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Abstract 

 

This paper provides out-of-sample forecasts of linear and non-linear models of US and four 

Census subregions’ housing prices. The forecasts include the traditional point forecasts, but 

also include interval and density forecasts, of the housing price distributions. The non-linear 

smooth-transition autoregressive model outperforms the linear autoregressive model in point 

forecasts at longer horizons, but the linear autoregressive and non-linear smooth-transition 

autoregressive models perform equally at short horizons. In addition, we generally do not 

find major differences in performance for the interval and density forecasts between the 

linear and non-linear models. Finally, in a dynamic 25-step ex-ante and interval forecasting 

design, we, once again, do not find major differences between the linear and nonlinear 

models. In sum, we conclude that when forecasting regional housing prices in the US, 

generally the additional costs associated with nonlinear forecasts outweigh the benefits for 

forecasts only a few months into the future.  
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1. Introduction 

This paper considers the out-of-sample forecasting performance of linear and non-linear 

models of real house price indexes for the US and its four Census subregions – Northeast, 

South, Midwest, and West. The analysis compares autoregressive (AR) and smooth-

transition autoregressive (STAR) models, estimates the models using monthly data over the 

1968:1 to 2000:12 in-sample period, and forecasts over the 2001:1 to 2010:5 out-of-sample 

period. Finally, we also design an ex-ante dynamic 25-step forecasting experiment over the 

period 2010:6 to 2012:6 to examine the real world success of the forecasts generated from 

the linear AR and non-linear STAR models. 

We find that the use of non-linear models to forecast housing prices at the US and 

four Census subregion levels typically does not generate improvements in forecast 

performance, especially at short horizons, to justify the additional costs of non-linear 

forecasts. That is, the use of misspecified linear models may still make sense, even if the data 

conform to a non-linear model specification. 

The housing market plays a key role in the business cycle. Leamer (2007) strongly 

links residential housing and the business cycle, since residential investment and durable 

consumption prove important in explaining recessions. He argues that the stock-flow nature 

of the housing market and the reluctance of home owners to lower their prices in a weak 

market provide the setting for cyclical movement in sales volume, leading to cyclical 

movements in housing construction and employment. That is, construction and employment 

in the housing sector expand, along with increases in nominal house prices, when the 

economy booms, whereas nominal house prices fall sluggishly in recessions, leading to 

decreases in sales volume and, thus, in construction and employment activity in housing. In 
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sum, developers overbuild the supply of new housing during a boom, where the over building 

will partially determine the length of the next recession.  

Good monetary policy requires action before the overbuilding goes too far and 

necessitates central bank intervention early in the boom period, when political pressure 

probably weighs against monetary policy restraint. That is, understanding and forecasting 

movements in the housing market plays a critical role for monetary policy authorities and 

their willingness to “lean against the wind.” 

Further, existing evidence implies that asset prices help to forecast both inflation and 

output (Forni et al., 2003; Stock and Watson, 2003). Moreover, for many households, their 

homes provide the major component of household wealth. Thus, house price adjustments can 

signal impending adjustments in consumption, output, and inflation. That is, movements in 

the housing market importantly affect the business cycle (Vargas-Silva, 2008a; Iacoviello 

and Neri, 2010), not only because housing investment proves a volatile component of 

demand (Bernanke and Gertler, 1995), but also because house price changes generate 

important wealth effects on consumption (International Monetary Fund, 2000) and 

investment (Topel and Rosen, 1988). Leamer (2007) notes that the housing market predicted 

8 of the 10 post World War II recessions. If writing today, he probably would argue that the 

housing market predicted 9 of the 11 post World War II recessions. In other words, the 

housing sector acts as a leading indicator for the real sector of the economy. The recent 

world-wide credit crunch began with the burst of the house-price bubble, which, in turn, led 

the real sector of the world’s economy toward an economic slump.  

Conventional wisdom argues that US housing prices adjust asymmetrically – prices 

adjust more quickly when rising than when falling. Recent studies (Genesove and Mayer 
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2001, Engelhardt 2003, Seslen 2004, Kim and Bhattacharya 2009, Balcilar et al. 2011) 

document evidence of such nonlinearity in housing prices.  

Kim and Bhattacharya (2009), for example, show that housing prices in the US and 

three of the four Census subregions exhibit non-linearity. The Midwest, the exception, 

exhibits linear movements. They conclude that the behavior of the housing market does not 

differ across phases of expansion and contraction of the residential real estate sector, but does 

differ between these two phases. In the first part of our analysis, we attempt to replicate the 

findings of Kim and Bhattacharya (2009) in developing the non-linear model with which to 

perform our forecasting exercises. Our analysis, however, chooses different non-linear 

specifications. That is, we find that the behavior of the housing market does differ across 

phases of expansion and contraction of the residential real estate sector. 

We then consider whether forecasting with the non-linear model leads to important 

improvements in forecast performance over forecasting with an incorrectly specified linear 

model. Moreover, we also examine this issue of the forecast performance of non-linear 

versus linear models for interval and density forecasts, in addition to point forecasts. 

Miles (2008) considers linear and nonlinear forecasts of house prices in five US states 

– California, Florida, Massachusetts, Ohio, and Texas – using the generalized autoregressive 

(GAR) model. He concludes that the “GAR does a better job at out-of-sample forecasting … 

in many cases, especially in those markets traditionally associated with high home-price 

volatility.” (p. 249). Cabrero, Wang, and Yang (2011) compare the out-of-sample forecasting 

performance of international securitized real estate returns using linear and nonlinear models.  

They compare the performance of a number of nonlinear models -- exponential generalized 

autoregressive conditional heteroskedasticity, functional coefficient, feed forward artificial 
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neural network, and nonparametric models -- to the benchmark linear autoregressive model. 

They conclude that nonlinear models produce better out-of-sample forecasts.1 

Several possible explanations for intrinsic nonlinearity in house prices exist. First, as 

noted above, households respond asymmetrically over the business cycle. Abelson et al. 

(2005) argue that households more likely buy when prices rise, because they expect further 

rises and try to avoid higher payments. Households will less likely buy or sell, however, due 

to loss aversion with falling house prices. Seslen (2004) argues that households exhibit 

forward-looking behavior and a higher probability of trading up, during expansions, since 

equity constraints prove less binding. During the downswing of the housing market cycle, 

households less likely trade, implying downward rigidity of house prices. Loss aversion 

during the downswing more likely reduces the mobility of households as well as trading 

activity. Further, Muellbauer and Murphy (1997) note that the presence of lumpy transaction 

costs in the housing market can also cause non-linearity. Given these issues, it makes sense 

to test for non-linear housing price movements. 

