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This paper examines the causal relationship between economic policy uncertainty (EPU) and equity market 

uncertainty (EMU) in the US using linear and nonlinear Granger causality tests. We use daily data on the newly 

developed indexes by Baker et al. (2013a) covering 1985:01:01 to 2013:06:14. Results from the linear causality tests 

indicate strong bidirectional causality. We test for parameters stability, and find strong evidence of short run 

parameter instability, thus invalidating any conclusion from the full sample linear estimations. Therefore we turn to 

nonlinear tests. Using Hiemstra and Jones (1994), Diks and Panchenko (2006), and Kyrtsou and Labys (2006) 

symmetric test, we observe a stronger predictive power from EMU to EPU than from EPU to EMU. Using the 
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asymmetric version of Kyrtsou and Labys (2006) test, we find no evidence of positive predictive power from EPU to 

EMU. However, we find strong evidence of positive predictive power from EMU to EPU and only weak evidence of 

negative EPU causing EMU. Performing the causality test using the Sato et al. (2007) time-varying method, we find 

that the causality between EPU and EMU is not constant over time but rather time-varying. Hence, we implement a 

sub-sample bootstrap rolling window causality tests to fully account for the existence of structural breaks. Using the 

intensity plots of the p-values from this, we find evidence that EPU can help predict the movements in EMU only 

around 1993, 2004 and, 2006. However, we find strong evidence that EMU can help predict the movements in EPU 

throughout the sample period barring around 1998, 2003 and 2005. Further, the analysis of total effects based on the 

bootstrap sum of coefficients suggests a positive and stronger causal effect from EMU to EPU but smaller and 

insignificant causality from EPU to EMU.  The implications of these findings for both investors and policy makers 

are provided. 

Keywords: Economic policy uncertainty, Equity market uncertainty, Granger causality 
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I. Introduction 

The inability of government to change existing policies frequently may likely delay investment decisions by 

economic agents such as firms and investors. The resulting policy-related economic uncertainty, referred to as 

economic policy uncertainty, may affect the entire economy for instance through loss of outputs and jobs, 

stimulation of equity market uncertainty and slow economic recovery after a recession. Over the past thirty years, a 

number of researches have focused on the effect of economic policy uncertainty on macroeconomic variables: 

economic growth, inflation, investment and employment (Bernanke 1983 Rodrik 1991; Aizenman and Marion 1993; 

Ali 2001; Hermes and Lensink 2001; Bloom et al. 2007; Bloom 2009; Bachmann et al. 2013; Baum et al. 2010; 

Jones and Olson 2013; Bhagat et al. 2013; Colombo 2013 among others). The general consensus is that policy 

uncertainty has a negative effect on economic growth and investment but a less clear-cut effect on inflation. 

However, the recent global financial crisis with accompanying volatility in the equity market has kindled a protracted 

and high-profile debate over the role of key economic policies. This has primarily surrounded the European debt 

crisis and the US fiscal cliff and debt ceiling concerns, but also includes debate over such other policies as healthcare 

and financial services regulation (Fishman et al. 2012). It is believed that the recent increasing focus on economic 

policy uncertainty undoubtedly suggests the role it plays in economic growth and equity volatility market (Fishman 

et al. 2012).  

Further, many investors argue that recent equity volatility levels are as much about policy as economics and 

corporate earnings. According to Li et al. (forthcoming), “stock markets usually move swiftly and sharply in 

response to policy changes. Tax cuts, monetary easing or financial deregulation would send the stock markets 

soaring. On the contrary, quantitative easing withdrawal would send the stock markets crashing.” However, Li et al. 

