary user (PU) traffic
forecasting provides a cognitive radio network (CRN) with a platform from
which informed and proactive operational decisions can be made. The suc-
cess of these decisions is largely dependent on prediction accuracy. Allowing
secondary users (SU) to perform these predictions in a collaborative manner
allows for an improvement in the accuracy of this process, since individual SUs
may suffer from SS and prediction inaccuracies due to poor channel conditions.
To overcome these problems a collaborative approach to forecasting PU traf-
fic behaviour, that combines SS and forecasting through SU cooperation, has
been proposed in this article. Both pre-fusion and post-fusion scenarios for
cooperative prediction were investigated and a number of binary prediction
methods were considered (including the authors’ own simple technique). Co-
operative prediction performance was investigated, under various PU traffic
conditions, for a group of ten SUs experiencing different channel conditions
and a sub-optimal cooperative forecasting algorithm was proposed to minimise
cooperative prediction error. Simulation results indicated that the accuracy of
the prediction methods was influenced by the PU traffic pattern and that co-
operative prediction lead to a significant improvement in prediction accuracy
under most of the traffic conditions considered. However, this came at the cost
of increased computational complexity. The pre-fusion scenario was found to
be the most accurate scenario (up to 25 % improvement), but was also eleven
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times more complex than when no fusion was employed. The cooperative fore-
casting algorithm was found to further improve these results.

Keywords Cognitive Radio · Computational Complexity · Cooperative
Prediction · Cooperative Sensing · Data Fusion · Occupancy Modelling

1 Introduction

A great deal has been published about spectrum scarcity in the literature of
recent years. One of the technologies that addresses this problem is cognitive
radio (CR) and CR networks (CRN) [20,16]. A critical function of a CRN is
spectrum sensing (SS) and radio resource allocation [28]. A secondary user in
a CRN will perform SS to gather information about the radio environment
within which it wishes to operate and then use that information to make
decisions about which channel it should immediately occupy. While SS on an
individual basis is very useful to SUs it has been found that a cooperative
approach, where SUs share their individual results, may provide SUs with
more accurate information about the radio environment [12,2].

It has also been shown in the literature that it is beneficial for SUs to be
able to make proactive decisions about spectrum resource allocation [17,25,
8], both in terms of accuracy in channel selection and in the potential power
savings for the entire CRN [11]. To be able to make these proactive decisions,
a SU will need to be able to make predictions about the future behaviour of
other users of the same spectrum. Various techniques have been presented in
the literature that can be used to do this. However, it is important to consider
the complexity that these techniques may introduce into the CRN and the
possible negative side effects that this could lead to.

In this article the authors explore the premise that if collaboration between
SUs may improve the SS process, then collaboration between SUs should also
allow for better accuracy in the prediction process, needed for proactive deci-
sion making [10]. Firstly, a practical approach to implementing the maximum
normal fit (MNF) algorithm for SS, a statistical approach to calculating the
noise floor [5], is investigated. Secondly, the prediction accuracies of various
prediction methods are compared under different traffic conditions. Thirdly,
possible pre-fusion and post-fusion based prediction scenarios are introduced
and their performance is compared to that of the single SU prediction scenario.
Fourthly, a sub-optimal cooperative forecasting algorithm has been formulated
to minimise the likelihood of cooperative prediction error and a heuristic for
solving it proposed [9]. Finally, the issue of algorithmic complexity in the pre-
diction process is also dealt with. An optimal balance is sought between the
accuracy that forecasting and cooperation provides and the costs and delays
that this may introduce into the CRN.

The rest of this article is organised as follows. Background information
pertaining to the problem at hand is presented in Section 2. The system model
that has been considered for the combination of cooperation and prediction
is described in Section 3. Primary user detection is discussed in Section 4.
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Techniques for collaboratively modelling and forecasting PU behaviour are
discussed in Section 5. Both the benefits and costs of cooperative prediction are
then quantified via the simulation results presented and discussed in Section
7. Conclusions are then presented in Section 8.

2 Background information

2.1 Traffic modelling

Various approaches to modelling and predicting PU traffic have been proposed
in the literature. One of these is the Markov chain (MC), which is a state based
approach to the problem [17,26,24,6]. An alternative exponential model that
assumes that PU arrival rate follows a Poisson process was presented in [14].
A linear regression model for predicting video traffic was proposed in [27]
and methods based on adaptive filter theory have been described in [1,19,
18]. The concept of combining cooperation amongst SUs with prediction was
briefly explored in [10], where it was suggested that a cooperative gain could
be obtained if a large number of SUs with diverse channel characteristics could
be employed.

However, while all of these methods aim to minimise prediction error, one of
the problems associated with traffic prediction in a CRN is the computational
complexity of the algorithm. This problem needs to be taken seriously, since
PU traffic prediction needs to be performed quickly and accurately for it to
be useful [8].

2.2 Spectrum sensing

CRs rely on a process, known as spectrum sensing (SS), to gather information
about the radio environment in which they wish to operate [28]. This infor-
mation allows them to make use of appropriate spectrum resources and also
helps them to avoid interference with other uses of the spectrum. However,
the accuracy of this information is of paramount importance since inaccurate
data could negatively impact upon the performance of a CR network (CRN).