To examine the extent of the nonlinearity in housing price adjustments, we conduct 

an extensive out-of-sample forecast comparison of nonlinear and linear AR models for four 

regional (Northeast, Midwest, South, West) housing price indexes as well as for the 

aggregate US housing price index. If the out-of-sample forecasts generated by the nonlinear 

AR models outperform the forecasts generated by the linear AR models, then evidence exists 

against the linear models.  

The out-of-sample forecast comparisons do not rely on a single criterion, as usually 

done, such as the root mean square error (RMSE). We compare linear AR and a class of 

                                                 

1
 They also consider combined forecasts that produce even better forecasts as well as adjust the tests for data 

snooping (White 2000). 
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nonlinear AR models in their out-of-sample point, interval, and density forecasts. First, we 

compare linear and nonlinear AR models in their out-of-sample point forecast performance 

using the root mean squared error (RMSE) criterion and test for the superiority of the 

forecasts using the Diebold and Marino (1995) test. Moreover, nonlinear models may exhibit 

only superior forecasting performance in certain regimes (e.g., recessions) and not in others 

(e.g., expansions). To examine this possibility, we focus on the forecasting performance for 

the observations in the tails of the distribution, using weighted version of the Diebold and 

Mariano test proposed by van Dijk and Franses (2003).  

We also compare the superiority of the forecasts in their out-of-sample interval and 

density forecasting performance, using the approach suggested by Christoffersen (1998) and 

Diebold et al. (1998). To consider the extent of the nonlinearity, we also evaluate the 

nonlinear AR models using the informal testing approach proposed by Pagan (2002) and 

Breunig et al. (2003). We more formerly compare linear and nonlinear AR models using the 

statistic from Corradi and Swanson (2003) that relies on the distributional analogue of the 

mean-square-error metric of models. This statistic can compare two models, both of which 

are possibly misspecified. Finally, we use an ex-ante forecast design and compare 25-step 

dynamic forecasts of the linear and nonlinear AR models over 2010:6 to 2012:6. 

Unlike the huge existing literature on forecasting house prices using linear models, 2 

we rely on a nonlinear approach, given the theoretical reasons outlined above, and the 

evidence that we provide below based on statistical tests, for the inherent nonlinear data 

generating process of housing prices. Of courses as discussed above, a few authors do use 

nonlinear models. Unlike these papers, however, we not only rely on point forecasts, but also 

                                                 

2
 Gupta (2013) and Plakandaras et al., (forthcoming) provide detailed literature reviews 
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interval and density forecasts, both of which provide a description of forecast uncertainty. 

Also, we analyze the forecasting ability of our models using an ex-ante dynamic forecasting 

experiment to examine the real-world success of the forecasts generated, something rarely 

done in the literature. Also, unlike the literature that generally uses many predictors, we rely 

on univariate models of housing prices. We believe, given the evidence that house price is a 

leading indicator, we should be analyzing univariate models to forecast house prices 

independent of the information content of the economic fundamentals.  

The rest of the paper adopts the following structure. Section 2 outlines the 

methodology of non-linear estimation. Section 3 provides a description of point, interval, and 

density forecasts. Section 4 discusses the data and evaluates the empirical findings. Section 5 

examines forecast accuracy. Section 6 compares the in-sample conditional densities and ex-

ante forecasts. Section 7 concludes. 

2. Methodology 

We adopt the STAR framework, developed by Luukonnen et al. (1988) as extended by 

Escribano and Jordá (1999), to model house price growth rates as non-linear and state-

dependent.3 The STAR framework connects different regimes with a smooth transition 

function to describe the long-run dynamics of house price growth rates. The STAR 

framework dominates threshold autoregressive (TAR) (Tsay 1989) and the Markov switching 

(MS) (Hamilton 1989) models, since the latter two frameworks specify discrete jumps 

between regimes. In fact, the TAR model emerges as a limiting case of the STAR model. In 

addition, the low speeds of transition, which we find in the estimation of the non-linear 

                                                 

3
 Non-linear estimation, just like linear estimation, requires stationary variables to avoid spurious estimates. 

Hence, we convert house prices in the US and the four Census subregions into annual growth rates. We confirm 

stationarity of the series, in turn, by the Augmented–Dickey–Fuller (ADF), the Dickey-Fuller with GLS 
Detrending (DF-GLS), the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS), and the Phillips-Perron (PP) tests. 
The results are available from the authors.   
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model, support our choice. In housing markets with large number of buyers and sellers with 

heterogeneous beliefs and unsynchronized responses to news, the STAR framework seems 

appropriate. 

The STAR model of order p, for variable rt, is specified as follows:4 

0 0

1 1

0 0

[ ] [ ]. ( )

                                  [ ( ) ] [ ( ) ]. ( )
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 (1)  

where rt denotes the housing price growth rate, and F(rt-d) denotes the smooth and continuous 

transition function of past realized housing price growth rates controlling the regime shift 

mechanism. Thus, house price growth rates evolve with a smooth transition between regimes 

that depends on the sign and magnitude of past realization of house price growth rates. We 

generate non-linearities by conditioning the autoregressive coefficients, ρ(L), to change 

smoothly with past house price growth rates. That is, the past realized home price growth rate 

rt-d becomes the transition variable with delay parameter d, which indicates the number of 

periods that rt-d leads the regime switch. 