(forthcoming) noted that the extent to which the stock market would be impacted on by policy changes (whether 

good or bad) depends on the certainty about such policy changes. Hence, economic policies with increased certainty 

often release definite signals that stimulate positive investment reactions while economic policies with increased 

uncertainty always cast a huge shadow of doubts that stall the investment decisions. Taylor (2010) and Hoshi (2011) 

suggest that high policy uncertainty in relation to the resolution of large bankrupt financial institutions has worsened 

or prolonged the recent financial crisis in the U.S. Although, a common explanation for the disappointment in the US 

economic performance over the past five years is an increase in policy uncertainty, Hatzius et al. (2012) argued that 

the economy’s poor performance has been caused by an exogenous increase in US policy uncertainty.  
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This study intends to contribute towards the study of the effects of economic policy uncertainty, focusing on 

its effect on the US equity market performance. Specifically, we examine the causal link between two interesting 

new indexes, the US economic policy uncertainty index and the equity market uncertainty index developed by Baker 

et al. (2012, 2013a). We consider both the direction and magnitude of the causal and reverse causal effects. The 

choice for the US is justified because it is the only country with these indexes.  A number of studies have 

investigated the relationship between economic policy uncertainty and equity market uncertainty or volatility.1  This 

is particularly so since Baker et al. (2012, 2013a) constructed the respective two new indexes. For instance, Gregory 

and Rangel (2012) find a strong positive correlation between the US economic policy uncertainty and the level of 

S&P 500 variance (equity volatility) across different maturities. Using their own estimate of the market’s implied 

earnings growth and the economic policy uncertainty index, Mezrich and Ishikawa (2013) find that the current US 

economic policy uncertainty index is far higher than before 2007, and that  implied long-term earnings growth in 

equities could be pushed down to around 0.2 percent due to substantial existence of economic policy uncertainty.  

Baker et al. (2013b) also observed that the greater frequency (40 percent) of the US policy-driven equity market 

jumps is triggered by higher economic policy uncertainty.  

Antonakakis et al. (2013) examine the time-varying correlations between the US stock market returns (and 

volatility)  and policy uncertainty, and find that increased stock market volatility increases policy uncertainty and 

dampens stock markets returns while increases in the volatility of policy uncertainty lead to negative stock market 

returns and increased uncertainty. Pástor and Veronesi (2012; 2013) also show that the uncertainty about government 

policy increases stock volatility and risk premia, especially in a weak economy. Lam and Zhang (2014) use the 

economic policy uncertainty index of Baker et al. (2013a) and find that it has little explanatory power for 

international equity returns. Alternatively, they construct two new measures of global policy uncertainty based on the 

ratings from international country risk guide, which captures the potential policy shock from government changes 

and the bureaucratic ability to reduce policy shocks, and find that both factors significantly affect equity returns in 49 

countries from 1995 to 2006. 

Majority of these studies consider the relationship between the two series simply using correlation analysis 

or visual plots. Further, none of the studies account for structural break which is evident in the data. More 

importantly is the complete absence of studies examining the causality between the two newly developed indexes. 

                                                           
1 We do not provide literatures on the relationship between economic policy uncertainty index and equity market returns. However, interested 

readers may consult Li et al., 2013 for a review.  
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Existence of a correlation or relationship may neither imply causality nor can reverse causality be inferred.  

Therefore, this study fills these gaps by considering the causal link between these two series. We confront the data 

with a wide range of causality tests. First we consider different versions of the linear Granger causality tests. Results 

from full-sample causality tests may be misleading if structural changes exists.  Therefore,  we perform parameter 

stability tests on the estimated full sample VAR. Subsequently, we test for causality using nonlinear methods of 

Hiemstra and Jones (1994), Diks and Panchenko (2006), and Kyrtsou and Labys (2006), Sato et al. (2007) time-

varying causality and Balcilar et al. (2010) sub-sample rolling window bootstrap causality tests. This paper makes 

contribution to the existing literature. Firstly, it is the first study to the best of our knowledge to investigate the causal 

link between Baker et al. (2013a) economic policy uncertainty and equity market uncertainty indexes.  Secondly, it 

takes potential structural breaks into account by using nonlinear and time varying causality methods instead of 

limiting the analysis to full-sample data that assumes that single causality holds in every time period.  

