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1 Introduction

Over the past few decades, a large class of policies for control of vacation queues

has been discussed in the literature, viz., single and multiple vacation policies

(Doshi 1986), N-policy (Yadin and Naor 1963), T-policy (Heyman 1977), NT-policy

(Doganata 1990), D-policy (Balachandran 1973) and F-policy (Gupta 1995). The

discrete-time queue with NT-policy was first studied by Alfa and Frigui (1996). In

such a vacation queueing system, the idle server will be reactivated when either

N customers have accumulated in the queue, or the waiting time of the leading

customer has reached T time slots. After the server’s vacation is interrupted, the

busy period starts and it lasts until the queue becomes empty. This process continues

so that the server is in either on or off state. As Alfa and Frigui pointed out, unlike

previous works such as done by Gakis et al. (1995), Hur et al. (2003), Tadj (2003),

Ke (2005), Jiang et al. (2010) and Zhang et al. (2011), the threshold T is measured

from the epoch of arrival of the first customer who enters the system during the

server vacation. By imposing a time limit T on the accumulation waiting time, the

NT-policy avoids that customers suffer excessive delays because the server waits to

initiate service until enough customers have arrived. Recently, using the probability

generating function technique, Feyaerts et al. (2010) also studied the NT-policy in a

discrete-time queueing system with independent Bernoulli arrivals and deterministic

service times. By means of numerical examples, they illustrated that the NT-policy

achieves better customer delay performance than the N-policy in case of a low rate

arrival stream. Due to the significant advantage that mentioned above, this sort of

queue has received a great deal of attention in recent literature (see Ke 2006a, b;

Feyaerts et al. 2014), and from the practical point of view, this type of control

policy can be utilized in the area of communication, manufacturing, and

transportation systems to minimize the running costs while keeping a high level

of customer satisfaction. For example, in a courier service it is desirable that a truck

serving a particular origin-destination pair should carry more than one package on a

trip. Thus, if the number of packages is less than N, the truck will wait until the Nth

package arrives. On the other hand, in order to maintain good customer service,

courier company does not want to keep package delayed too long. Hence, after the

waiting time of the leading package has reached T time units, the truck will depart

even if there is less than N packages. Clearly, according to the characteristics of

termination mechanism of idle period, we may see that such phenomenon arising in

courier companies can be well approximated by NT-policy queue. In addition,

another important issue we are concerned about is that how to get an optimal control

strategy to realize economical operation of the service facility. Thus, with the cost

structure being constructed, Alfa and Li (2000) and Li and Alfa (2000) further

studied the optimal NT-policy for both M/G/1 and M/M/m queues. Based on the

renewal reward theory (see Ross 1996), they obtained the optimal policy for

minimizing the long-run average operating cost per unit time.
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As one can see from above, existing research results on NT-policy queue are

limited to infinite-buffer system, even though queues with finite-buffers commonly

encountered in industrial practice. Especially, as far as we are aware the analysis

results concerning the discrete-time finite-buffer NT-policy queue which can be

used to find the optimal control strategies do not exist until now. Thus, based on the

work done by Alfa and Frigui (1996), we will concentrate on solving the

performance measures related to the optimal control strategies in this paper.

Specifically, our main contributions are as follows: first, a simpler UL-type RG-

factorization is applied to provide effective solutions for the block-structured

Markov chains. Then, the mean number of customers in the system and the blocking

probability of an arbitrary customer can be easily obtained. Second, we develop a

first step analysis for the study of the busy period. The explicit expression and the

stochastic decomposition structure of the busy period are also given by using some

tips and tricks for algebraic manipulations. These topics have not been addressed

sufficiently in the existing literature. Actually, analyzing the finite-buffer NT-policy

queue gives some obvious advantages. The most one is that taking the limit as

buffer capacity K approaches infinity allows us to get the result of the corresponding

infinite-buffer system. Moreover, in the case of finite-buffer queue, we can analyze

the unstable system, that is to say, the average arrival rate is higher than the average

service rate. But at the same time, it should also be noted that since the number of

customers served in the busy period does not have the structure of a Galton-Watson

branching process, the regeneration cycle analysis for the finite-buffer queue is

much more complex than the infinite-buffer counterpart. Therefore, getting the

optimal threshold values for the Geo/Geo/1/K queue with NT-policy will be a

challenging task. It requires some analytic and technical efforts. As a highlight of

our study, a concise method for analysis of the regeneration cycle is presented. With

a probabilistic argument and some simple algebraic manipulations, we easily obtain

the expected length of the regeneration cycle. Therefore, the major obstacle that will

encounter in this study can be successfully overcome.

According to the work done by Heyman (1977), the expectation of the queue

length and the mean value of the regeneration cycle are essential for establishing the

long-run average operating cost function per unit time. Thus, the rest of this paper is

organized as follows. By stating the requisite assumptions and notations, the

mathematical model is described in Sect. 2. Section 3 is dedicated to the calculation

of the stationary distribution. The Geo/Geo/1/K queue with NT-policy is analyzed as

a block-structured Markov chain with finite levels. A simpler UL-type RG-

factorization is presented to provide effective solutions for the block-structured

Markov chains. Furthermore, employing the extended definition of the busy period

that might be initiated by multiple customers, the regeneration cycle of this model is

analyzed in Sect. 4. In Sect. 5, a long-run expected cost function per unit time for

the (N, T)-policy queue is constructed to determine the joint optimum threshold
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values. Numerical example is also presented for illustrative purposes. Finally, we

conclude with a brief summary in Sect. 6.

2 Queueing model description

In this paper, we consider a discrete-time single-server queueing system with finite

storage capacity under the NT-policy. In the discrete-time situation, the time axis is

divided into fixed-length contiguous period, called slots, and all queueing activities

occur around slot boundaries. To be more specific, we suppose that potential

departures occur in the time interval ðt�; tÞ, while potential arrivals and the

beginning or ending of the vacation take place in the time interval ðt; tþÞ (see

Fig. 1). This also means that the queue is analyzed for the early arrival system

(EAS).