Teräsvirta and Anderson (1992) consider two alternative transition functions that 

produce the logistic smooth transition autoregressive (LSTAR) model and the exponential 

smooth transition autoregressive (ESTAR) model. In the LSTAR model, the transition 

function equals a logistic model as follows:  

  
F(r

t-d
) = [1+ exp{-g (r

t-d
- c}]-1, g > 0 ,     (2) 

while in the ESTAR model, the transition function equals an exponential model as follow: 

  
F(r

t-d
) = 1- exp{-g (r

t-d
- c)2}, g > 0.     (3) 

                                                 

4
 This discussion relies heavily on the presentation in Kim and Bhattacharya (2009) and Balcilar et al. (2011). 

We retain their symbolic representation of the equations. 
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In equations (2) and (3), γ denotes the speed of transition between regimes and c 

measures the halfway point or threshold between the two regimes. Equations (1) and (2) 

yield the LSTAR(p) model and equations (1) and (3) yield the ESTAR(p) model. In STAR 

models, two different economic phases characterize expansions and contractions, but a 

smooth transition occurs between the two regimes, controlled by rt-d (Sarantis 2001). The 

LSTAR and ESTAR models describe different dynamic behaviors. The LSTAR model 

allows the expansion and contraction regimes to exhibit different dynamics whereas the 

ESTAR model suggests that the two regimes exhibit similar dynamics with different 

dynamics in the middle between the expansionary and contractionary regimes (Sarantis 

2001). When γ→∞, the model degenerates into the conventional TAR(p), while when γ→0, 

the model degenerates to the linear AR(p) model (Teräsvirta and Anderson 1992).5 

3. Point, Interval, and Density Forecasts: Method and Analysis  

Our analysis expands beyond the traditional point forecasts to include both interval and 

density forecasts. Recent studies report that non-linear models produce superior interval and 

density forecasts to linear models, although inferior point forecasts (e.g., Clements and Smith 

2000, Siliverstovs and van Dijk 2003, and Rapach and Wohar 2006). We develop interval 

and density forecasts using Christoffersen (1998) and Diebold et al. (1998).  

Point, Interval, and Density Forecasts: Method 

We use the fitted non-linear AR models reported in Section 2 to calculate out-of-sample 

point, interval, and density forecasts and consider whether these forecasts generated by the 

non-linear models outperform those generated by simple linear AR models. We assume that 

the non-linear and linear AR models exhibit Gaussian errors. 

                                                 

5
 A longer version of the current paper provides details on the testing procedure for choosing between the 

ESTAR and LSTAR models. See http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2138980. 
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Generating point, interval, and density forecasts for linear AR models with Gaussian 

errors proves straightforward.6 Analytical point, interval, and density forecasts do not 

generally exist for non-linear AR models with Gaussian errors. We follow Rapach and 

Wohar (2006) and use their simulation-based procedure to generate forecasts for the non-

linear AR models.  

Analyzing Point Forecasts 

We use the mean-square-forecast-error (MSFE) criterion and adopt the Diebold and Mariano 

(1995) procedure to test the null hypothesis of equal predictive ability against the one-sided 

alternative hypothesis that the non-linear AR model exhibits a smaller MSFE than the linear 

AR model. Following Siliverstovs and van Dijk (2003) and Rapach and Wohar (2006), we 

use the modified Diebold and Mariano statistic (M-DM) of Harvey et al. (1997), correcting 

for potential finite-sample size distortions. We use the Student-t distribution to determine 

significance.  

We also follow Rapach and Wohar (2006) and consider a weighted Diebold and 

Mariano (1995) statistic (W-DM) recently developed by van Dijk and Franses (2003), where 

the observations of different regions receive different weights. Given that our non-linear 

models include asymmetric adjustment to long-run equilibrium, we adopt the first weight 

function suggested by van Dijk and Franses (2003), which attaches greater weight to 

observations in both tails of the distribution. We again follow Siliverstovs and van Dijk 

(2003) and Rapach and Wohar (2006) and adjust the weighted statistic using the Harvey et 

al. (1997) correction factor to obtain the modified W-DM statistic (MW-DM). We again use 

the Student-t distribution to determine significance. 

                                                 

6
 We follow the existing literature in treating the parameters of the linear and nonlinear AR models as known in 

forming forecasts. Hansen (2006) describes how to include parameter estimation uncertainty into interval 
forecasts for linear models. 
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Analyzing Interval Forecasts 

We follow Wallis (2003) and Rapach and Wohar (2006) in analyzing interval forecasts and 

use the likelihood ratio (LR) tests developed by Christoffersen (1998), who argues that good 

interval forecasts include good coverage and independently distributed observations over 

time falling inside or outside of the forecast intervals to prevent clustering. Christoffersen 

(1998) develops likelihood ratio tests of unconditional coverage, independence, and 

conditional coverage. We use the Pearson χ2 versions of these tests, as Wallis (2003) 

advocates. We follow Wallis (2003) and calculate exact p-values based on the observed and 

expected outcomes using Mehta and Patel (1998). This allows sharper inference, especially 

for a small number of out-of-sample forecasts.  

We also modify the above procedure to accommodate autocorrelation in the optimal 

forecasts at horizon h. We follow Siliverstovs and van Dijk (2003) and Rapach and Wohar 

(2006), who use the procedure based on Bonferroni bounds, as Diebold et al. (1998) suggest.  

Analyzing Density Forecasts 

Diebold et al. (1998) develop a method for analyzing density forecasts, using the probability 

integral transform (PIT). Under the null hypothesis that the density forecast generated by a 

given forecasting model is true, Diebold et al. (1998) demonstrate that the PIT series is 

distributed iid. U(0, 1). Following Clements and Smith (2000), Siliverstovs and van Dijk 

(2003), and Rapach and Wohar (2006), we use the Kolmogorov–Smirnov statistic (KS) to 

test for uniformity. Berkowitz (2001) suggests transforming the PIT series using the inverse 

of the standard normal cumulative density function. Then, under the null hypothesis that the 

density forecast is true, the transformed PIT series is distributed iid N(0, 1). Following 

Clements and Smith (2000), Siliverstovs and van Dijk (2003), and Rapach and Wohar 
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(2006), we test for standard normality using the Doornik and Hansen (2008) statistic (DH). 

The KS and DH statistics assume independence. To test explicitly for independence in the 

PITs, Diebold et al. (1998) recommend looking for autocorrelation in the power-transformed 

PIT series. Finally, following Siliverstovs and van Dijk (2003) and Rapach and Wohar 

(2006), we use the Ljung–Box (LB) statistic to test for first-order autocorrelation in the 

power transformed PIT series.  