Majority of the studies reviewed above implicitly assume that policy uncertainty is exogenous and hence 

attempt to find the effect of policy uncertainty on equity market uncertainty. However, policy uncertainty is likely to 

be endogenous to other factors that affect equity market uncertainty. For instance, policy uncertainty has been found 

to be higher during elections and hence financial and economic variables also tend to change more during these 

periods (Rodrik 1991; Bernhard and Leblang 2006; Bialkowski et al. 2008; Boutchkova et al. 2012; Julio and Yook, 

2013). Moreover, the Baker et al. (2013a) economic policy uncertainty index spikes upward around US presidential 

elections (Figure 1). Other exogenous influences include debates over the stimulus package, the debt ceiling dispute, 

wars and financial crashes (Gulen and Ion 2013). This means that political decisions and other economic news may 

affect existing policies or introduction of new ones, hence providing some exogenous variation in policy risk over 

time.  This potential endogeneity has implications for statistical analysis and result interpretations based on 

correlations and regressions that do not isolate the impact of policy uncertainty on economic activity from 

confounding variables, i.e separating first moment shocks from second moment shocks. This might lead to a case of 

omitted variable bias which arises if increases in policy uncertainty tend to occur at the same time as increases in 

national election or other economic news. To address this endogeneity concerns, some studies have found proxies as 

instrumental variables for policy uncertainty while others have included several other variables that capture 

expectations about future economic conditions (Gulen and Ion 2013; Julio and Yook 2013; Wang et al. 2014). 

Therefore, in order not to fall prey of ignoring the endogeneity of policy uncertainty, this study analyses both causal 
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and reverse causal effects, testing whether causality runs from policy uncertainty to economic market uncertainty as 

well as whether causality runs from the latter to the former.  

The rest of the paper is organized as follows: the data and preliminary analysis is represented in section 2. 

Section 3 presents the empirical models and results. Section 4 concludes. 

 

II. Data and preliminary analysis 

To examine the causality between economic policy uncertainty (EPU) and equity market uncertainty (EMU) in the 

United States, this study obtain daily EPU and EMU indexes from the Economic Policy Uncertainty Index website 

(http://www.policyuncertainty.com), newly introduced by Baker et al. (2013a). The data covers the 1985:01:01 to 

2013:06:14 period. The end-point is pragmatic and was the final data point available at the time of writing. To 

measure policy-related economic uncertainty for the US, Baker et al. (2013a) construct an index from three 

underlying components, namely, newspaper coverage of policy-related economic uncertainty,  the number and 

projected revenue effects of federal tax code provisions set to expire in future years and disagreement among 

economic forecasters about policy relevant variables as a proxy for EPU. To measure equity market uncertainty, 

Baker et al. (2013a) construct a news-based index which is based on the count of articles that reference ‘economy’ or 

‘economic’, and ‘uncertain’ or ‘uncertainty” and one of ‘stock price’, ‘equity price’, or ‘stock market’ in 10 major 

U.S. newspapers, scaled by the number of articles in each month and paper. This news-based equity index is highly 

corrected with the widely used market-based equity volatility index (VIX) (Baker et al. 2013a). All the original data 

is processed by taking natural logarithms, to correct for potential heteroscedasticity and dimensional difference 

between series. 

Figure 1a shows the plot of the original series. The scale on the left axis pertains to the policy uncertainty 

index while the scale on the right axis pertains to the equity market uncertainty. We also present the log transformed 

series in Figure 1b. Although, the two series exhibit high volatility as expected, they look quite stationary. The 

figures show EPU and EMU jumps corresponding to several prominent events, and much elevated levels of policy 

uncertainty since the 2007-09 recession. In particular, there are spikes associated with 1987 and 1998 stock market 

crashes, tight presidential elections, wars, 2001 September 11 attacks, contentious budget battles, and major policy 

decisions and battles during and after the recent global recession. Overall, there seems to be some co-movement 
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between the series. 2 To examine whether there is lead-lag relationship between EPU and EMU, we plot the 

corresponding 365-day moving average as shown in Figures 1c and 1d. From this figures there is no apparent way to 

decipher which variable is leading which. Figures may be used to make inferences about the lead-lag relationship; 

however they cannot provide a scientific proof of causality. Research in general is often based on scientific evidence. 

Hence, there is need for formal causality test. This study therefore proceeds with formal causality testing using 

various approaches as stated earlier. 