The NT-policy queue is assumed to operate as follows. Inter-arrival times

Ai; i� 1f g are independent identically distributed random variables, and follow a

geometric distribution: Pr Ai ¼ jf g ¼ k�kj�1; 0\k\1; j� 1, where we use symbol

�x ¼ 1� x, for any real number xð0\x\1Þ. The service times of the customers,

denoted by S, are independent and geometrically distributed with parameter l,
where l is the probability that a customer finishes his service in a time slot. The

server starts service when a first customer arrives in an empty system and either one

of the following happens:

(i) If the time elapsed since the first arrival during the vacation period reaches

the predefined threshold T, the server will return to the system to begin

service immediately (see Fig. 2a);

(ii) If N customers have accumulated in the queue before the timer expires, the

vacation will be interrupted and the server immediately resumes the queue

service (see Fig. 2b).

Departure Departure

Arrival

t t t (t   1) 1t (    1)t

Departure epoch:

Arrival

Arrival epoch: Beginning or ending of the vacation:

Fig. 1 Various time epochs in early arrival system
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Under the NT-policy, the server’s status alternates between working and non-

working states. Thus, a nonworking period followed by a working period together

constitutes a regeneration cycle. Here, non-working period contains an accumula-

tion process, denoted by YNT . The length of YNT is measured from the instant a first

customer arrives to an empty queue to the time when the server is reactivated again.

In Sect. 4, for establishing the long-run average operating cost function, we will use

the concept of i-busy period (see Pacheco and Ribeiro 2008) to derive the mean

value of the regeneration cycle.

Furthermore, we note that for N ¼ 1, the system becomes a traditional work-

conserving queue, without any threshold. If on the other hand T\N, only the time

threshold T is relevant since it takes at least N time slots to accumulate N customers

in the queue. Thus, as for this case, the service facility would only implement a

T-policy. In this paper, we focus our attention on situations where both thresholds

actually contribute to the scheduling discipline, i.e. we assume 1\N � T\K in

model analysis.

1
2
3
4
5
6N

0

non-working period

1 2 6A working period
t

A A
T

NTY

the number of customers

1
2
3
4
5
6N

0

non-working period
1A T working period

t

the number of customers

NTY

...

a

b

Fig. 2 Two possible evolution courses of the system content for an NT-policy queue with N ¼ 6 and
T ¼ 9
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3 Steady-state queue length distribution

From Fig. 2, we observe that the operation of the system exhibits a cyclic behavior.

When a first customer arrives in an empty queue, the system commences an

accumulation process until at least one of the thresholds is reached. If we record the

waiting time of the first customer in the accumulation process, the system

formulated in Sect. 2 can be considered as a discrete-time Markov chain (DTMC).

Thus, the state of the system at time tþ is described by the following random

variables:

• X(t): The waiting time of the first customer at time tþ during the accumulation

process;

• Q(t): The number of customers in the system at time tþ (including the one being

served, if any).

Consider

X0 ¼ XðtÞ ¼ i;QðtÞ ¼ jð Þji ¼ 0; j ¼ 0; 1f g;
X1 ¼ XðtÞ ¼ i;QðtÞ ¼ jð Þji ¼ 1; 2; . . .; T � 1; j ¼ 1; . . .;min iþ 1;N � 1ð Þf g;
X2 ¼ QðtÞ ¼ jð Þjj ¼ 1; 2; . . .;Kf g;

where (0, 0) denotes the state with no customers in the queue and the server is on

vacation, (0, 1) denotes the state with one customer in the queue and his elapsed

waiting time is zero. Each state (i, j) of X1 represents that the server is idle, there are

j customers in the queue and the first customer has been waiting i time units.

Therefore, the state space of the NT-policy queue is given by X, where

X ¼ X0

S
X1

S
X2. Here, to give the reader a good intuitive understanding, we

enumerate the states in the following order with assumption that N ¼ 5; T ¼ 9 and

K ¼ 12,

X ¼ lð0Þ; lð1Þ; lð2Þ; . . .; lð8Þ; 1; 2; . . .; 11; 12f g:

For the sake of notational convenience, we use the symbol l(i) to denote the union of

min iþ 1;N � 1ð Þ states, namely

lðiÞ ¼ ði; 1Þ; ði; 2Þ; . . .; i;min iþ 1;N � 1ð Þð Þf g; i ¼ 1; 2; . . .; T � 1;

and l(0) represents a collection of states (0, 0) and (0, 1). Furthermore, we may find

that the transition probability matrix P of this queueing system can be written as a

partitioned matrix corresponding to the transitions among these above states, and

exhibits the following block-structured form

P ¼
PV ;V PV ;W

PW ;V PW;W

� �

;
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where

P V,V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l(0) l(1) l(2) · · · l(N − 2) l(N − 1) · · · l(T − 1)

l(0)
(
H1
01×2

) (
01×2
H1

)
02×3 · · · 02×(N−1) 02×(N−1) · · · 02×(N−1)

l(1) 02×2 02×2 H2 · · · 02×(N−1) 02×(N−1) · · · 02×(N−1)

...
...

...
...

. . .
...

...
. . .

...
l(N−3) 0(N−2)×2 0(N−2)×2 0(N−2)×3 · · · HN−2 0(N−2)×(N−1) · · · 0(N−2)×(N−1)

l(N−2) 0(N−1)×2 0(N−1)×2 0(N−1)×3 · · · 0(N−1)×(N−1) HN−1 · · · 0(N−1)×(N−1)

...
...

...
...

. . .
...

...
. . .