The probability of detection Pd,i and the probability of error Pe,i are mea-
sures that can be used to characterise SS performance. Consider a CRN sce-
nario consisting of N multiple secondary sensing nodes S = [s1, s2, . . . , sN ],
where each node reports its individual decision to a centralised fusion centre
(FC). Let the hypothesis that a channel is occupied be given by H1 and that
a channel is unoccupied by H0. Also, let Ei be the energy collected for sensing
node si and λi be the threshold used by that sensor to determine channel
occupancy. Then, using a technique known as energy detection, Pd,i and Pe,i

may be defined as [28],

Pd,i =Pr {Ei > λi|H1} , (1)

Pe,i =Pfa,i + Pmd,i, (2)
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where Pmd,i = 1 − Pd,i is the probability of mis-detection and Pfa,i is the
probability of false alarm, given as,

Pfa,i = Pr {Ei > λi|H0} . (3)

A binary occupancy decision can be made using Ei and λi, such that,

Di =

{

1, Ei > λi

0, otherwise
(4)

A statistical approach to calculating the noise floor, called the (MNF)
method, may be employed to calculate λi [5]. The MNF method has been
adopted to perform SS in this article and will be further investigated in Section
4.

2.3 Cooperative spectrum sensing

One of the problems associated with SS is the hidden node problem [28], where
due to severe shadowing or multipath fading, it is often not possible for a CR
to obtain accurate results using only a single sensing node [22]. To counteract
this issue, multiple sensing nodes can be employed to obtain a combined spec-
trum decision. Cooperative SS techniques thus often need to be employed so
that accurate decisions can be made [2,12]. Since multiple cooperating sens-
ing nodes are employed, the concept of a cooperative probability of detection
Qd and a cooperative probability of false alarm Qf needs to be considered.
Assuming the use of the M -out-of-N fusion rule, these probabilities may be
defined as [12],

Qd = Pr

{

N
∑

i=1

Di ≥ M |H1

}

, (5)

Qf = Pr

{

N
∑

i=1

Di ≥ M |H0

}

. (6)

3 Cooperative prediction scenario and system model

3.1 Prediction scenario

A scenario, proposed by the authors, where multiple SUs cooperate to predict
future spectrum availability is depicted in Fig. 1. It is assumed that all cooper-
ating SUs are aware of the radio environment within which they are operating
and that they are willing to collaboratively analyse the same channels. The aim
of this collaboration is to generate a forecast for the future availability of the
said band. The cooperative prediction scheme described in this article assumes
the use of both a forecast engine (where predictions are made about future
PU behaviour) as well as fusion centre (where information from cooperating
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Fig. 1 Cooperative prediction scenarios

SUs is combined). Individual SUs perform SS, after which individual decisions
are used to perform prediction based on fusing information. A decision is then
made about the future availability of the band.

Two different cooperative fusion scenarios are illustrated in Fig. 1. Namely
a pre-fusion scenario (illustrated by the solid green arrows) where each SU
performs prediction before fusion is performed, and a post fusion scenario
(indicated by the dashed blue arrows) where prediction is only performed after
the SS results of each SU have already been combined. These fusion scenarios
will be discussed in greater detail in Section 5.

3.2 Traffic classification

The main purpose of traffic prediction in CRNs, is to provide SU’s with in-
formation about PU behaviour before it actually happens. In order for a SU
to be able to make these predictions, certain PU behavioural properties need
to be ascertained. These behavioural properties may then be utilised in the
prediction process, e.g., if PU behavioural patterns can be identified from his-
torical data, then it is plausible that these patterns may be repeated in the
future.

The first step in identifying these patterns is to classify the type of traffic
that is to be predicted. In this article it is assumed that at time t, for a
particular frequency band ϑ, a SU i will gather a sequence of binary occupancy
decisions (ON and OFF periods) St,i,ϑ(n) that describe the occupation of the
band by a PU for a period of p historical ON and OFF periods. This sequence
is given as,

Si,t,ϑ(n) = {Dt−1,i, Dt−2,i, . . . , Dt−p,i}. (7)

An ON period denotes the presence of a PU (e.g. at t = t− p, Dt−p = 1) and
an OFF period the absence thereof (e.g. at t = t−p, Dt−p = 0). This sequence
is then used to model the broader traffic pattern generated by the PU.

The alternative exponential ON-OFF model has been adopted for mod-
elling these ON and OFF periods [25]. For this model, it is assumed that
channel occupancy can be modelled as an independently exponentially dis-
tributed processes, where the time intervals between the arrival and departure
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Fig. 2 Binary data sets illustrating: (a) fast, τ = 1, and (b) slow varying, τ = 5, PU activity
(approximately 80% channel utilisation, υ0 = 2 and υ1 = 8)

of a PU follow exponential distributions. For channel ϑ the OFF period dis-
tribution is given as,

f (tϑ,0) =

{

Λ0e
−Λ0tϑ,0 , tϑ,0 ≥ 0

0, tϑ,0 < 0
(8)

with mean 1/Λ0 and tϑ,0 the duration of an OFF period. Similarly, the ON
period distribution is given as,

f (tϑ,1) =

{

Λ1e
−Λ1tϑ,1 , tϑ,1 ≥ 0

0, tϑ,1 < 0
(9)

with mean 1/Λ1 and tϑ,1 the duration of an ON period.
In this article, for the sake of simplicity, PU traffic will be classified ac-

cording to the following two parameters: pattern change rate and the average
utilisation of the band. Traffic patterns can be described by using these pa-
rameters to adjust Λ0 and Λ1 according to the following expression,

Λ0 = τυ0, (10)

Λ1 = τυ1.

The rate at which PU occupancy patterns are changing is described by τ ,
while υ0 and υ1 are a measure of ON and OFF period density respectively.