[INSERT FIGURE 1] 

Prior to investigating Granger causality, we test for the stationarity of the data using the using the Z  unit 

root test of Phillips (1987) and Philips and Perron (1988) (PP), Augmented Dickey Fuller (ADF) test and MZ  test 

of Ng and Perron (NP) (2001)3. We conduct the test with two specifications:  intercept only and both trend and 

intercept.  The results show that the two series (EPU and EMU) are I(0), meaning they are stationary. Hence, for 

subsequent analysis, we use the series in their natural logs.  

 

[INSERT TABLE 1] 

 

III. Empirical procedures and results 

Following the above preliminaries the study now proceeds with the investigation of the causal connection between 

equity market uncertainty (EMU) and economic policy uncertainty (EPU) in the US . The null hypothesis is Granger 

non-causality between the two series. Granger non-causality occurs when the information set on the first variable 

(e.g., equity market uncertainty (EMU)) does not improve the prediction of the second variable (e.g., economic 

policy uncertainty (EPU)) over and above the predictive capacity of the information in the second variable. The two 

null hypotheses at stake are (a) that EPU does not Granger cause EMU and (b) that EMU does not Granger cause 

EPU. We use both linear and non-linear models for testing causality. This is because the linear test is only sensitive 

to causality in the conditional mean and may not be sufficient to detect nonlinear effects on the conditional 

distribution (Baek and Brock 1992). Hiemstra and Jones (1994) also noted that traditional linear Granger causality 

                                                           
2 We find a positive but low correlation (0.26) between EPU and EMU. Correlation simply shows whether there is a positive or negative 

association or comovement between two series, without showing which series leads the other, Moreover, any evidence of correlation may be due 

to other confounding factors. Therefore correlations are not sufficient to make causal inferences. 
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test have low power in detecting certain kinds of nonlinear relations. Higher order structure, such as conditional 

heretoskedasticity, is also often ignored (Diks and Panchenko 2005, 2006). In view of this, nonparametric 

approaches are appealing because they place direct emphasis on prediction without imposing a certain functional 

form. 

First we use the classical linear Granger causality testing. Next, we also account for heteroscedasticity due 

to volatility clustering in our data as is evident in Figure 1. To take account of possible conditional heteroscedasticity 

of unknown form (Cheung and Ng 1996), we employ a popular heteroscedasticity-consistent covariance matrix 

estimator (HCCME) developed by MacKinnon and White (1985), known in the literature as HC3 estimator, for 

robustifying the classical linear Granger causality test. An alternative way to improve the performance of the 

classical Granger causality test in the presence of heteroscedasticity is to use a fixed design wild bootstrap procedure 

as in Hafner and Herwartz (2009). The wild bootstrap has been shown to yield reliable finite sample inference even 

when applied to data that are homoscedastic (Gonçalves and Kilian 2004). Therefore, we use the wild bootstrap 

method in addition to the HCCME. The technical details of the various linear models are provided in appendices 1 to 

3.  

The results from the linear Granger causality are presented in Table 2. The upper most panel reports the 

results from the classical Granger test, the middle panel reports the tests with the heteroscedasticity-robust variance 

covariance matrix and the lower panel reports the results from the wild-bootstrap procedure.  The optimal lag length 

based on the Schwarz Information Criteria (SIC) test is eight (8) for the variables in their log-levels forming a VAR. 

In all the three versions of the linear tests, the null hypotheses are rejected at 1 percent, thus providing evidence in 

favour of bidirectional causality over the full sample. This implies the existence of a feedback system where EMU 

and EPU react to each other. In other words, movements in the EPU index can be significantly predicted by 

movements in the EMU index and vice versa.  

[INSERT TABLE 2] 

In the standard Granger causality testing, the full-sample is used for estimation. The assumption is that 

parameters of the VAR model used in testing are constant over time. However, when the underlying full-sample time 

series have structural changes, this assumption is probably violated.  The results from the full sample causality would 

become invalid (Balcilar and Ozdemir 2013).  Therefore, we test for parameter stability of the VAR results reported 
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in Table 2 using four different tests. We use the Sup-F, Ave-F and Exp-F tests developed by Andrews (1993) and 

Andrews and Ploberger (1994) to investigate the stability of the short-run parameters.  