...
l(T−2) 0(N−1)×2 0(N−1)×2 0(N−1)×3 · · · 0(N−1)×(N−1) 0(N−1)×(N−1) · · · HT−1

l(T−1) 0(N−1)×2 0(N−1)×2 0(N−1)×3 · · · 0(N−1)×(N−1) 0(N−1)×(N−1) · · · 0(N−1)×(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P V,W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 · · · N−1 N N + 1 · · · K−1 K

l(0) 02×1 02×1 02×1 · · · 02×1 02×1 02×1 · · · 02×1 02×1
l(1) 02×1 02×1 02×1 · · · 02×1 02×1 02×1 · · · 02×1 02×1
l(2) 03×1 03×1 03×1 · · · 03×1 03×1 03×1 · · · 03×1 03×1

...
...

...
... · · ·

...
...

... · · ·
...

...
l(N−3) 0(N−2)×1 0(N−2)×1 0(N−2)×1 · · · 0(N−2)×1 0(N−2)×1 0(N−2)×1 · · · 0(N−2)×1 0(N−2)×1

l(N−2) 0(N−1)×1 0(N−1)×1 0(N−1)×1 · · · 0(N−1)×1 C 0(N−1)×1 · · · 0(N−1)×1 0(N−1)×1

...
...

...
... · · ·

...
...

... · · ·
...

...
l(T−2) 0(N−1)×1 0(N−1)×1 0(N−1)×1 · · · 0(N−1)×1 C 0(N−1)×1 · · · 0(N−1)×1 0(N−1)×1

l(T−1) D1 D2 D3 · · · DN−1 C 0(N−1)×1 · · · 0(N−1)×1 0(N−1)×1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

PW,V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

l(0) l(1) l(2) · · · l(N−3) l(N−2) l(N−1) · · · l(T−1)
1 μλ̄ 0

)
01×2 01×3 · · · 01×(N−2) 01×(N−1) 01×(N−1) · · · 01×(N−1)

2 01×2 01×2 01×3 · · · 01×(N−2) 01×(N−1) 01×(N−1) · · · 01×(N−1)
3 01×2 01×2 01×3 · · · 01×(N−2) 01×(N−1) 01×(N−1) · · · 01×(N−1)
...

...
...

... · · ·
...

...
... · · ·

...
K − 1 01×2 01×2 01×3 · · · 01×(N−2) 01×(N−1) 01×(N−1) · · · 01×(N−1)
K 01×2 01×2 01×3 · · · 01×(N−2) 01×(N−1) 01×(N−1) · · · 01×(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

PW,W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 · · · K−2 K−1 K

1 μλ+μ̄λ̄ μ̄λ 0 0 · · · 0 0 0
2 μλ̄ μλ+μ̄λ̄ μ̄λ 0 · · · 0 0 0
3 0 μλ̄ μλ+μ̄λ̄ μ̄λ · · · 0 0 0
4 0 0 μλ̄ μλ+μ̄λ̄ · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

K−2 0 0 0 0 · · · μλ+μ̄λ̄ μ̄λ 0
K−1 0 0 0 0 · · · μλ̄ μλ+μ̄λ̄ μ̄λ
K 0 0 0 0 · · · 0 μλ̄ μλ+μ̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

in which 0m�n denotes a zero matrix of size m� n. The block matrices appearing in

PV ;V and PV ;W are given as follows:

For i ¼ 1; 2; . . .;N � 2,
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Hi ¼

�k k 0 0 � � � 0

0 �k k 0 � � � 0

..

. ..
. . .

. . .
. ..

. ..
.

0 0 � � � �k k 0

0 0 � � � 0 �k k

0

B
B
B
B
B
@

1

C
C
C
C
C
A
, and Hi has dimensions i� ðiþ 1Þ;

For i ¼ N � 1; . . .; T � 1,

Hi ¼ H ¼

�k k 0 � � � 0

0 �k k � � � 0

..

. ..
. . .

. . .
. ..

.

0 0 0 �k k
0 0 0 0 �k

0

B
B
B
B
B
@

1

C
C
C
C
C
A
, and H is of dimension ðN � 1Þ � ðN � 1Þ;

For i ¼ 1; 2; . . .;N � 1,

Di ¼
�ke1N�1; i ¼ 1

kei�1
N�1 þ �keiN�1; i ¼ 2; . . .;N � 1

�

with eij being a j-dimensional unit

column vector whose ith component is 1 and the rest of the components are 0;

Finally, C is a column vector of order N � 1 and it has the form given by

C ¼ 0ðN�2Þ�1

k

� �

:

Since the above DTMC is a finite irreducible regular Markov chain, then for any

choice of the system parameters there exists stationary probabilities of the system

states which are defined as below:

p0;j ¼ lim
t!1

Pr XðtÞ¼ 0;QðtÞ¼ jf g; j¼ 0;1;

pi;j ¼ lim
t!1

Pr XðtÞ¼ i;QðtÞ¼ jf g; i¼ 1;2; . . .;T�1; j¼ 1; . . .;minðiþ1;N�1Þ;

p̂j ¼ lim
t!1

Pr QðtÞ¼ jf g; j¼ 1;2; . . .;K:

Let us enumerate probabilities p0;j and pi;jði¼ 1;2; . . .;T�1Þ in the lexicographic

order and form row vectors p0 and pi, namely p0 ¼ p0;0;p0;1
� �

and

pi ¼ pi;1;pi;2; . . .;pi;minðiþ1;N�1Þ
� �

. It is well known that the vector p¼
p0;p1;p2; . . .;pT�1; p̂1; p̂2; . . .; p̂Kð Þ is the unique solution to the following system of

linear algebraic equations:

p0; p1; p2; . . .; pT�1; p̂1; p̂2; . . .; p̂Kð Þ P� IKð Þ ¼ 01�K;

p0; p1; p2; . . .; pT�1; p̂1; p̂2; . . .; p̂Kð ÞeK ¼ 1;

�

ð1Þ

where K ¼ 2þ ðNþ1ÞðN�2Þ
2

þ ðN � 1ÞðT � N þ 1Þ þ K; Im stands for an identity

matrix of dimension m, and em is a column vector of dimension m consisting of 1’s.