4. Data and Empirical Findings 

Data: 

Following Kim and Bhattacharya (2009), we use the National Association of Realtors (NAR) 

median prices for the nation and four census subregions on a monthly basis.  We seasonally 

adjust the data in levels using the Census X-12 method. Since home price data are 

nonstationary, we compute annual natural logarithmic differences in the house price indexes 

to approximate growth rates to induce stationarity. That is, 12 12ln ln lnt t t tPr P P    , 

where Pt is the median home price. Figure 1 plots the seasonally adjusted level of the median 

home sale prices. The analysis uses monthly data over the 1968:1 to 2000:12 in-sample 

period, and forecasts over the 2001:1 to 2010:5 out-of-sample period. We also compare ex-

ante forecasts from 2010:6 to 2012:6.7  

Empirical Findings: 

This section first considers the LM-STR test for linearity of housing price growth rates and 

then conducts hypothesis tests to select between the LSTAR and ESTAR models. We then 

                                                 

7
 The four Census subregions and the included states are described as follows: Northeast: Connecticut, Maine, 

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; Midwest: 
Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, 
and Wisconsin; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, 

Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and 
West Virginia; and West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New 
Mexico, Oregon, Utah, Washington, and Wyoming. 



12 

 

estimate the appropriate STAR model and the linear AR model and compare the in-sample 

performance over 1968:1 to 2000:12. When conducting the (LM-STR) test for linearity, as 

discussed above, we choose the optimal lag, p, based on the unanimity of at least two of 

popular lag-length selection tests. We allow the delay lag, d, to vary between 1 ≤ d ≤ 8. We 

estimate the optimal delay lag d based on the lowest p-value or highest F-statistic associated 

with the null hypothesis in the LM3 test: 
01H   

2 3 4 0i i i      for all i. As noted by van Dijk 

et al. (2002), since LM tests of linearity may prove sensitive to outliers, then outlier robust 

estimation is preferred. Therefore, we estimate all test regressions using outlier robust M-

estimation.  

Table 1 indicates delay lags of 3, 8, 1, 1, and 5 for the US, the Northeast, the 

Midwest, the South, and the West, respectively. Moreover, we reject the null hypothesis of 

linearity for the US, the Northeast, and the South at the 1-, 5-, and 1-percent levels, 

respectively. We can only reject the null hypothesis of linearity for the Midwest and the West 

at the 20-percent level by the LM3 test. Since Escribano and Jordá (1999) propose four LM 

tests of linearity, we also report the LM1, LM2, and LM4 tests with the following null 

hypothesis: 
 
H

01
 

  
f

2i
= 0, 

01H   
  
f

2i
=f

3i
= 0, and 01H   2 3 4 5 0i i i i        for all i, 

respectively. In this case, we add the West to the Census subregions where we can reject the 

null hypothesis of linearity at the 5-percent level using the LM4 test and Midwest using the 

LM1.
8  

We now need to specify the appropriate STAR model to capture accurately the non-

linear dynamics. As proposed by Teräsvirta and Anderson (1992), we need to test for the 

sequence of nested hypothesis tests H04, H03, and H02 for the choice between LSTAR and 

                                                 

8
 In this case, however, the delay lag changes for the Midwest to 3. We can still reject linearity for the Midwest 

at the 5-percent level. 
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ESTAR alternatives. Then we implement the H0E and H0L tests proposed by Escribano and 

Jordá (1999). Table 2 reports the findings. The Teräsvirta and Anderson (1992) method 

selects the LSTAR model for the entire US and the four Census regions. Applying the 

Escribano and Jordá (1999) test, we also select the LSTAR model in each case, except for the 

Northeast, where we select the ESTAR model. Comparing the two methods, however, we see 

that the p-value for the Teräsvirta and Anderson (1992) method proves better than the p-

value for the Escribano and Jordá (1999) test. Thus, we choose to adopt the LSTAR model, 

which implies that house price growth rates exhibit asymmetric dynamics during the phases 

of contraction and expansion.9  

Next, we provide further evidence of nonlinearity by providing in-sample comparison 

based on the estimation of the linear AR model, given in equation (4), and the nonlinear 

LSTAR model described in equation (5): 

0

1

[ ]
p

t i t i t

i

r r u  


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Following Teräsvirta (1994), we standardize the exponent of the function F(.) of the LSTAR 

model by multiplying it by the term 1
( )tr

, where ( )tr  is the standard deviation of the 

corresponding yearly housing price growth rate rt.
10 

                                                 

9
 We test regressions estimated using outlier robust M-estimation. We also select ESTAR models for all Census 

subregions, using the sample period and estimation method (OLS) in Kim and Bhattacharya (2009). Thus, 
differences in findings reflect different estimation techniques and sample periods. The details of these results 
are available upon request from the authors. 

10
 The results from estimating LSTAR and AR models are available on request. Van Dijk et al. (2002) suggest a 

battery of misspecifications tests -- no residual autocorrelation, parameter constancy, no remaining non-
linearity, no autoregressive conditional heteroskedasticity (ARCH), besides the test of normality -- for the 
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We use a general-to-specific method to drop insignificant (worse than 10-percent 

level) coefficients, but imposing the condi tion that the adjusted R-squared does not fall. 

Thus, some insignificant coefficients at the 10-percent level remain in the final models. The 

logistic function conditions the autoregressive parameters to change smoothly with lagged 

realized changes in the growth rates of home prices in the LSTAR model, which generates 

the endogenous nonlinearity. When we compare the estimation results over the period of 

1968:1 to 2000:12 of the AR and the LSTAR models, the following features confirm the 

dominance of the non-linear estimation: (a) The standard errors and the log likelihood values 

of the nonlinear regression show improvements over those corresponding from the linear 

regression; (b) The adjusted R2 values in the nonlinear regression exceed the corresponding 

values under the linear regression, implying that a portion of variance in the housing price 

growth rates in the long-run associates with nonlinear dynamics; (c) Many estimates of the 

coefficients of the nonlinear portion of equation (5) (i.e., ρi’s), prove statistically significant; 

and (d) The speed of adjustment between regimes, γ, proves statistically positive at the 10-

percent level or better only for the US and the Northeast Census subregion. The statistical 

significance of γ confirms the presence of nonlinearity outlined by the LSTAR model. The 

estimate of γ, however, does not generally prove precise. Thus, its insignificance does not 

invalidate the nonlinearity, which we support by the formal tests in Table 2. 