As an example consider the data sets presented in Fig. 2 where both data
sets are a binary representation of a high PU traffic density scenario consisting
of a hundred ON-OFF periods (approximately 80% channel utilisation) where
υ0 = 2 and υ1 = 8. The first scenario (a), shown at the top of the figure,
represents the case where PU activity is changing quite fast (τ = 1). The
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second scenario (b), shown at the bottom of the figure, represents the case
where PU activity is changing more slowly (τ = 5).

The effect that τ and υ have on prediction performance is briefly investi-
gated in Section 7.

3.3 Radio environment

Taking into account both large and small scale path loss, the received signal
ri(n) at any SU i was assumed to be given by the following expression,

ri(n) = x(n)ai(n)Li + γ(n), (11)

where x(n) is the transmitted PU signal, ai(n) is the fading on the channel
between SU i and the PU base station (BS), Li is the free space path loss
experienced by SU i and γ(n) is additive white Gaussian noise (AWGN). A
frequency flat fading environment has been assumed, where the channel follows
a Rician distribution,

fi(x) =
x

σ2
exp

{

−x2 + ρ2

2σ2

}

I0

{xρ

σ2

}

, (12)

with Rician K-factor,

K = 10 log

(

ρ2

2σ2

)

, (13)

where ρ is the line of site (LOS) amplitude, I0 is the zero order modified Bessel
function and σ2 is the noise variance of the signal.

The geographical distribution of SUs, considered for this article, is illus-
trated in Fig. 3. The green line represents the cell boundary of a PU base
station (BS) (shown as a red square), while ten cooperating SUs are illus-
trated as blue circles. The radius of the PU cell is R = 1.414 km. Each
SU, SU1 through SU10, has been assigned a different Rician K-factor (K =
[0; 18; 9; 1; 14.5; 4; 20; 6; 8; 12]). The K-factor describes the severity of fading
on the channel, which means that each SU will be able to detect PU activity
with different degrees of success.

It is assumed that no errors are made when the SUs report either their
individual SS or forecast results to the fusion centre (FC). Large scale fading
effects such as diffraction and scattering have been ignored. The assumption
has also been made that channel conditions change at a slower rate than the
time for which a prediction has been made, i.e. the PU traffic pattern must not
change during the predicted time slots. A necessary condition, to support this
assumption, is that SUs remain stationary during this time (the geographical
distribution of SUs must remain constant so that no Doppler shift can interfere
with the sensing and prediction process).
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Fig. 3 Geographical distribution of cooperating SUs

4 Primary user detection

The procedure by which the SUs analyse and become aware of the channels
within which they are operating is commonly referred to as SS. In this article
a form of energy detection [23] was employed to detect the presence of PUs,
where the noise energy threshold λ was calculated using the MNF method [5].
This approach allows SUs to detect PU activity and calculate Si,t,ϑ(n) based
on the value obtained for ri(n) in Eq. (11). This crucial process is the first
step in the cooperative prediction process. Information gathered during this
process is used to model historical PU activity as well as to verify prediction
accuracy.

4.1 Noise threshold calculation

While the concept behind the MNF algorithm was discussed in our previous
work [5], details were not clearly provided on how to practically implement it.
A discussion now follows on how to calculate λ using the MNF method given
r(n).

In the MNF method, the noise energy threshold is assumed to be the
intersection of the noise and signal probability density functions (PDF) of Eq.
(11). If both of these PDFs are assumed to follow a Gaussian distribution,
where the noise distribution ρn = N

(

0, σ2
n

)

is assumed to have zero mean

and the signal distribution ρs = N
(

µs, σ
2
s

)

some non-zero mean µs, then the
threshold λi, for SU i, can be calculated from the following expression (derived
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in the appendix),

λi =
µsσ

2
n − σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

s

σ2
n − σ2

s

. (14)

If ri(n) represents the received signal of SU i, then the Gaussian assumption
for ρs requires that only the signal bearing portion of ri(n) be considered when
calculating Eq. (14). The signal distribution ρs is thus calculated as the PDF
of ri(n) using only its positive elements. In other words, the signal portion
ri,s(m) is roughly estimated to be,

ri,s(m) = ri(n), ri(n) ≥ 0 (15)

and the PDF of the signal portion is then estimated by using ri,s(m), such
that ρs = ρ(ri,s(m)). Therefore, the mean of the signal distribution can be
calculated as,

µs =
1

M

M
∑

m=1

ri,s(m), (16)

where M ≤ p is the number of positive elements in ri(n).
An estimate for the variance of the signal distribution σs is obtained by

firstly calculating the variance σ2
r and power Pr,i of the received signal ri(n).

The received power can be calculated as,

Pr,i =
1

p

p
∑

n=1

|ri,s(n)|2, (17)

and the variance as,

σr,i =
1

M

M
∑

m=1

(ri(n)− µs)
2. (18)

An estimate for the signal-to-noise ratio (SNR), denoted as γ, is then used,
together with Pr,i, to obtain an estimate for the variance of the noise σ2

n, such
that,

σ2
n =

Pr,i

10(0.1γ)
. (19)

The estimate for the variance of the signal component is then calculated as,

σ2
s = σ2

r,i − σ2
n. (20)

Techniques that may be used to estimate γ from received data include pilot as-
sisted estimation [15] and various iterative minimum mean square error based
techniques [21,3]. A perfect estimate for γ was assumed in this article.
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5 Cooperative prediction

The historical behaviour of PUs can be used to model and then predict future
behaviour, which can in turn be used by CRs to make proactive decisions. Mul-
tiple SUs may be used to collaboratively perform forecasting. In this article,
this forecast is obtained by fusing the SS data obtained by multiple SUs to ob-
tain a single improved forecast. In this section the manner in which prediction
and fusion are combined will be investigated.