In case the vector p has small dimension, the finite linear system (1) with the matrix

P� IK can be solved numerically directly. However, the direct solving is time and

resource consuming and hence can only be used for the low dimensional system. In
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order to efficiently solve the above system of linear algebraic equations, we use the

UL-type RG-factorization, given in Li (2010), to find the solution of Eq. (1). The

major advantage of RG-factorization is that it can avoid the calculation of high

dimensional matrices by decomposing them into small ones. Due to the special

block structure of this DTMC, it is clear to see that employing the censoring

technique, we can derive a simpler expression for the UL-type RG-factorization of

matrix P� IK. Such RG-factorization has not been reported in the existing literature

and it is very useful to study the discrete-time NT-policy queue. Here, the UL-type

RG-factorization of matrix P� IK is given by

P� IK ¼ IK � RUð Þdiag U0;U1; . . .;UT�1; Û1; Û2; . . .; ÛK

� �
IK � GLð Þ; ð2Þ

where

IK�RU ¼
I2 �R0;1

I2 �R1;2

I3
. .
.

. .
. . .

.

IN�2 �RN�3;N�2

IN�1
. .
.

� eRN�2;1 � eRN�2;2 � � � � eRN�2;N�1 � eRN�2;N

. .
. . .

. ..
. ..

.
� � � ..

. ..
.

IN�1 �RT�2;T�1 � eRT�2;1 � eRT�2;2 � � � � eRT�2;N�1 � eRT�2;N

IN�1 � eRT�1;1 � eRT�1;2 � � � � eRT�1;N�1 � eRT�1;N

I1 � R̂1;2

I1
. .
.

. .
. . .

.

I1 � R̂N�1;N

I1 � R̂N;Nþ1

I1
. .
.

. .
. . .

.

I1 � R̂K�1;K

I1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

and

IK�GL¼

I2

�G1;0 I2

�G2;0 I3

..

. . .
.

�GN�3;0 IN�2

�GN�2;0 IN�1

..

. . .
.

�GT�1;0 IN�1

� �G1;0 I1

Ĝ2;1 I1

. .
. . .

.

. .
.

I1

ĜK�1;K�2 I1

ĜK;K�1 I1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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Compare the right-hand side of Eq. (2) and matrix P�IK, we may find that the

matrices Ui;Ûi;Ĝi;i�1; �G1;0;Gi;0;R̂i;iþ1; eRi;N ; eRT�1;j; eRi;j and Ri;iþ1 can be calculated

through the following backward recursion:

ÛK ¼ lkþ �lð Þ � I1; ĜK;K�1 ¼ �Û�1
K l�k
� �

; R̂K;K�1 ¼ � �lkð ÞÛ�1
K ;

Ûi ¼ lkþ �l�k
� �

� I1 � R̂i;iþ1Ûiþ1Ĝiþ1;i; i ¼ 1; 2; . . .;K � 1;

Ui ¼ �Imin iþ1;N�1ð Þ; i ¼ 1; 2; . . .; T � 1;

U0 ¼
H1

01�2

� �

� I2 � R0;1U1G1;0;

Ĝi;i�1 ¼ �Û�1
i l�k
� �

; i ¼ 2; 3; . . .;K � 1; �G1;0 ¼ �Û�1
1 l�k 0
� �

;

GT�1;0 ¼ U�1
T�1

~RT�1;1Û1
�G1;0

� �
;

Gi;0 ¼ U�1
i Ri;iþ1Uiþ1Giþ1;0 þ ~Ri;1Û1

�G1;0

� �
; i ¼ 1; 2; . . .; T � 2;

R̂i;iþ1 ¼ � �lkð ÞÛ�1
iþ1; i ¼ 1; 2; . . .;K � 2;

eRi;N ¼ �CÛ�1
N ; i ¼ N � 2;N � 1; . . .; T � 1;

eRT�1;j ¼ ~RT�1;jþ1Ûjþ1Ĝjþ1;j � Dj

� �
Û�1

j ; j ¼ 1; 2; . . .;N � 1;

eRi;j ¼ ~Ri;jþ1Ûjþ1Ĝjþ1;j

� �
Û�1

j ; i ¼ N � 2;N � 1; . . .; T � 2; j ¼ 1; 2; . . .;N � 1;

Ri;iþ1 ¼ �Hiþ1U
�1
iþ1; i ¼ 1; 2; . . .; T � 2; R0;1 ¼ �

01�2

H1

� �

U�1
1 :

Refer to the Subsection 2.6.3 of Li (2010), the stationary probability vectors of the

DTMC are given by

p0 ¼ sx0;

pi ¼ pi�1Ri�1;i; i ¼ 1; 2; . . .; T � 1;

p̂1 ¼
PT�1

j¼N�2

pj ~Rj;1;

p̂i ¼
PT�1

j¼N�2

pj ~Rj;i þ p̂i�1R̂i�1;i; i ¼ 2; 3; . . .;N;

p̂i ¼ p̂i�1R̂i�1;i; i ¼ N þ 1; . . .;K � 1;K;

8
>>>>>>>>>>><

>>>>>>>>>>>:

where x0 is the stationary probability vector of the censored Markov chain U0 to

level 0 and the scalar s is uniquely determined by p0e2 þ
PT�1

i¼1

piemin iþ1;N�1ð Þ þ
PK

i¼1 p̂i ¼ 1. Once the stationary probability vectors are calcu-

lated, some important performance measures will be given in terms of pi and p̂i.
Here, we demonstrate several main performance characteristics of the system to

bring out the qualitative aspects of the model under study. These are listed below

along with their formulas for computation.

10



• The mean number of customers in the system:

E LNT½ � ¼ p0;1 þ
XN�1

j¼1

XT�1

i¼max j�1;1ð Þ
jpie

j

min N�1;iþ1ð Þ þ
XK

j¼1

jp̂j:

• The blocking probability of an arbitrary customer: Pblock ¼ p̂K .

