STRUCTURAL COMPLETENESS IN RELEVANCE LOGICS
J.G. RAFTERY AND K. SWIRYDOWICZ

ABSTRACT. It is proved that the relevance logic R (without sentential
constants) has no structurally complete consistent axiomatic extension,
except for classical propositional logic. In fact, no other such extension
is even passively structurally complete.

1. INTRODUCTION

For present purposes, a logic is a substitution-invariant finitary conse-
quence relation F over sentential formulas in an algebraic signature, cf.
[3, 7, 13]. Every such F is the deducibility relation g of a formal system
F comprising axioms and finite inference rules. Thus, F consists of rules of
derivation I'/a: and is not determined by its theorems alone. An extension
of g is a superset that is itself a logic in the same signature. It is an
aziomatic extension if it has the form Fg/, where F/ adds only axioms (not
inference rules) to F. We tend to use F and kg interchangeably below.

A logic  is structurally complete if each of its proper extensions has some
new theorem (as opposed to having nothing but new rules of derivation).
Equivalently, F is structurally complete if it contains all of its admissible
rules—these are the finite schematic rules under which its set of theorems
is closed. In this case,  has a high degree of self-sufficiency in relation to
its meta-theory. Much of the literature on admissibility and structural com-
pleteness deals with systems possessing the weakening axiom p — (¢ — p);
see [24] and the references in [6]. Here, however, we are concerned with the
family of relevance logics, where less is known about these features.

The relevance logic R of Anderson and Belnap is formulated without
sentential constants in [1], for the sake of a variable-sharing principle. Its
conservative expansion Rt incorporates the ‘Ackermann truth constant’ t,
and counts among the substructural logics of [15]. The adoption of t is
innocuous for most purposes, but it makes a considerable difference to the
lattice of axiomatic extensions and to questions of structural completeness.

For instance, classical propositional logic (CPL) is the largest consistent
extension of R, and t is definable in CPL as p — p, but R? has axiomatic
extensions incomparable with CPL. Moreover, infinitely many of these are
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structurally complete (see the first remark after Theorem 4). In contrast,
we prove here that R has no structurally complete consistent axiomatic
extension, other than CPL. Apart from highlighting the impact of t, this
complements negative results about neighbouring systems in [22, Sec. 8, 9],
whose own proofs break down in the context of R.

2. THE ALGEBRAS

A De Morgan monoid A = (A;-,—,A,V,—,t) comprises a distributive
lattice (A; A, V), a commutative monoid (A; -, t) satisfying x < = - x (where
< is the lattice order), a unary operation — on A satisfying ——z = = and

TY<Lrz = —z-y <7,

and a binary operation — on A satisfying x — y = —(x - —y). It follows
that < is compatible with -, that — is an anti-automorphism of (A; A, V),
and that A satisfies

(1) t<z < z -z <

see [1]. As - and — are inter-definable, either one could be eliminated. We
abbreviate (z — y) A (y — z) as z <> y.

The t—free subreducts of De Morgan monoids A (i.e., the subalgebras of
the reducts (A;-, —, A,V, 7)) are called relevant algebras.

De Morgan monoids and relevant algebras form varieties DM and RA,
respectively. A finite equational basis for RA is given in [14]; also see [12]
and [18, Cor.4.11]. A finitely generated relevant algebra A has a least and
a greatest element, which form a Boolean subalgebra [26, Prop. 5], and A
itself is a reduct—not merely a subreduct—of a De Morgan monoid. The
unique neutral element for - is the greatest lower bound of all @ — a, where
a ranges over any finite generating set for A; see for instance [22, Thm. 5.3].

For each subquasivariety K of DM, there is a logic FX with the same
signature, defined as follows: for any set I' U {a} of formulas, I' FX « iff
there exist 71, ...,7, € I' such that every algebra in K satisfies

t<mA ... Ny = t<oa
<

Because DM satisfies t < z «» y <= x = y, the logic FK is algebraizable
in the sense of [3], with K as its unique equivalent quasivariety. The map
K — K is a lattice anti-isomorphism from the subquasivarieties of DM to
the extensions of the relevance logic RY, carrying the subvarieties of DM
onto the axiomatic extensions. In particular, Rt is algebraized by DM (cf.
[9, 10] and Dunn’s contributions to [1]).

The logic R lacks the symbol t, but all claims in the previous paragraph
remain true when we replace Rt by R, and DM by RA, provided we use (1)
to eliminate all mention of t.

The following theorem, suggested by [2], is proved in [22, Sec. 7].
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Theorem 1. A logic algebraized by a variety K is structurally complete iff
every proper subquasivariety of K generates a proper subvariety of K.

As the 2—element Boolean algebra 2 embeds into every finitely gener-
ated nontrivial relevant algebra, the variety BA of Boolean algebras is the
smallest nontrivial subquasivariety of RA, i.e., CPL is the largest consistent
extension of R.

In [25], the second author showed that, in the lattice of axiomatic ex-
tensions of R, the unique co-atom CPL covers just three logics. This is
Theorem 2 below; it is the key to our main result, Theorem 4. Its statement
involves three simple relevant algebras A;, A, and S35 (the last being the
3—element Sugihara algebra). Their Hasse diagrams are as depicted.