5.1 Single and multi-user prediction

In this article it will be assumed that, at one instant in time, prediction may
be performed for either a single SU or concurrently for multiple SUs. In the
single SU case, prediction is performed by a single SU, denoted by i. If a
function f(·) is used to perform a forecast, then let F i,t,ϑ(r) be the sequence
of predicted values for SU i at time t for frequency channel ϑ, such that,

F i,t,ϑ(r) = f (Si,t,ϑ(n)) , t+ 1 ≤ r ≤ t+ k, 1 ≤ n ≤ p (21)

where k is the number of future samples predicted, {i, r, t, k} ∈ N, Si,t,ϑ ∈
{0, 1} and F i,t,ϑ(r) ∈ {0, 1}.

For the multiple SU case a set, comprised of N cooperating SUs, is used to
calculate a combined forecast. Therefore, let the combined forecast, be denoted
by Gt,ϑ(r) such that,

Gt,ϑ(r) = CN {F i,t,ϑ(r)} , t+ 1 ≤ r ≤ t+ k (22)

where CN {·} indicates a combination of N individual SU predictions.

5.2 Prediction methods

Five different prediction methods have been considered. These methods in-
clude: an approach based on MCs [13,24], the normalised least mean square
(NLMS) approach [1,19], the first nearest neighbour approach (1-NN) [10]
and a simple sliding occupancy window (OW) based method (proposed by the
authors) [7]. These methods will all be compared to a uniformly distributed
random prediction process.

The OW method is proposed as a simplified approach to prediction that
relies on estimating the average utilisation of the band of interest over a win-
dow of observation of length p time slots. Future predictions are then made
as a hard decision, based on the calculated occupancy level of the observation
window. The mean occupancy Φ of the observation window is calculated as
follows,

Φ =
1

n

n
∑

j=1

Si,t,ϑ(j). (23)
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Once Φ is known, the predicted sequence F i,t,ϑ(r) is calculated according to
the following expression,

F i,t,ϑ(r) =

{

1, Φ ≥ 0.5
0, Φ < 0.5.

(24)

5.3 Fusion rule

When more than one SU begins to collaborate (N > 1), then the process of
forecasting becomes a function of multiple SUs. There are a number of ways
in which the information collected by individual SUs may be combined.

One of the most popular approaches to cooperative SS in the literature
is the M -out-of-N rule [4]. This is a voting based fusion rule which can be
extended to cooperative forecasting. In this approach, a forecast value of
Gt,ϑ(r) = 1 is made if at least M out of the N cooperating SUs predict
the presence of a PU. The forecast is thus given as,

Gt,ϑ(r) =

{

1,
∑N

i=1 F i,t,ϑ(r) ≥ M
0, otherwise

(25)

where r = t+ 1, t+ 2, . . . , t+ k.

The M -out-of-N rule becomes the OR rule when M = 1, and the AND
rule when M = N . When using this approach, a suitable value for M will need
to be chosen. In this article, M =

⌈

N
2

⌉

was used.

5.4 Fusion scenarios

Two fusion scenarios have been considered. In the first scenario, all collabo-
rating SUs first perform prediction on a individual basis and then fuse their
decisions (pre-fusion prediction). In the second scenario, collaborating SUs
first fuse historical PU data at the fusion centre (post-fusion prediction) be-
fore performing a single prediction.

5.4.1 Pre-fusion prediction

The pre-fusion prediction scenario is illustrated by the block diagram shown
in Fig. 4. Firstly, using Eq. (7), each collaborating SU obtains a sequence of
SS results Si,t,ϑ(n), which is followed by an individual prediction by each SU
about future channel availability F i,t,ϑ(r). After the prediction process, all
of the individual SU predictions are fused together to obtained a combined
prediction result Gt,ϑ(r). The expressions given in Eq. (25) represent the pre-
fusion prediction scenario.
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5.4.2 Post-fusion prediction

The post-fusion prediction scenario is illustrated by the block diagram shown
in Fig. 5. All collaborating SUs perform spectrum sensing, using Eq. (7), to
obtain a sequence of historical PU information Si,t,ϑ(r). This data is then
immediately fused to obtain a collaborative SS decision Ht,ϑ(r), which may
be described by the following expression,

Ht,ϑ(n) =

{

1, 1
N

∑N
i=1 Si,t,ϑ(n) ≥ M

0, otherwise
1 ≤ n ≤ p (26)

where {n, p} ∈ N and Ht,ϑ(n) ∈ {0, 1}.
Only then is a single prediction made for future channel availability, using

the result of the combined SS decision, such that,

Gt,ϑ(r) = f (Ht,ϑ(n)) , t+ 1 ≤ r ≤ t+ k, 1 ≤ n ≤ p (27)

where {r, k} ∈ N and Gt,ϑ(r) ∈ {0, 1}.

5.5 Prediction approach

The occupancy window prediction approach [7] was employed to calculate the
local prediction error ǫfr. This error does not take into account the possibility
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that the information it uses to make the prediction may be incorrect due to
poor SS, but is simply a prediction of future PU traffic based on information
obtained through SS by a single SU. The following equation may be used to
calculate ǫfr, the difference between the actual Xt(r) and predicted F t,ϑ(r)
data sequences at time t,

ǫfr =

∑k
r=1 F t,ϑ(r)−Xt,ϑ(r)

k
. (28)

Each SU i will detect different versions of Si,t,ϑ(n) due to imperfect SS and
may also experience variations in its ability to preform a local forecast. To
allow for variations in local prediction error ǫfr, the local forecast error for a
single SU i has been defined as,

ǫfr,i,t = vi,tǫfr, (29)

where vi,t is randomly chosen from a continuous uniform distribution with
probability density function fv(x) and a lower boundary of ς, such that,

vi,t = ς + (1− ς)fv(x). (30)

For the simulation results shown in Section 7, the lower boundary ς acts as a
spreading factor that allows for accuracy variations among cooperating SUs.