• The mean sojourn time in the system: Ws ¼ E LNT½ �
kð1�PblockÞ.

• The probability that the server is idle: Pidle ¼ p0e2 þ
PT�1

i¼1 piemin N�1;iþ1ð Þ.

• The probability that the server is busy: Pbusy ¼
PK

i¼1 p̂i.

4 Expected length of a regeneration cycle

For evaluating the long-run average cost per unit time, we also need to derive the

expected interval of a regeneration cycle. In the present model, a regeneration cycle

consists of an idle period and a busy period. When all the customers in the system

are served and there are no customers waiting in the queue, an idle period starts. It

stops when the server becomes reactivated either because of situation (i) or (ii) as

described in Sect. 2. Let INT be the length of the idle period. Denote INTðzÞ by the

probability generating function (PGF) of INT . According to the model assumptions,

we can show that

INTðzÞ ¼E zINT
� �

¼ E zA1þYNT
� �

¼ E zA1
� �

E zYNT1 PN

i¼2

Ai � T

� 	

2

6
6
4

3

7
7
5þ E zYNT1 PN

i¼2

Ai [T

� 	

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A

¼E zA1
� �

E z

PN

i¼2

Ai

2

4

3

5 Pr
XN

i¼2

Ai � T

( )

þ E zT
� �

Pr
XN

i¼2

Ai [ T

( )0

@

1

A

¼E zA1
� � XT

n¼N�1

E zn½ � Pr
XN

i¼2

Ai ¼ n

( )

þ E zT
� �

1� Pr
XN

i¼2

Ai � T

( )!" #

¼ kz

1� �kz

XT

n¼N�1

znaHn�1H0 þ zT 1� aHN�2 IN�1 �Hð Þ�1 IN�1 �HT�Nþ2
� �

H0

h i
!

;

where 1 Cf g is an indicator function such that 1 Cf g ¼

1; if event C occurs

0; if event C does not occur

�

; a ¼ ð1; 0; . . .; 0
|fflfflffl{zfflfflffl}

N�2

Þ;H0 ¼ ð0; . . .; 0
|fflfflffl{zfflfflffl}

N�2

; kÞ> and the

superscript ‘>’ denotes the transpose of a matrix or a vector. From the PGF of INT
we obtain
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E INT½ � ¼ 1

k
þ
XT

n¼N�1

naHn�1H0 þ T 1� aHN�2 IN�1 �Hð Þ�1 IN�1 �HT�Nþ2
� �

H0

h i
:

ð3Þ

As for the NT-policy queue, the busy period BNT is defined to be the time elapsed

from the server’s return to the system until the queue becomes empty again and the

next vacation begins. Because the server’s busy period might be initiated by one or

more customers in such system, deriving the expected length of busy period should

be implemented by means of the analysis of the busy period that starts with i

customers, namely the so-called i-busy period Bi, where the subscript i represents

the number of arrivals during the vacation time. Actually, the expected length of i-

busy period is only related to the following three factors: (1) customer arrival rate

and service rate, (2) the number of customers initially present at the queue, (3)

buffer capacity, and it has nothing to do with the service control policy. Hence, for

solving E Bi½ �, we first consider the Geo/Geo/1/K queue without NT-policy. Let

BiðzÞ; i ¼ 1; 2; . . .;K denote the PGF of the i-busy period. By employing first-step

analysis and the memoryless property of geometric distribution we can get the

equations governing the dynamic of the generating functions BiðzÞ:

BiðzÞ ¼E zBi
� �

¼ E zBi1 Aiþ1\Sf g
� �

þ E zBi1 Aiþ1¼Sf g
� �

þ E zBi1 Aiþ1 [ Sf g
� �

¼E zmin Aiþ1;Sð Þ
h i

E zBiþ1
� � k�l

1� �k�l
þ E zBi

� � kl

1� �k�l
þ E zBi�1

� � �kl

1� �k�l

� �

¼
1� �k�l
� �

z

1� �k�lz
Biþ1ðzÞ

k�l

1� �k�l
þ BiðzÞ

kl

1� �k�l
þ Bi�1ðzÞ

�kl

1� �k�l

� �

¼ z

1� �k�lz
Biþ1ðzÞk�lþ BiðzÞklþ Bi�1ðzÞ�kl
� �

; i ¼ 1; 2; . . .;K � 1; ð4Þ

BKðzÞ ¼E zBK
� �

¼ E zBK1 AKþ1 � Sf g
� �

þ E zBK�11 AKþ1 [ Sf g
� �

¼E zmin AKþ1;Sð Þ
h i

E zBK
� � k

1� �k�l
þ E zBK�1

� � �kl

1� �k�l

� �

¼
1� �k�l
� �

z

1� �k�lz
BKðzÞ

k

1� �k�l
þ BK�1ðzÞ

�kl

1� �k�l

� �

¼ z

1� �k�lz
BKðzÞkþ BK�1ðzÞ�kl
� �

: ð5Þ

Here, for mathematical convenience, the busy period initiated by 0 customer is

defined to be of zero length. Thus, in Eq. (4), when i ¼ 1, B0ðzÞ ¼ E zB0½ � ¼ 1.

Indeed, differentiating both sides of Eqs. (4) and (5) with respect to z and setting

z ¼ 1 yields the following Eq. (6).