These results together provide evidence that the LSTAR model appropriately captures 

the inherent non-linearity in the long-horizon housing-price growth rates in the US and the 

four Census subregions housing markets. Thus, a linear model would introduce 

misspecification, since it does not allow the dynamics of home price growth rates to evolve 

                                                                                                                                                       
LSTAR model. Our estimated LSTAR models for the US and its four Census subregions do not exhibit any 
misspecification.  
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smoothly between regimes depending on the sign and magnitude of past realization of home 

price growth rates.11  

Kim and Bhattacharya (2009) find that the ESTAR model provides the best in-sample 

fit over their sample period from 1969:1 to 2004:7. Our in-sample period effectively runs 

from 1969:1 to 2000:12, since we take the annual log difference in the house price. Our 

findings of the LSTAR model indicate that the behavior of the housing market differs 

between expansionary and contractionary regimes, whereas the ESTAR models indicate 

similar dynamics. 

Note that we estimate a relatively small γ for all the categories of housing price 

growth rates. Relatively small estimates of γ, given that the estimate varies from zero to 

infinity, suggest a slower transition from one regime to another, which, in turn, contrasts with 

the TAR or Markov-switching models that witness sudden switches between regimes. The 

parameter c, which equals the half-way point between regimes,12 is positive for the US and 

all four Census regions, although insignificantly so for the South, indicating that similar 

values of the housing price growth rate shock trigger a shift in regimes.  

5. Forecast Accuracy 

Given that we estimate the house price growth rates in the US and its four Census subregions 

using the LSTAR model, this section compares the point, interval, and density forecast 

performances of the non-linear model with those of the classical linear AR models.  

Point Forecasts  

                                                 

11
 The Ramsey model specification test provides further evidence of nonlinearity in the housing price growth 

rates of the US and the four Census subregions. We reject the null hypothesis for a linear AR model 
specification, against a nonlinear LSTAR model, at the 1-percent level of significance for all cases.  

12
 The parameter c denotes the value for which G(st; , c)=.5 at st=c. Therefore, the process switches 

monotonically towards Regime 1 as st increases. Thus, two regimes exhibit equal weights at the threshold value 
c and switching occurs exactly at c.  
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This subsection reports the out-of-sample point forecast evaluation results for the LSTAR 

and linear AR models for the US and the four Census subregions.13 The relative root mean 

squared forecast error (RMSFE) exceeds one for short horizons for the US and each Census 

subregion, indicating that the point forecasting performance of the linear AR dominates that 

of the LSTAR model at short horizons. At longer horizons, the LSTAR models’ performance 

improves. More specifically, the relative RMSFEs generally increase to the end of the 

forecast horizon at 48 months, except for the US, which reaches a peak earlier.  

We adopt the modified (M-DM) and modified weighted (MW-DM) Diebold and 

Mariano (1995) to test for significant differences in forecast performance. Our null 

hypothesis states that the MSFE or the weighted MSFE of the linear AR equals the respective 

values of the LSTAR model. The alternative hypothesis states that the MSFE or weighted 

MSFE of the linear AR model exceeds the respective values of the LSTAR model. The 

findings for the M-DM and MW-DM statistics parallel each other nicely. The LSTAR model 

provides significantly better point forecasts at the 10-percent level, generally at longer 

horizons. Overall, robust evidence exists that the LSTAR model offers forecasting gains at 

long horizons relative to simple linear AR models for the US and the four Census subregions 

– the Northeast, Midwest, South and West. No robust evidence exists that the LSTAR 

models offer forecasting gains at short horizons for the US or the four Census subregions. 

Comparison to Existing Results on Nonlinear Point Forecasting 

In the introduction, we listed two papers that consider nonlinear point forecasting within the 

housing market – Miles (2008) and Cabrero, Wang, and Yang (2011). Cabrero, Wang, and 

Yang (2011) forecast international securitized real estate returns. As such, this paper falls 

                                                 

13
 Tables for the results of point, interval, and density forecasts appear in a longer version of this paper. See 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2138980. 
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most closely into the forecasting of financial assets traded in organized markets. The Miles 

(2008) paper forecasts house prices in five US states – California, Florida, Massachusetts, 

Ohio, and Texas – and, thus, most directly relates to our paper. In their longest sample that 

runs only through 2005, their (GAR) models outperform linear models in states with high 

house-price volatility such as California, whereas linear models prove the best in states with 

low house-price volatility such as Ohio. 

Our findings at the Census region and national levels averages house prices across the 

states contained in the various regions. As a result, the aggregation will attenuate the 

volatility of house price movements in our sample. This may help to explain the differences 

in our findings. To wit, we find that linear models generally perform the best for shorter 

forecast horizons and nonlinear models sometimes perform the best for longer forecast 

horizons. Note that our paper considers a sample period that includes the financial crisis and 

Great Recession as well as interval and density forecast, to which we now turn.  

Interval Forecasts 

We evaluate interval forecasts for the LSTAR and linear AR models for lags 1, 2, 3, and 4 

months. Following Wallis (2003) and Rapach and Wohar (2006), we consider the inter-

quartile interval forecasts (i.e., the 0.25 and 0.75 quantiles). For both the LSTAR and linear 

AR models for the US, we reject correct unconditional coverage at all four reported horizons  

and we only reject correct conditional coverage at all four horizons for the linear AR model 

but only for the 1-, 2-, and 3-month horizons for the LSTAR model. In addition, we can 

reject independence only at the 1- and 3-month horizons for the linear AR model and at the 

3-month horizon for the LSTAR model.  
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The four Census regions tell different stories. The best performance occurs for the 

Northeast. Here, we cannot reject independence at any horizon except for the 3-month 

horizon for the LSTAR and linear AR models. Further, we reject correct unconditional 

coverage at the 1-, 2-, and 4- month horizons for the linear AR model and at the 1- and 2-

month horizons for the LSTAR model. Finally, we can reject the correct conditional 

coverage at the 1- and 3-month horizons for the linear AR and LSTAR models.  

The worst performances occur for the Midwest and the South. For the Midwest, we 

reject the correct unconditional and conditional coverage at all horizons for both the linear 

AR and LSTAR models. But, we cannot reject the independence at any horizon for the linear 

AR and LSTAR models, except for the LSTAR model at the 3-month horizon. The findings 

for the South match those for the Midwest, except that we cannot reject correct conditional 

coverage for the 4-month horizon for the LSTAR model and we cannot reject independence 

at any horizon. 