However, it is noted that when the underlying variables in levels are cointegrated, the VAR model in first 

differences is misspecified unless it allows for error-correction. Therefore, we use the Lc tests of Nyblom (1989) and 

Hansen (1992) to investigate the long-run parameters stability. If the series are I(1), the Nyblom-Hansen Lc test also 

serves as a test of cointegration (Balcilar et al. 2010). To avoid the use of asymptotic distributions, the p-values are 

obtained from a bootstrap approximation to the null distribution of the test statistics, constructed by means of Monte 

Carlo simulation using 2000 samples generated from a VAR model with constant parameters. The Sup-F, Ave-F and 

Exp-F tests needs to be trimmed at the ends of the sample. Following Andrews (1993) we trim 15 percent from both 

ends and calculate these tests for the fraction of the sample in [0.15, 0.85].  

The results from the parameter stability tests are reported in Table 3. The first three rows of Table 3 report 

tests statistics for short-run parameter stability, starting with the EMU equation in the first two columns and followed 

by the EPU equation and the overall VAR system in turn. In row 1 the Sup-F statistic reports the test of parameter 

constancy against a one-time sharp shift in parameters. This is followed in rows 2 and 3 by two test statistics Ave-F 

and Exp-F, which assumes that parameters follow a martingale process, and test against the possibility that the 

parameters might evolve gradually.4 The final test reported in Table 3 is the Lc test for the stability of the parameters 

for the EPU and EMU equations. 

Starting with the Lc tests, the final row of Table 3 indicates significant evidence of parameter instability in 

both the EMU and EPU equations. Turning now to the first three rows of Table 3 where the sequential Sup-F, Ave-F, 

and Exp-F tests are reported. We find evidence of parameter instability in both equations and for the VAR as a 

whole. The evidence in Table 3 suggests both one-time shifts as well as a gradual evolution of the parameters in the 

EMU-EPU VAR. Parameter instability of the kind identified here would undermine traditional Granger causality 

tests of the connection between equity uncertainty and policy uncertainty. Hence, one would expect that the Granger 

causality tests to be sensitive to sample period changes in this case. 

[INSERT TABLE 3] 

Accordingly we proceed to investigate the association between EMU and EPU with nonlinear, time varying 

VAR and bootstrap rolling window Granger causality tests. Various nonparametric tests have been proposed in the 

                                                           
4 The Ave-F and Exp-F are both optimal tests as shown by Andrews and Ploberger (1994). 
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literature. The most prominent one perhaps is developed by Hiemstra and Jones (1994), which is a modified version 

of Baek and Brock (1992). An alternative nonlinear model is that proposed by Diks and Panchenko (2005, 2006) 

who show that the relationship tested by  Hiemstra and Jones (1994) is not generally compatible with Granger 

causality leading to the over rejection of the null hypothesis.  Hence, we use both the Hiemstra-Jones (1994) and 

Diks-Panchenko (2006) nonlinear causality tests. In addition, we also employ the Kyrtsou and Labys (2006) 

symmetric and asymmetric nonlinear approach. We also use Sato et al. (2007) time varying causality as well as 

Balcilar et al. (2010) sub-sample bootstrap rolling window causality to account for time variation in the relationship 

between the series.  The technical details of the various nonlinear models are provided in appendices 4 to 8. 

Table 4 reports the results from Hiemstra and Jones (1994) nonlinear Granger causality test based on the 

residual from the bivariate VAR. Following Hiemstra and Jones (1994), we set the value for the lead length of 1m

, the common lag lengths )( LyLx  of 1 to 8 and a common scale parameter of 5.1e , where 1 denotes the 

standard deviation of the standardized time series  test statistic.  The standardized test statistic, denoted by TVAL, is 

asymptotically distributed N(0,1) under the null hypothesis of nonlinear Granger noncausality. The results in Table 4 

indicate that the null hypothesis that EPU does not Granger cause EMU is rejected at 1 and 5 percent significance 

level, respectively for the 4th and 5th lags only. Analogously, the null hypothesis that EMU does not Granger cause 

EPU is rejected at 1 percent for lags 6, 7 and 8. Overall, the Hiemstra and Jones (1994) test provides evidence in 

favour of bidirectional nonlinear causality between EMU and EPU though this occurred at uncommon lags. The 

evidence is also stronger for causality from EMU to EPU than the reverse. 