12



E B1½ �
�klþ k�l

1� �k�l
þ E B2½ � �k�l

1� �k�l
¼ 1

1� �k�l
;

E Bi�1½ � ��kl

1� �k�l
þ E Bi½ �

�klþ k�l

1� �k�l
þ E Biþ1½ � �k�l

1� �k�l
¼ 1

1� �k�l
; i ¼ 2; 3; . . .;K � 1;

E BK�1½ � ��kl

1� �k�l
þ E BK½ �

�kl

1� �k�l
¼ 1

1� �k�l
:

8
>>>>>>>><

>>>>>>>>:

ð6Þ

It can be verified that Eq. (6) can be expressed in matrix form as

M E B1½ �;E B2½ �; . . .;E BK½ �ð Þ>¼ 1

1� �k�l
eK ; ð7Þ

in which

M ¼

�klþ k�l

1� �k�l

�k�l

1� �k�l
0 � � � 0 0

��kl

1� �k�l

�klþ k�l

1� �k�l

�k�l

1� �k�l
� � � 0 0

0
��kl

1� �k�l

�klþ k�l

1� �k�l
� � � 0 0

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � �
�klþ k�l

1� �k�l

�k�l

1� �k�l

0 0 0 � � � ��kl

1� �k�l

�kl

1� �k�l

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

K�K

:

Using Cramer’s rule and performing some appropriate elementary column(row)

transformations on matrices M and M1, the expected length of the busy period that

starts with one customer is explicitly given as

E B1½ � ¼ detðM1Þ
detðMÞ ¼ 1

�kl

XK

r¼1

qr�1 ¼ 1� qK

l� k
;

whereM1 is derived from the matrixM by replacing the first column with the vector
1

1��k�l
eK , and q ¼ k�l

�kl
. Once E B1½ � is obtained, the explicit expression for the expected

length of i-busy period (i ¼ 2; 3; . . .;K) can be determined by the following way.

Since E B0½ � ¼ 0, rearranging the terms in Eq. (6), we can arrive at

k�l

1� �k�l
E Biþ1½ � �E Bi½ �ð Þ ¼ � 1

1� �k�l
þ

�kl

1� �k�l
E Bi½ � �E Bi�1½ �ð Þ; i¼ 1; . . .;K � 1:

ð8Þ

Let Ui ¼ E Biþ1½ � �E Bi½ �; i¼ 0;1; . . .;K � 1, the above Eq. (8) can be rewritten as

Ui ¼ � 1

k�l
þ 1

q
Ui�1; i ¼ 1; . . .;K � 1: ð9Þ
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Because U0 ¼ E B1½ �, we can iteratively obtain the following expression for Ui from

Eq. (9),

Ui ¼
�1

k�l

Xi

r¼1

1

qr�1
þ U0

qi
¼ �1

k�l

Xi

r¼1

1

qr�1
þ E B1½ �

qi
; i ¼ 1; 2; . . .;K � 1: ð10Þ

Substituting E B1½ � ¼ 1
�kl

PK
r¼1 q

r�1 into Eq. (10) leads to

Ui ¼
1
�kl

1� qK�i

1� q
; i ¼ 1; 2; . . .;K � 1:

Thus, a simple iteration formula based on initial value E B1½ � can be expressed as

E Biþ1½ � ¼ E Bi½ � þ 1
�kl

1� qK�i

1� q
; i ¼ 1; 2; . . .;K � 1: ð11Þ

From Eq. (11), the explicit expression of E Bi½ �ði ¼ 2; 3; . . .;KÞ is given by

E Bi½ � ¼ 1

l� k
i� qK�iþ1 1� qið Þ

1� q

� �

: ð12Þ

Then, let us consider the number of waiting customers when the server is activated,

which is denoted by J. From the NT-policy characteristics, the probability mass

function of J is given as follows

Pr J ¼ lf g ¼

T
l�1

� �
kl�1�kT�lþ1; l ¼ 1; 2; . . .;N � 1;

kN�1 PT�1

r¼N�2

r
N�2

� �
�kr�Nþ2 ¼ aHN�2 IN�1 �Hð Þ�1 IN�1 �HT�Nþ2

� �
H0; l ¼ N:

8
><

>:

Using the law of total expectation, we have

E½BNT� ¼
XN

i¼1

E½Bi� Pr J ¼ if g

¼
XN�1

i¼1

T

i� 1

� �

ki�1�kT�iþ1 1

l� k
i� qK�iþ1 1� qið Þ

1� q

� �� 	

þ aHN�2 IN�1 �Hð Þ�1 IN�1 �HT�Nþ2
� �

H0

1

l� k
N � qK�Nþ1 1� qNð Þ

1� q

� �� 	

¼ 1� qK

l� k
þ 1

l� k
Tk�

XT

i¼N�1

i
T

i

� �

ki�kT�i

" #

þ
aHN�2 IN�1 �Hð Þ�1 IN�1 �HT�Nþ2

� �
H0

l� k
N � 1� qK 1� qN�1ð Þ

qN�1 1� qð Þ

� �

� 1

l� k

XN�1

i¼1

T

i� 1

� �

ki�1�kT�iþ1 q
K 1� qi�1ð Þ
qi�1 1� qð Þ :

ð13Þ
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It is worth noting that 1�qK

l�k is the expected length of the busy period of the standard

Geo/Geo/1/K system. Therefore, Eq. (13) has demonstrated the stochastic decom-

position structure of the busy period in Geo/Geo/1/K queue with NT-policy.

Define a regeneration cycle as the time elapsed between two consecutive epochs

at which the system becomes empty. Let E½BC� be the expected regeneration cycle.

Then, from Eqs. (3) and (13) we have that E BC½ � ¼ E½BNT � þ E½INT �. Just because
the explicit expressions of E½BNT � and E½INT � are slightly cumbersome to write, we

do not indent to substitute E½BNT � and E½INT � into the above formula. In addition, it is

particularly worth mentioning that there is an effective way to validate the

correctness of the theoretical results presented above. If the analysis about the

regeneration cycle is correct, then the following equality must hold:

Pidle ¼ p0e2 þ
XT�1

i¼1

piemin N�1;iþ1ð Þ ¼
E BNT½ �
E BC½ � : ð14Þ

For the case with N ¼ 5; T ¼ 9;K ¼ 12; l ¼ 0:24 and k ¼ 0:21, by numerical

computation, we find that the above equality is indeed true, namely

p0e2 þ
X8

i¼1

piemin 4;iþ1ð Þ ¼
E BNT½ �
E BC½ � ¼ 0:14500653194623:

So, Eq. (14) often acts as an internal check on our results, which is very useful in

debugging numerical programs and checking accuracy for computations.