6 Optimal forecasting

The idea behind a cooperative prediction scheme is to minimise cooperative
prediction error (CPE) by exploiting diversity amongst SUs. However, in order
to so, it is necessary to perform predictions, and combine the data collected by
cooperating SUs, in as optimal a fashion as possible. Therefore, an algorithm is
presented in this section based on the system model and cooperative prediction
approach described in Section 5 [9].

6.1 Problem formulation

Using Equation (27) the CPE at time t, denoted by ǫcp,t, may be given as,

ǫcp,t =

∑k
j=1 Gt,ϑ(j)−Xt,ϑ(j)

k
, (31)

where k is the number of future samples predicted at time t on channel number
ϑ. Since it is desirable to minimise ǫcp,t, the cooperative prediction problem
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may be formulated as,

min
ǫcp,t

ǫcp,t =

∑k
i=1 Gt(i)−Xt(i)

k
, (32)

s.t. 1 ≤ n ≤ p

1 ≤ k ≤ z

1 ≤ i ≤ Nmx

0 ≤ ǫcp,t ≤ ǫcp

n < t ≤ ξ

ρ, ν ≥ 1

1 ≤ τ ≤ ξ

0 ≤ ς ≤ 1

p, k, n, z, i, t, τ, ρ, ν ∈ N

Gt,ϑ,Xt,ϑ ∈ {0, 1} .

In Equation (32), n is the number of observations gathered by the local pre-
diction algorithm and may not exceed the limit of p observations, z is the
maximum number of future samples that may be predicted, i is the number of
cooperating SUs, Nmx is the maximum number of cooperating SUs that may
be combined, ǫcp is the maximum error threshold for cooperative prediction,
ξ is the maximum number of iterations allowed by the algorithm (assuming a
single iteration at each time increment), ρ is the observation length resolution,
ν is the amount by which i may be changed, τ is the iteration interval that
determines the sign of ρ and ς controls the variation in prediction accuracy
experienced by individual SUs (using Equation 29).

6.2 Cooperative forecasting algorithm

A cooperative forecasting algorithm (CFA) can be employed to find a solution
for Equation (32). A sub-optimal heuristic for this problem is proposed and
described in Algorithm 1. In this case, it is assumed that cooperating SUs
report their individual forecasts to a centralised FC to calculate Gt,ϑ(n).

The CFA begins by calculating Fi,t,ϑ(r) for a single SU (i = 1) at time
t = 0, with {n, i, z} = 1 initially. It then enters a recursive process that
begins by calculating Gt,ϑ(n) for SU i and the corresponding value for ǫcp,t
(Gt,ϑ(r) = Fi,t,ϑ(r) at t = 0). If ǫcp,t is found to be greater than the cooperative
error threshold ǫcp on the first iteration of the loop (t = 0), then the CFA will
increase i and n by an amount ρ and ν respectively ρ, ν ∈ N (these variables
represent the amount by which i and n will be adjusted at each iteration of
the CFA).

This process is repeated for τ iterations. If after τ iterations ǫcp,t > ǫcp,t−τ ,
then n is decreased by ρ and i is kept constant to allow for the possibility that
increasing n may actually degrade prediction performance. This is repeated



Cooperative prediction for cognitive radio networks 15

Algorithm 1 Cooperative forecasting algorithm.
1: t = 0
2: {n, i, z} = 1
3: Compute F i,t,ϑ(r) from Equation (21)
4: while (ǫcp,t > ǫcp) AND (n ≤ p) AND (i ≤ Nmx) AND (t ≤ ξ) do

5: Compute Gt,ϑ(r) from Equation (22)
6: Compute ǫcp,t from Equation (32)
7: if (ǫcp,t ≤ ǫcp) then

8: n = n

9: i = i

10: return ǫcp,t and Gt,ϑ(r)
11: else if ǫcp,t > ǫcp then

12: if (t > δ) then

13: if (ǫcp,t > ǫcp,t−δ) AND (n > ρ) then

14: n = n− ρ

15: i = i

16: else

17: if (i < Nmx) then

18: n = n+ ρ

19: i = i+ ν

20: else

21: n = n+ ρ

22: i = i

23: end if

24: end if

25: else

26: n = n+ ρ

27: i = i+ ν

28: end if

29: end if

30: t++
31: end while

until either ǫcp,t ≤ ǫcp,t−τ or n ≤ ρ. Thereafter either both i and n are increased
(when i < Nmx) or only n is increased (if i = Nmx), at every iteration of the
algorithm.

The CFA repeats itself until one of the stopping criteria are met: Either
a lower cooperative prediction error than the threshold is found ǫcp,t ≤ ǫcp,
the maximum number of historical observations has been exceeded n > p,
the maximum number of cooperating SU has been exceeded i > Nmx or the
maximum number of iterations allowed by the algorithm has been reached
t > ξ.