1
1 1
-e
e -e e = e
€
0 0
0
Ay Ao S

In each case, a -0 = 0 for all elements a, while e is the (undistinguished)
neutral element for -; its image under — is indicated. In A; and As, we
have —e - —me = 1. Our notation makes — the same set-theoretic operation
on A as on Ay. The tables for — are as follows.

— ‘ 0 e —e 1
oj1 1 11
Ay and As: e|l0 e —e 1 S3
—e |0 O e 1
110 0 0 1

As usual, V(A) and Q(A) denote, respectively, the variety and the qua-
sivariety generated by a single algebra A.

Theorem 2. (Swirydowicz [25]) In the lattice of varieties of relevant alge-
bras, the covers of BA are just V(A1), V(Az2) and V(S3).

In other words, for each axiomatic extension of R, strictly weaker than
CPL, there exists B € { A1, Aa, S3} such that the theorems of the extension
all take values > e on any interpretation of their variables in B.

The following well-known result will be needed below; a stronger state-
ment is proved in [8, Lem. 1.5].

Lemma 3. For any algebra C, each subdirectly irreducible member of Q(C)
can be embedded into an ultrapower of C.
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3. STRUCTURAL INCOMPLETENESS

Meyer and Dunn [20] proved that the disjunctive syllogism p, =pV q/q
is admissible in R. It does not belong to Fgr (take p = e and ¢ = 0 in A4
or S3). Therefore, R is not structurally complete. We can now show that
the same applies to almost all axiomatic extensions of R.

Theorem 4. No consistent axiomatic extension of R is structurally com-
plete, except for CPL.

Proof. Let K be a variety of relevant algebras, including some non-Boolean
algebras. Then K = V(A), where A is a free Np—generated algebra in K. By
Theorem 2, K includes an algebra B that is one of A, As, S3. Of course,
2e€K,s0C := AxBx2 e K. Because V(C) is closed under homomorphic
images, A € V(C'), whence K = V(C).

We claim that K # Q(C'). This will follow if B ¢ Q(C). As B is simple, it
suffices, by Lemma 3, to show that B can’t be embedded into an ultrapower
of C. But B is a finite algebra of finite type, so the attribute of lacking a
subalgebra isomorphic to B is first order definable. Thus, by Los’ Theorem
[4, Thm.V.2.9], B won’t embed into an ultrapower of C unless it embeds
into C itself. To see that B can’t be embedded into C), it suffices to find an
existential first order sentence that holds in B and fails in C. Let ® be the
existential positive sentence

Jx(x—ax=z & —o— <)

(where a < B abbreviates a A S = «). Then @ is true in B, since e can serve
as x in all three possible cases. But, like any positive sentence, ® persists
under homomorphisms, so it fails in C, because it clearly fails in 2.

This vindicates the claim that Q(C) # K = V(C). Thus, Q(C) is a
proper subquasivariety of K which fails to generate a proper subvariety of
K. That completes the proof, in view of Theorem 1. O

Three remarks are in order:

First, as we mentioned in the introduction, the situation for R is entirely
different. One reason is that the simple De Morgan monoid (S, €) has no 2—
element subalgebra (unlike S3). In fact, (S, ) generates a variety excluding
2, which is minimal as a quasivariety [22, Footnote 8, p.489]. Moreover, the
logic algebraized by V((S3,e)) contains infinitely many structurally com-
plete axiomatic extensions of Rt. Indeed, in the subvariety lattice of DM,
the nontrivial varieties of odd Sugihara monoids (i.e., De Morgan monoids
satisfying x - x = x and t = —t) form a chain of order type w + 1, ascending
from V((Ss,e)). And the corresponding logics are structurally complete,
by Theorem 1, because every quasivariety of odd Sugihara monoids is a
variety—see for instance Theorem 7.3, Fact 7.6 and page 2190 of [16] (or
stronger results in [21, 17]).
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Secondly, the word ‘axiomatic’ cannot be dropped in Theorem 4. Indeed,
every logic has a unique structurally complete extension with the same set of
theorems [19]. (It is obtained by treating admissible rules as new inference
rules.) In the case of R, this extension is strictly weaker than CPL, as CPL
has more theorems than R.

Thirdly, an admissible rule 71, ...,7v,/a of a logic I is said to be passive
if no substitution turns all of 7y, ..., , into theorems of F. If - contains all
of its passive admissible rules, it is said to be passively structurally complete
[5, 11], or overflow complete. The following characterization is essentially
due to Wroniski [27]. For wvarieties K, its forward implication is implicit in
Bergman [2]. (These two papers eschew explicit connections with logic, but
a generalization of Theorem 5 is proved in [23, Sec. 7].)

Theorem 5. A logic algebraized by a quasivariety K is passively structurally
complete iff each existential positive sentence in the first order language of
K holds either in all members of K or in no nontrivial member of K.

In the proof of Theorem 4, we saw that ® holds in B € K but not in 2 € K,
so a stronger conclusion can be extracted:

Theorem 6. No consistent aziomatic extension of R is passively struc-
turally complete, except for CPL.

In fact, for K as in the proof,

p,p—@—=p), (-p—=p) —-D/q

is a passive admissible rule of FX, not belonging to FX. For the transition
from @ to this rule, see [27] or the proof of Theorem 7.3 (<) in [23].
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