Remark 1 We note that several interesting queueing systems can be viewed as

special cases of this model.

Case 1. As T ! 1, the current model can be reduced to the ordinary Geo/Geo/1/

K queue with N policy. Thus, the regeneration cycle E B
N�policy
C

h i
can be easily

obtained from Eq. (12)

E B
N�policy
C

h i
¼ N

k
þ 1

l� k
N � qK�Nþ1 1� qNð Þ

1� q

� �

:

Case 2. If we put N ¼ 1, hence the Geo/Geo/1/K queue with NT-policy reduces

to the Geo/Geo/1/K queue with simple threshold T-policy. Thus, utilizing Eq. (12),

the regeneration cycle E B
T�policy
C

h i
can be derived as follows

E B
T�policy
C

h i
¼ 1

k
þ T

� �

þ 1� qK

l� k
þ Tk
l� k

� 1

l� k

XT

i¼1

T

i

� �

ki�kT�i 1� qi

qið1� qÞ :
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5 The jointly optimal threshold (N*, T*) for the average cost criterion

The research motivation for the NT-policy queue comes from the operating cost

consideration. To maintain the normal operation of the system, human resources

salary, power consumption costs, etc. are paid when the server is available and are

not charged when the server is unavailable. These costs may be interpreted as the

additional cost incurred by reopening the service facility. It provides an incentive

for turning off the server when no customer presents in the queue. On the other

hand, when the customers are viewed as machines or taxis waiting for repair, each

time unit they spend in the queue or in service represents lost operating time. One

way to model this effect is to create for each customer a holding cost that is an

increasing function of the mean queue length. This holding cost provides an

incentive for turning on the server before there are too many customers waiting in

line. In this section, we will find the values of N and T which produce the optimal

stationary NT-policy such that the expected operating cost of the system is

minimized. We assume that a start-up cost of cs is incurred each time the server is

turned on and that a linear holding cost of ch per unit time is incurred for each

customer present in the system. Furthermore, since the buffer capacity of this

system is finite, the overflowing customers will be rejected from the system, which

will directly result in revenue loss. Hence, a fixed cost cl for every lost customer

when the system is blocked should be taken into account in the cost structure. Thus,

the long-run average operating cost per unit time under NT-policy with buffer

capacity K can be written as

TC N; Tð Þ ¼ chE LNT½ � þ cs
1

E Bc½ � þ clPblockk: ð15Þ

Substitution of E LNT½ �;Pblock and E Bc½ � into Eq. (15), the cost function TC(N, T) is

too complicated to be shown here. However, the good feature about finding the

optimal policy is that both decision parameters N and T are in a finite value range

with the relation 1\N� T\K. Based on the above facts, the direct-search algo-

rithm can be used to find the optimal joint solution ðN�; T�Þ so as to minimize the

cost function. If we write the computer program in Matlab software, the compu-

tational time is acceptable for reasonable K values (B50). For example, when

K ¼ 40, it takes reasonable amount of time on a personal computer having Intel

Core i5 processor at 2.6 GHz with 4 GB DDR3 RAM, and this simple direct-search

algorithm over finite space is terminated after achieving a global optimum.

To demonstrate the tractability of the suggested method, we perform the

numerical experiment by considering the following system and cost parameters:

K ¼ 21;l ¼ 0:7; k ¼ 0:35; ch ¼ 10; cs ¼ 1000; cl ¼ 10;000, and vary the threshold

value N from 3 to T � 1, and T ranges from 6 to 21. A 3D trajectory of the unit time

operating cost is shown in Fig. 3. As can be seen in Fig. 3, it convinces us that the

unit time cost function is convex, and minimum expected cost per unit time of

61.0119 can be obtained at the optimal solution ðN�; T�Þ ¼ ð6; 18Þ.
Furthermore, to examine the effects of different parameters on the optimum joint

threshold N� and T�, a numerical illustration of sensitivity analysis based on
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changes in specific values of system parameters is also conducted in the following

different cost cases:

Case 1: cs ¼ 1200; ch ¼ 10 and cl ¼ 1000;

Case 2: cs ¼ 1000; ch ¼ 20 and cl ¼ 1000;

Case 3: cs ¼ 1000; ch ¼ 10 and cl ¼ 10;000,
where we fix the system capacity as K ¼ 60, vary T from 6 to 60, and vary N

from 3 to T � 1. The joint optimum threshold values and the minimum long-run

average operating cost for the above three cost cases are summarized in Table 1 for

various values of ðk; lÞ. All the calculations have been done on the Matlab software

package and all the dates are reported here in four decimal places. From Table 1, we

observe that (i) N� and T� seem very sensitive to the changes of ch, but they are not

significantly affected by the changes of cl; (ii) Table 1 further indicates that

TCðN�; T�Þ increases evidently with the increase of ch. Moreover, the effect of
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Fig. 3 A 3D trajectory of the long-run average operating cost per unit time under (N, T)-policy

Table 1 The joint optimum

threshold values ðN�;T�Þ and its

long-run average operating cost

TCðN�; T�Þ for different values
of k and l

ðk; lÞ (0.4, 0.7) (0.5, 0.8) (0.6, 0.9)

Case 1:

ðN�;T�Þ (6, 42) (7, 32) (7, 26)

TCðN�;T�Þ 67.2857 70.4762 72.2857

Case 2:

ðN�;T�Þ (4, 38) (4, 25) (5, 20)

TCðN�;T�Þ 88.8571 93.5417 96.0000

Case 3:

ðN�;T�Þ (6, 41) (6, 32) (6, 25)

TCðN�;T�Þ 61.5714 64.5833 66.3333

17



changes of cs on the long-run average operating cost are less significant than ch; (iii)

The higher the ratio of k and l is, the larger the value of TCðN�; T�Þ is. Since the

main purpose of this paper is to describe how to solve the performance measures

related to the long-run average operating cost, numerical tests are not very wide

enough to draw useful information regarding the characteristics of TC(N, T). But we

believe that the system and cost parameters may play important roles in deciding the

shape of TC(N, T). That is to say, TC(N, T) is not always a convex function for any

choice of system and cost parameters.