The West provides the most disparate set of findings from the rest. We can reject 

independence for the 1-. 3-, and 4-month horizons for the LSTAR model and only at the 1- 

and 3-month horizons for the linear AR model. We also cannot reject the correct 

unconditional coverage at any horizon for the AR and LSTAR models and the correct 

conditional coverage at the 4-month horizon for the linear AR model and at the 2-month 

horizon for the LSTAR model. 

In sum, we do not find strong evidence to support the LSTAR model specification 

over the linear AR specifications. In general, both models produce similar findings with 

regard to interval forecasts.  

Density Forecasts 
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We consider density forecast evaluation findings for the linear AR and LSTAR models for 

the US and the four Census subregions across lags of 1, 2, 3, and 4 months. The results differ 

across the US and its Census subregions, suggesting deficiencies exist in the density forecasts 

for both the linear AR and LSTAR models. We find limited evidence that the LSTAR model 

dominates the linear AR model in density forecasting, but only for the US as a whole. Almost 

no evidence exists supporting this conclusion at the Census region level. That is, the linear 

AR and LSTAR models produce similar forecasting performance. 

6. Comparing In-Sample Conditional Densities and Ex-ante Forecasts 

The forecast comparisons in the previous section show that nonlinear AR models only 

generate slightly better forecasts for some series in terms of interval and density forecasts and 

only generate better point forecasts at forecast horizons greater than 36 months. Diebold and 

Nason (1990) list several explanations for failure of nonlinear models to generate better 

forecasts than their linear counterparts, even though they fit the data better and formal 

statistical tests strongly reject linearity. They note that slight conditional mean nonlinearities 

may not produce differences until one uses a large number of observations. We examine why 

the LSTAR models do not produce notable superior forecasts, following the suggestion made 

by Pagan (2002) and Breunig et al. (2003), and evaluate the conditional expectations 

functions of fitted LSTAR and AR models for rt, given the regime switching variable rt-d. We 

will see how close the nonlinear and linear AR models are in terms of their conditional 

means, given rt-d. We can evaluate the conditional mean given any lagged value of rt. In our 

case, rt-d is a natural choice, since this delay best captures the nonlinearity. 

We can evaluate the conditional mean functions of the linear AR models straight 

from the fitted models. Pagan (2002) suggests that for nonlinear models, a large number of 
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simulations from the fitted model evaluate the conditional mean function and that a useful 

informal evaluation fits a nonlinear model and defines its forecasting performance on the 

conditional mean function, given a conditioning variable. In our case, this translates into 

evaluating E(rt rt-d ) against rt-d. Ordering the data according to the magnitude of the 

conditioning variable rt-d rather than time makes the comparison more sensible. To evaluate 

the conditional mean function of fitted LSTAR models, we generate 63,000 simulations from 

each model and discard first 3,000 to remove the burn-in effect. We draw the errors from the 

actual residuals of the fitted models rather than an assumed distribution.  

Figure 2 displays the conditional mean functions of linear (dashed line) and nonlinear 

(solid line) models given rt-d sorted according to the magnitude of rt-d. We superimpose a 

scatterplot of annual growth rate of house price rt against the switch variable rt-d of the 

estimated LSTAR model in the plots. We generate conditional expectation functions of the 

fitted LSTAR models by 60,000 bootstrap simulations of the fitted model and estimated 

using Nadaraya-Watson kernel regression. We choose the kernel regression bandwidth using 

the least-squares cross validation and a second-order Gaussian kernel. Figure 2 gives a good 

idea on why the LSTAR models do not generate superior forecasts. For the Midwest Census 

subregion, linear and nonlinear conditional mean functions are almost the same except for 

low values where a slight nonlinearity exists. This probably explains, indeed, the non-

rejection of linearity in Kim and Bhattacharya (2009) for this series. Only some slight 

deviation exists from the linearity for the US series and significant deviations in the negative 

growth rate region. The conditional mean function of the LSTAR model deviates noticeably 

from the linear conditional mean function in the center of the data only for the South and 
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West Census regions. Interestingly, highly noticeable nonlinearity exists for the Northeast 

Census subregion for growth rates higher than 10-percent.  

Although Figure 2 usefully compares the conditional mean functions, it does not give 

any information on the density (or strength) of the various regions in the plots. We gain more 

insight by considering the density of the conditional mean function and the switch variable. 

Figure 3 plots the kernel density estimate of the conditional mean function of the fitted 

LSTAR and the switch variable rt-d. We estimate the kernel densities from 60,000 bootstrap 

simulations of the fitted models using the Nadaraya-Watson kernel estimator. We choose the 

kernel regression bandwidth using the least-squares cross validation and a second order 

Gaussian kernel. The density plots in Figure 3 reveal that a highly dense region exists at the 

low growth rates for the Northeast, Midwest, and South Census subregions, as well as for the 

US series. The density at low values, where deviation from linearity is particularly prevalent, 

is high for South and Midwest. A strong peak exists, but dense in a narrow range, at the 

negative growth rate for Midwest. Actually, this dense range causes the rejection of linearity, 

otherwise the series behaves close to a linear process. For the West Census subregion, we see 

high density at extreme positive growth rates, which radically differs from the other series. 

For the US series, peaks exist in all regions where there are deviation from linearity, 

naturally expected as the US series aggregates all Census subregions.  

Combining the information from Figure 2 and 3, we clearly see why nonlinear AR 

models do not strongly dominate linear ones. Except for the South and West Census 

subregions, we observe the nonlinearity more in those periods where extremes house price 

changes occur. Also for the South and West Census subregions, nonlinearity exists around 

the center of the data as well, but these associate with less density than the extremes. Given 
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that nonlinearity dominates usually on the extremes and forecasts even from nonlinear but 

stationary models return to mean, nonlinear and linear models will produce similar forecasts. 

This will hold even though the nonlinear models fit and describe the data better. 