7 Simulation results

In this section, simulation results are presented to verify the performance of the
suggested cooperative prediction techniques. Using MATLAB, three different
simulations were performed, firstly to investigate SS, then single SU prediction
and finally cooperative prediction.
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Table 1 Parameters for simulations one and three

Parameter Value

T 60000 time samples

ϑ 100

N 10

M |N
2
|

f0 (MHz) 700

PTX (W) 30

BW (kHz) 200

R (m) 1414

γ (dB) [-4,30]

Pfr 0.6, 0.7, 0.8, 0.9, 1.0

Li (dB) 70.9, 80.3, 81.6, 85.9, 86.4,

86.5, 86.8, 88.1, 88.7, 88.9

Ki (dB) 0, 18, 9, 1, 14.5, 4, 20, 6, 8, 12

7.1 Simulation environment

Simulation parameters for the first and third simulations (SS and cooperative
prediction) are summarised in Table 1, while simulation parameters for the
second simulation (single SU prediction) are summarised in Table 2.

The first simulation was run to investigate the performance of the PU de-
tection scheme described in Section 4. SS results were obtained for ten different
SU scenarios for an SNR range of γ = [0, 30] dB in 2 dB increments.

The second simulation compared the prediction performance of the pre-
diction methods listed in Section 5, namely the MC, NLMS, 1-NN, OW and
uniform random prediction methods. These methods were compared under the
PU traffic patterns described in Section 3. The observation length was fixed
at p = 11 and both forecast lengths of k = 1 and k = 10 were considered. Sim-
ulations were run for ten different channel occupancy values over the range
υ0 = [10, 0] and υ1 = [0, 10].

The third simulation investigated the performance of cooperative predic-
tion when compared to prediction by a single SU. The difference between the
prediction performance of the pre-fusion and post-fusion prediction scenarios
was compared over an SNR range of γ = [−4, 30] (8 dB increments), for five
forecast probability values in the range Pfr = [0.6, 1.0].

All of the simulations were run for a length of T = 60000 time samples.
For the first and third simulations, the CRN environment consisted of ϑ = 100

Table 2 Simulation two specific parameters

Parameter υ0 υ1 τ k p

Value [10, 0] [0, 10] {1; 5} {1; 10} 11
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channels spaced 200 kHz apart, beginning at f0 = 700 MHz. The transmit
power of the PU base station was set to PTX = 30 W. The N = 10 SUs
were randomly distributed within a quarter circle with radius R = 1414m.
The calculated free space path loss Li and the assigned Rician K-factor Ki

for each SU are listed in Table 1. For the fusion rule M = ⌈N/2⌉ = 5 was
employed.

7.2 Spectrum sensing performance

Simulations were run to test the performance of the SS approach described in
Section 4. The individual noise thresholds λi and the resulting probabilities of
error Pe,i were calculated for each of the SUs shown in Fig. 3. The calculated
values for λi (shown in dBm) have been plotted on the left hand side of Fig. 6,
while the SS error probabilities Pe,i have been plotted on the right hand side.

The calculated threshold values λi exhibited an approximately inverse pro-
portional relationship to SNR. However, this was not found to be true for SNR
values below γ = 6 dB (since there is a greater overlap between the distribu-
tions of the information bearing and noise components of the signal, it becomes
harder to calculate estimates for µs, σ

2
s and σ2

n when γ ≤ 6 dB). As expected
Pe,i improves as both the SNR and Rician K-factor are increased, since it
becomes easier to estimate λi.

The Pe,i values represent the ability that each SU has to detect the presence
of the PU based on the quality of the signal that it can detect and were used
as the basis of the cooperative prediction simulations.
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Fig. 6 Calculated detection thresholds (left) and SS error probabilities (right), as SNR is
increased, for the SUs described in Section 3.3



18 S.D. Barnes et al.

7.3 Single SU prediction performance

Simulations were also run to investigate the accuracy of the prediction meth-
ods discussed in Section 5. These prediction methods were tested using the
data sets described in Section 3.2 and compared to the prediction accuracy
that can be obtained by making random predictions according to a uniform
distribution (the control method). The error incurred when making a predic-
tion will henceforth be referred to as the prediction error (PE). Plots showing
the PE over the full range of channel occupancy values are provided for fast
changing PU traffic (τ = 1) in Fig. 7 and for slow changing PU traffic (τ = 5)
in Fig. 8. For both traffic scenarios, an observation length of p = 11 time sam-
ples was adopted and prediction lengths of k = 1 and k = 10 were considered.

It is evident that all of the prediction methods outperformed making ran-
dom predictions (the control method) and that performance was better under
slow changing traffic conditions. Also predictions further into the future (i.e.
k = 10) were found to be less accurate than for the immediate future (i.e
k = 1). However, the most notable observation was that the PE of all of
the methods was found to be the lowest when a band was either completely
empty (0%) or when it was completely occupied (100%) and highest when
the channel had an occupancy of 50%. This can be explained by the effect of
randomness on the prediction methods, since the PU traffic pattern is random
when the occupancy is 50% and completely non-random when the occupancy
is either 0% or 100%. Similarly, a fast changing traffic pattern (e.g. τ = 1)
can also make the PU traffic appear more random. Since the accuracy of the
traffic prediction method relies on the existence of a repeatable PU traffic pat-
tern, randomness will impair the prediction process. For a binary pattern, the
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Fig. 7 Prediction error vs. channel occupancy for fast varying PU traffic (p = 11, k =
{1, 10}, τ = 1)
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larger the number of contiguous bits that are the same, the easier it becomes
to predict future bits.

There were individual differences between the performance of the predic-
tion methods for different occupancy levels, traffic change rates and prediction
lengths. These differences suggest that the choice of prediction method should
be related to the traffic pattern of the actual channel for which a prediction
is to be made. To highlight these differences, selected PE results are listed in
Table 3.