6 Conclusions

In this study, steady-state analysis results have been presented for a controllable

discrete-time finite-buffer queue in which the server applies a bicriterion NT-policy

during his vacation time. We take some more efficient approaches to get these

stationary results. On the one hand, based on the algorithmic method proposed by Li

(2010), a simpler UL-type RG-factorization has been employed to find the

distribution of the queue length at an arbitrary epoch. On the other hand, in order to

develop an optimal management policy for the system, the expected length of the

regeneration cycle is investigated by using an extended definition of the busy period

that might be initiated with multiple customers. Furthermore, through some

nonroutine algebraic manipulations, the explicit closed form of the busy period for

finite-buffer NT-policy queue is firstly reported, and the existence of the stochastic

decomposition property of the busy period is also demonstrated. It may be remarked

here that the techniques for busy period analysis adopted in our paper can be used to

analyze other complex queueing models such as the finite-buffer minðN;VÞ- or

(N, p)-policy queue with single and multiple vacations (see Wu et al. (2014) and

Feinberg and Kim (1996)). These are possible extensions and suggested directions

for our future research.

Acknowledgments The authors would like to thank the anonymous reviewers for their valuable

comments and suggestions to improve the quality of this paper. This research was partially supported by

grant from NSERC DAS programs, National Natural Science Foundation of China (Nos. 71301111,

71171138, 71402072) and the FSUSE (No.2012RC23).

References

Alfa AS, Frigui I (1996) Discrete NT-policy single server queue with Markovian arrival process and

phase type service. Eur J Oper Res 88:599–613

Alfa AS, Li W (2000) Optimal (N, T)-policy for M/G/1 system with cost structures. Perform Eval

42:265–277

Balachandran KR (1973) Control policies for a single server system. Manag Sci 19:1013–1018

Doganata YN (1990) NT-vacation policy for M/G/1 queue with starter. In: Arikan E (ed) Communication,

control, and signal processing. Elsevier Science Publishers, Amsterdam, pp 1663–1669

Doshi BT (1986) Queueing systems with vacations-A survey. Queueing Syst 1:29–66

Feyaerts B, Vuyst SD, Wittevrongel S, Bruneel H (2010) Analysis of a discrete-time queueing system

with an NT-policy. Lect Notes Comput 6148:29–43

18



Feyaerts B, Vuyst SD, Bruneel H, Wittevrongel S (2014) The impact of the NT-policy on the behaviour

of a discrete-time queue with general service times. J Ind Manag Optim 10:131–149

Feinberg EA, Kim DJ (1996) Bicriterion optimization of an M/G/1 queue with a removable server.

Probab Eng Inf Sci 10:57–73

Gakis KG, Rhee HK, Sivazlian BD (1995) Distributions and first moments of the busy and idle periods in

controllable M/G/1 queueing models with simple and dyadic policies. Stoch Anal Appl 13:47–81

Gupta SM (1995) Interrelationship between controlling arrival and service in queueing systems. Comput

Oper Res 22:1005–1014

Heyman DP (1977) T-policy for the M/G/1 queue. Manag Sci 23:775–778

Hur S, Kim J, Kang C (2003) An analysis of the M/G/1 system with N and T policy. Appl Math Model

27:665–675

Jiang FC, Huang DC, Yang CT, Lin CH, Wang KH (2010) Design strategy for optimizing power

consumption of sensor node with Min(N, T) policy M/G/1 queuing models. Int J Commun Syst

25:652–671

Ke JC (2005) Modified T vacation policy for an M/G/1 queueing system with an un-reliable server and

startup. Math Comput Model 41:1267–1277

Ke JC (2006a) On M/G/1 system under NT policies with breakdowns, startup and closedown. Appl Math

Model 30:49–66

Ke JC (2006b) Optimal NT policies for M/G/1 system with a startup and unreliable server. Comput Ind

Eng 50:248–262

Li QL (2010) Constructive computation in stochastic models with applications: the RG-factorizations.

Springer, New York

Li W, Alfa AS (2000) Optimal policies for M/M/m queue with two different kinds of (N, T)-policies.

Naval Res Logist 47:240–258

Pacheco A, Ribeiro H (2008) Moments of the duration of busy periods of M X /G/1/n systems. Probab

Eng Inf Sci 22:347–354

Ross SM (1996) Stochastic processes, 2nd edn. Wiley, New York

Tadj L (2003) On an M/G/1 quorum queueing system under T-policy. J Oper Res Soc 54:466–471

Wu WQ, Tang YH, Yu MM (2014) Analysis of an M/G/1 queue with multiple vacations, N-policy,

unreliable service station and repair facility failures. Int J Supply Oper Manag 1:1–19

Yadin M, Naor P (1963) Queueing systems with a removable service station. Oper Res Q 14:393–405

Zhang ZG, Tadj L, Bounkhel M (2011) Cost evaluation in M/G/1 queue with T-policy revisited, technical

note. Eur J Oper Res 214:814–817

19


	Some analysis results associated with the optimization problem for a discrete-time finite-buffer NT-policy queue
	Abstract
	Introduction
	Queueing model description
	Steady-state queue length distribution
	Expected length of a regeneration cycle
	The jointly optimal threshold (N*, T*) for the average cost criterion
	Conclusions
	Acknowledgments
	References