To compare the fitted AR and STAR models more formally, we follow Rapach and 

Wohar (2006) and employ the analysis of Corradi and Swanson (2003), who recently 

developed a formal test of nonlinear (STAR) and linear AR models. Their test provides a 

distributional analog of the mean squared error metric. This test permits the comparison of 

the conditional densities for rt given xt, where xt is the vector of lagged rt values, 

corresponding to two different fitted models (i.e., LSTAR and linear AR models), each of 

which may contain some misspecification. More specifically, we use the Corradi and 

Swanson (2003) ZT statistic to test the null hypothesis that the conditional densities 

corresponding to the fitted LSTAR and linear AR models generate equal accuracy relative to 

the true conditional density against the alternative hypothesis that the conditional density 

corresponding to the LSTAR model proves more accurate than the conditional density 

corresponding to the linear AR benchmark model. We compute the ZT statistic by integrating 

over a fine grid running from the minimum to the maximum values of the in-sample rt 

observations. A second test statistic, R–ZT, integrates over two grids of values comprising the 

first and fourth quartiles of the in-sample observations. Thus, in this latter case, we focus our 

comparison of the conditional distributions corresponding to the fitted LSTAR and linear AR 

models in the tails of the distributions of in-sample rt observations. For both tests, we 

generate bootstrapped critical values using 2,000 replicates with the block bootstrapping 

method. 
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Table 3 reports the Corradi and Swanson (2003) test results for the fitted LSTAR and 

its linear AR counterpart. Following Corradi and Swanson (2003), our inferences rely on 

block bootstrapped critical values. The ZT statistics reported in column 2 do not reject the 

null hypothesis of equal conditional density accuracy for the LSTAR models in the US or its 

four Census subregions relative to the AR benchmark models. This indicates that the 

conditional densities for rt given xt corresponding to the LSTAR models do not significantly 

differ in accuracy from the conditional densities corresponding to linear AR benchmark 

models. In addition, limiting our focus to the first and fourth quartiles, the R–ZT statistic 

rejects the null hypothesis for none of the series. In sum, the findings in Table 3 imply that 

fitted LSTAR models generally conform closely to fitted linear AR models. This conclusion 

matches nicely the fact that the typical point and density forecasts generated by the LSTAR 

models do not improve much on forecasts generated by linear AR models at short horizons 

(see Section 5 above). 

As a last exercise, we compare the forecasting performance of linear and nonlinear 

models in an ex-ante dynamic forecasting design. Although the data actually exist for the 

period that we consider, we use a dynamic forecasting design and do not utilize the actual 

data for forecasting. Figure 4 plots the 25-step dynamic point forecasts (dashed line) for rt 

from the estimated linear AR models for the period 2010:6 to 2012:6 and fan charts formed 

from 50- to 95-percent interval forecasts. We also plot (solid line) the actual data over 2009:5 

to 2012:6. Similarly, Figure 5 plots the forecasts from the LSTAR models. For the LSTAR 

models, we generate each point forecast by 2,000 parametric bootstrap and we use an 

additional 2,000 bootstrap simulations to obtain interval forecast for each time point. We 

calculate the interval forecasts using the highest density region estimator of Hyndman 
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(1996). For the point forecasts, the LSTAR models do better than the linear AR models for 

the West and Northeast Census subregions. Indeed, forecasts for these two regions are 

exceptionally good. The linear AR model generates poorer forecasts for the West region. For 

the US, Midwest, and South regions, the AR and LSTAR models generate forecasts that 

probably do not dominate each other. The LSTAR model certainly performs well for the US 

series until 2011:12, where an upward trend starts in house prices. For the interval forecasts, 

both linear AR and LSTAR models do offer good coverage of the actual data. The 95-percent 

confidence bands almost always cover the actual values. The LSTAR models, however, do in 

general show narrower interval forecasts, particularly for the Northeast and West regions. 

Notably, the linear and nonlinear AR models produce the worst forecasts for the Midwest. 

7. Conclusion 

A large number of recent papers show that a strong link exists between the housing market 

and economic activity. In addition, these papers also highlight that house-price movements 

lead real activity, inflation, or both. Given this, models that forecast house price movements 

can give policy makers insight as to the direction the economy might head and, hence, can 

improve the design of appropriate policies. Good policy requires that one first deduce the 

underlying nature of the data-generating process for house prices (i.e., whether linear or non-

linear), since presuming that house prices follow a linear process can lead to incorrect 

forecasts for not only house prices, but the economy, in general.  

This paper considers several issues. First, we test housing prices in the US and its 

four Census subregions to see if they conform to nonlinear or linear AR models. We estimate 

the models using monthly data over the 1968:1 to 2000:12 in-sample period, and forecasts 

over the 2001:1 to 2010:5 out-of-sample period. That analysis chooses the LSTAR model as 
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the best non-linear specification. In other words, the LSTAR model dominates the ESTAR 

model. 

Second, we compare the one- to 48-month-ahead out-of-sample forecasting 

performances of the LSTAR model with the linear AR model for point forecasts in the out-

of-sample period. We find that the linear and nonlinear models perform about the same at 

short horizons, but the non-linear model dominates at longer horizon.  

Third, both the linear AR and LSTAR models produce similar findings with regard to 

interval forecasts. The South region proves the major exception whereby we usually cannot 

reject conditional coverage for the LSTAR model, but do usually reject conditional coverage 

for the linear AR model. 

Fourth, we find limited evidence that the LSTAR model dominates the linear AR 

model in density forecasting, but only for the US as a whole. Almost no evidence exists 

supporting this conclusion at the Census subregion level. That is, the linear AR and LSTAR 

models produce similar forecasting performance. 

Finally, in an ex-ante dynamic 25-step dynamic forecasting design over 2010:6 to 

2012:6, we find that the LSTAR model dominates the linear AR model for the Northeast and 

West regions, as well as for the US. Although both the LSTAR and linear AR models 

generate interval forecasts with good coverage, the LSTAR models, in general, experience 

narrower confidence bands.14 

In sum, we conclude that when forecasting regional housing prices, generally the 

additional costs associated with nonlinear forecasts outweigh the benefits when forecasting 

only a few months into the future. That is, researchers do not sacrifice much forecast 

                                                 

14
 The ex ante forecast provides a case study of the difference between the linear AR and LSTAR models. The 

results may not generalize to other sample periods. 
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performance by adopting a linear model when, in fact, the data suggest a non-linear model. 