Overall the 1-NN method (OW method when p = 1) had the best perfor-
mance, while the OW method was found to be the worst performing method.
The OW method was particularly poor when the occupancy level was 50%
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Fig. 8 Prediction error vs. channel occupancy for slow varying PU traffic (p = 11, k =
{1, 10}, τ = 5)

Table 3 Selected PE results for υ1 = 5 and υ1 = 8

Method τ = 1 τ = 5

k = 1 k = 10 k = 1 k = 10

υ1 = 5

NLMS 19.35 41.71 6.67 19.29

MC 25.33 42.78 4.99 17.97

1-NN 16.46 40.06 3.92 17.27

OW 38.26 46.24 17.82 27.09

RND 49.87 50.02 49.93 49.97

υ1 = 8

NLMS 17.15 27.79 6.07 17.37

MC 22.00 31.72 5.18 16.68

1-NN 14.91 28.87 3.82 15.72

OW 22.61 25.75 15.09 22.50

RND 49.89 50.23 50.19 50.30
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(υ1 = 5). However, the PE of all of the methods, became more similar as υ1
either approached zero or a hundred. Under certain conditions the OWmethod
actually had the lowest PE. This occurred when predictions were made further
into the future (k = 10) and the the traffic pattern was fast changing (τ = 1).

The PEs of the MC and NLMS methods were found to be similar for slow
changing traffic (τ = 5), with the MC method marginally better. However,
for a faster varying traffic pattern (τ = 1), the NLMS method was found to
be better, with a slightly larger difference between them (particularly when
k = 1).

While PE is of primary importance to the proactive decision making pro-
cess, the complexity of each method could influence its viability in a CRN.
This will be discussed in Section 7.6.

7.4 Cooperative prediction performance

To quantify the benefit that cooperation brings to the prediction process, sim-
ulations were run that compared the CPE that could be obtained by employing
both pre-fusion prediction (PRE) and post-fusion prediction (POF) as com-
pared to the no-fusion scenario (NOF). For the PRE and POF scenarios all
ten SUs where employed in the prediction process, while for the NOF scenario
prediction was performed using only SU1 (shown in Fig. 3). SU1 was used for
the NOF scenario as it was the SU that was least able to detect the presence
of the PU due to the poor channel conditions at its geographical location. The
simulations were run for the range of SNR values listed in Table 1.

Each scenario was tested for a range of forecast probabilities Pfr = [0.6, 1.0].
Pfr is the probability that a correct forecast was made by SU i and is the in-
verse of the PE, such that Pfr = 1−PE. Thus Pfr = 0.6 represents a poor
prediction with a PE of 40%, while Pfr = 1.0 represents a perfect prediction
with a PE of 0%.
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Fig. 10 Cooperative prediction error for the post-fusion scenario
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Fig. 11 Cooperative prediction error when fusion is not employed

The PRF results are illustrated in Fig. 9, the POF results in Fig. 10 and the
NOF results in Fig. 11. For all three scenarios, the CPE improves exponentially
as both the SNR and Pfr are increased. However, this reduction in CPE is
larger when fusion is employed for prediction, most notably when the PRF
scenario is adopted. When fusion is employed the CPE can be reduced to a
value that is below the Pfr of the individuals SUs, as SNR is increased.

For the PRF scenario, the CPE when Pfr < 1.0 continues to improve with
an increase in SNR until it reaches its best value around γ = 24 dB. For
the POF scenario, however, the best CPE is reached much earlier at around
γ = 8 dB. This means that there is a benefit derived from fusion for a much
wider range of noise conditions under the PRF scenario. Improved PE, due to
cooperation, is evident at SNRs as low as γ = 0 dB.
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Table 4 Selected PE results that highlight the benefit of cooperation

Scenario Pfr = 0.7 Pfr = 0.9

γ = 4 γ = 16 γ = 4 γ = 16

Single

SU1 39.43 32.55 28.90 15.08

Fusion

POF 30.94 29.98 11.84 9.99

PRF 17.81 8.46 4.69 0.08

Reduction

POF 8.49 2.57 17.06 5.09

PRE 21.62 24.09 24.21 15.00

Selected results have been listed in Table 4 to highlight how much PE can
be reduced by employing cooperative prediction. A CPE comparison is made
for SNR values of γ = 4 and γ = 16, and for Pfr = 0.7 and Pfr = 0.9. When
γ = 4 dB, the POF scenario led to a CPE reduction of 8.49% and 17.06%,
for Pfr = 0.7 and Pfr = 0.9 respectively. However, the CPE was reduced
by 21.62% and 24.21% respectively, for the PRE scenario. When γ = 16, the
difference between PRE and POF was even larger.

Thus it can be concluded that the PRF scenario provided much larger
reductions in CPE than the POF scenario, while it was clear that both fusion
scenarios are of benefit to the prediction process.

7.5 Optimal cooperative prediction

The CFA was used to calculate the results presented in Figure 12 and Figure
13.

7.5.1 Uniform local prediction error

In Figure 12, the CPE is illustrated for the case where ς = 1, i.e. for no
diversity in local forecast error ǫfr,i,t. Values for ǫcp have been plotted, on the
left hand side of the figure, for each iteration of the CFA for various values of
γ. The corresponding values for variables i and n are illustrated on the right
hand side of the figure. From these plots it can been seen that ǫcp generally
improved as the algorithm was iterated, reaching the optimal solution when
t = 12 after which no further improvement was made. This could be seen for
all values of γ, where i and n steadily increased up to their optimal values,
except for when γ = 0 dB. When γ = 0 dB, i and n sometimes had to be
decreased to cope with local SS inaccuracies. This meant that it took longer
to find the optimal solution, which was only reached when t = 16.
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7.5.2 Local prediction error diversity

In Figure 13 the effect of diverse local prediction accuracy, when ς = [0, 1],
is illustrated. Using the CFA, the optimal value obtained for ǫcp is compared
over a range of SNR values and for different values of ς. Clearly diversity in
the ability of SUs to perform local forecasts lead to a improvement in the
CPE. For example, for γ = 16 dB, the CPE obtained when ς = 1.0 was ǫcp =
6.405× 10−3, but due to diversity it had been reduced to ǫcp = 3.800× 10−5

when ς = 0.0.
For lower SNR values there was an approximately exponential decrease

in ǫcp with SNR, which then began to flatten out as SNR became larger. For
ς = [0.4; 0.6; 0.8; 1.0], the minimum value for ǫcp appeared to have been reached
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when γ = 24 dB. However, ǫcp was still decreasing at γ = 28 dB for a large
diversity in local forecast accuracy (ς = [0.0; 0.2]).

7.6 The cost of cooperative forecast

Although obtaining the lowest possible CPE is important, the complexity as-
sociated with cooperation and prediction must also be considered. Many CR
functions are time critical and would be negatively affected if the SS and pre-
diction process were to be an over complicated and time consuming process.
Estimates for the complexities associated with each prediction method and
fusion scenario, are illustrated in Fig 14. These estimates were calculated by
normalising average simulation times using unit length feature scaling. The
complexities of the prediction methods were calculated separately from the
fusion scenarios.

The prediction method complexities are shown on the left hand side of
Fig 14. Of the prediction methods that were simulated, the 1-NN method was
found to be the least complex approach, closely followed by the OW method.
Both of these methods were slightly less complex than the random approach,
however, the MC and NLMS methods were found to be significantly more
complex, with the MC method being 3.2 times more complex than the NLMS
method and 14.5 times more complex than random prediction.

The fusion scenario complexities are shown on the right hand side of Fig 14
as well as in Table 5. As expected, there is a price to pay for the improvement
in prediction accuracy due to fusion. For the PRF scenario, the most accurate
approach, fusion was found to be 10.7 times more complex than for the NOF
scenario (when Pfr = 0.8). However, the POF scenario was found to be only
1.3 times more complex than the NOF scenario.



Cooperative prediction for cognitive radio networks 25

Table 5 Selected complexity estimates for the prediction methods and fusion scenarios

Scenario Pfr = 0.6 Pfr = 0.7 Pfr = 0.8 Pfr = 0.9

PRF 0.178 0.179 0.158 0.154

POF 0.022 0.022 0.020 0.020

NOF 0.017 0.017 0.015 0.014

Therefore, when performing cooperative prediction it is important to select
the correct combination of prediction method and fusion scenario, so as to
ensure a reasonable balance between prediction accuracy and complexity.

8 Conclusion

Accurate prediction of PU behaviour allows for proactive decision making in
a CRN and collaboration amongst multiple SUs, during the prediction pro-
cess, may lead to improved prediction accuracy. By cooperating with each
other, SUs are potentially able to predict PU behaviour with greater accu-
racy than they would have on their own. In this article the performance of
various prediction methods and fusion scenarios, for cooperative prediction,
were investigated for different PU traffic conditions. A sub-optimal cooper-
ative forecasting algorithm was also presented. From the simulation results
obtained, cooperative prediction was shown to provide greater accuracy than
when a single SU, experiencing poor channel conditions, was used to predict
PU activity. The performance of the prediction methods was also found to be
influenced by the density of PU traffic and the rate at which it was changing.
The pre-fusion fusion scenario was clearly found to provide greater accuracy
than the post fusion scenario, however, this was achieved at a significant in-
crease in required computational complexity. A trade-off was thus found to
exist between cooperative prediction accuracy and computational complexity.
The cooperative forecasting algorithm was also found to be effective at reduc-
ing CPE even further. The findings of this work may provide a platform for
future research relating to optimal PU traffic prediction.
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Appendix

In this appendix the expression for λi is derived.

Lemma 1 The signal detection threshold λi is given by the following expres-

sion,

λi =
µsσ

2
n − σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

s

σ2
n − σ2

s

(33)

where µs and σ2
s are the mean and variance of the information carrying com-

ponent of a received signal respectively and σ2
n is the variance of the noise

component.

Proof Let the probability density functions of the information and noise com-
ponents be,

ρn(x) =
1

σn

√
2π

exp
(x− µn)

2

2σ2
n

(34)

and

ρs(x) =
1

σs

√
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exp
(x− µs)

2

2σ2
s

(35)

respectively.
To solve for x, let ρn(x) = ρs(x) such that,
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2σ2
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2σ2
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(36)

This expression can be simplified and written in the form of a second order
polynomial, ax2 + bx+ c = 0, where the coefficient are given as,

a = x2(σ2
n − σ2

s) (37)

b = 2x(σ2
sµn − σ2

nµs) (38)

c = σ2
nµ

2
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2
n − 2σ2

nσ
2
s ln (

σn

σs

) (39)
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If λi = x, is the solution for Eq. (36), then,

λi =
µsσ

2
n − µnσ

2
s
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s
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(40)

But, under the assumption that ρn = N
(

0, σ2
n

)

, µn = 0 must be substituted
into Eq. (40) to give the following expression,

λi =
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If it is assumed that µs > 0, then it follows that,

µsσ
2
n >

√

2 ln (
σn

σs

)(σ2
n − σ2

s) + µ2
s

Therefore, since λi ≤ µs, Eq. (41) becomes,
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