Our analysis examined the US and four Census subregions. Future research can examine the 

issues at a more disaggregated level -- states and metropolitan areas. 
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Table 1 LM-STR test for linearity 

 

 US  

(p*=15) 

Northwest 

(p*=14) 

Midwest 

(p*=17) 

South 

(p*=13) 

West  

(p*=14) 

 LM1: LM Test of H01
: 

2
0

i
   in equation (A1) with k=1 

d (p-value) 1 (0.041) 8 (0.023 3 (0.049) 2 (0.107) 3 (0.127) 

 LM2: LM Test of H01
 : 

2 3
0

i i
   in equation (A1) with k=2 

d (p-value) 4 (0.000) 5 (0.011) 8 (0.096) 1 (0.068) 1 (0.112) 

 LM3: LM Test of 
01

H  : 
2 3 4

0
i i i

      in equation (A1) with k=3 

d (p-value) 3 (0.001) 8 (0.014) 1 (0.151) 1 (0.004) 5 (0.184) 
 LM4: LM Test of 01

H  : 2 3 4 5
0

i i i i
        in equation (A1) with k=4 

d (p-value) 3 (0.001) 8 (0.001) 8 (0.161) 1 (0.010) 5 (0.020) 
Note: The delay parameter d is followed by the p-value in parentheses. p

*
 equals the lag order in the linear 

AR model selected by the AIC. 

 

 

Table 2 Test of the appropriate STAR model 

 

 US Northeast Midwest South West 

H04 : 4i = 0, 

i = 1,...,p 

1.137 
(0.322) 

0.993 
(0.460) 

1.142 
(0.313) 

0.946 
(0.505) 

0.861 
(0.602) 

H03 : 3i = 0, 

given  4i = 0 

1.397 
(0.147) 

 

0.479 
(0.943) 

0.608 
(0.885) 

0.956 
(0.495) 

1.242 
(0.243) 

H02 : 2i = 0, 

given  3i = 4i = 0 

1.579 

(0.077) 

 

1.475 

(0.118) 

1.658 

(0.049) 

1.085 

(0.371) 

1.453 

(0.127) 

H0E : 3i = 0, 

5i = 0 

1.272 
(0.161) 

 

1.171 

(0.256) 

1.089 
(0.344) 

1.235 
(0.203) 

0.976 
(0.504) 

H0L : 2i = 0, 

4i = 0 

1.329 

(0.123) 

 

0.997 
(0.473) 

1.118 

(0.307) 

1.369 

(0.112) 

1.199 

(0.230) 

Optimal delay d 3 8 1 1 5 

Optimal lag p 15 14 17 13 14 

Selection model LSTAR LSTAR LSTAR LSTAR LSTAR 

Note: The values in parentheses equal the p-values for the nested tests H04, H03, and H02; 
and the H0E and H0L tests. H0E and H0L equal the model selection tests 
recommended in Escribano and Jordá (1999) and obtained from equation (A1) with 
k=4 for the corresponding restrictions. Bold values indicate the lowest p-value for 
the nested and the H0E and H0L tests. The model selection reflects the nested H04, 
H03, and H02 tests. 
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Table 3 In-sample comparison of conditional densities corresponding to fitted 

STAR and linear AR models 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

  Block bootstrap 
TZ critical values  Block bootstrap 

TR Z critical 

values 

Segment 
TZ

a
 10% 5% 1% 

TR Z
b
 10% 5% 1% 

US 
0.0201 0.0364 0.0415 0.0502 0.0000 0.0001 0.0001 0.0002 

Northeast 
0.0319 0.0491 0.0547 0.0660 0.0085 0.0131 0.0160 0.0214 

Midwest 
0.0169 0.0272 0.0295 0.0344 0.0000 0.0000 0.0001 0.0001 

South 
0.0148 0.0198 0.0230 0.0301 0.0001 0.0001 0.0002 0.0003 

West 
0.0158 0.0325 0.0396 0.0631 0.0034 0.0085 0.0111 0.0246 

Notes: Bolded bootstrapped critical values indicate statistical significance for the test statistic at the corresponding 

significance level. Bootstrapped critical values are obtained using 2000 block bootstrap simulations.  
a
  The Corradi and Swanson (2003) test statistic for the null hypothesis that the conditional densities 

corresponding to the STAR and linear AR models give equal accuracy relative to the true conditiona l 
density against the alternative hypothesis that the conditional density corresponding to the STAR mode l 
proves more accurate than the conditional density corresponding to the linear AR model.  

b
  The Corradi and Swanson (2003) test statistic for the null hypothesis that the conditional densities 

corresponding to the STAR and linear AR models give equal accuracy relative to the true conditiona l 

density against the alternative hypothesis that the conditional density corresponding to the STAR mode l 
proves more accurate than the conditional density corresponding to the linear AR model for values of qt in 
the upper and lower quartiles of the in-sample observations. 

 

 
Figure 1. Median Home Price in US and the Four Regions, 1968:1–2012:6. The figure plots median home prices in dollars. 
All series are seasonally adjusted by the authors using X-12 filter. Source: National Association of Realtors. 
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Figure 2. Scatterplot of annual growth rate of home price rt and switch variable rt-d of the estimated STAR model. Dashed 
straight line is the conditional expectation function of the fitted linear AR(p). Solid line is the conditional expectation 

function of the fitted STAR model, which is obtained by 60,000 bootstrap simulations of the fitted model and estimated 
using Nadaraya-Watson kernel regression. The kernel regression bandwidth is chosen using the least-squares cross 
validation and a second order Gaussian kernel is used.  
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Figure 3. Kernel density estimate of the conditional expectation function of the fitted STAR and the switch variable 

rt-d. The conditional expectation function of the fitted STAR model and the kernel density are obtained by 60,000 
bootstrap simulations of the fitted model and estimated using Nadaraya-Watson kernel estimator. The kerne l 
regression bandwidth is chosen using the least-squares cross validation and a second order Gaussian kernel is used.  
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Figure 4. Point Forecast of the annual growth rate of home price rt from the estimated linear AR(p) models for the 
period 2010:6 to 2012:6 and 50 to 95 percent interval forecasts. Dashed lines show the dynamic 25-step forecasts and 

solid lines show the actual data over the 2009:5 to 2012:6. 
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Figure 5. Point Forecast of the annual growth rate of home price rt from the estimated nonlinear AR models for the 
period 2010:6 to 2012:6 and 50 to 95 percent interval forecasts. Dashed lines show the dynamic 25-step forecasts and 

solid lines show the actual data over the 2009:5 to 2012:6. Each point forecast is obtained by 2,000 bootstrap and an 
additional 2000 bootstrap simulations are used to obtain interval forecast for each time point. The interval forecasts 
are calculated using highest density region estimator of Hyndman (1996). 
 

 