[INSERT TABLE 4] 

Turning now to the results from the Diks and Panchenko (2006) nonlinear Granger causality test. The p-

values of the test statistics are reported in Table 5. The results suggest  evidence of bidirectional nonlinear causality 

between EMU and EPU for all the common lag lengths used in conducting the test. However, looking at the levels of 

significant, it is observed that EMU has stronger predictive power for EPU than does EPU for EMU. The evidence 

suggests that the EMU can be more helpful in predicting movements in the EPU index. 

[INSERT TABLE 5] 

The next nonlinear Granger causality we consider is that developed by Kyrtsou and Labys (2006). Our 

parameter prior selection is presented in Table 6. Our optimal integer delay variables for the causality from EPU 
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index to EMU index ( 1 ), and for the causality from EMU index to EPU index( 2 ) as selected by SIC are set to 7 

and 10, respectively. We also set the power of the lagged values of EPU index ( 1c ) and EMU index ( 2c ), 

respectively to 2 and 1.  

[INSERT TABLE 6] 

The results for both symmetric and asymmetric causality are presented in Table 7. From Table 7, we 

observe a strong evidence of bidirectional causality between EPU index and EMU index. Whether the direction of 

changes in the studied series has a significant effect on their causal relationships can be examined by using the 

asymmetric version of the Kyrtsou–Labys test. In order to do so, we demeaned both series since they contain only 

positive values. We remark no evidence that positive values of EPU index cause EMU index. Nevertheless, negative 

values of the former series significantly cause the latter only at 10% level. Moreover, we observe that only positive 

values of EMU index cause EPU index with strong evidence. 

[INSERT TABLE 7] 

We also conduct time-varying Granger causality tests developed by Sato et al. (2007). We implemented a 

dynamic Granger causality test (i.e., we test whether the Granger causality between two time series is time-invariant 

or not), as well as time-varying Granger causality test (i.e., we test for one variable does not cause the other versus 

one variable causes the other at least at one point in time). The results from the dynamic Granger causality are 

presented in the upper panel of Table 8. Interestingly, the null hypotheses that the causality from EPU to EMU and 

the causality from EMU to EPU are constant over time are both rejected. Turning now to the time-varying version of 

the Sato et al. (2007) test as reported in the lower panel of Table 8, we reject the null hypothesis of no causality in 

favour of the existence of strong time varying bidirectional causality between EPU and EMU. These findings support 

the results from the parameter stability test.  

[INSERT TABLE 8] 

The analysis so far points to the fact the causality between EPU and EMU cannot be constant. It therefore 

becomes important to see at which specific periods there is causality from one to the other as well as determine the 

magnitude and direction of impact. We now turn to the rolling sub-sample causality testing using the residual based 
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modified-LR causality tests with the null hypothesis that that EPU does not Granger cause EMU and vice versa. The 

bootstrap p-values of LR-statistics are estimated from the VAR models in Eq. (1) using the rolling sub-sample data. 

We set the maximum lags to 8 for a window of 60 and use SIC to choose lags for each window separately. After 

trimming 60-days observations from the beginning of the full sample, these rolling estimates move from 1985:03:02 

to 2013:06:14. We present both the intensity and kernel density plots of the p-values for each sub-sample. Besides, 

the magnitude of the total effect of EPU on EMU and that of EMU on EPU are also calculated and presented.  

Figure 2 shows the intensity plot of the bootstrap p-value of the LR-statistics for testing the hypothesis that 

EPU does not Granger cause EMU while Figure 3 shows the same plot for the hypothesis that EMU does not 

Granger cause EPU. These figures are based on counting the p-values falling in a grid of 1 year length in the 

horizontal axis and 0.1 on the vertical axis. From Figure 2, the p-values of testing that EPU does not Granger cause 

EMU have concentrations scattered everywhere. There are only three periods when the intensity is below 0.10. These 

are around 1993, 2004 and 2006. This shows that EPU has predictive power for EMU only for these few periods. On 

the other hand, Figure 3 indicates that the p-values of testing that EMU does not Granger cause EPU concentrate 

heavily below 0.10, almost uniformly from 1985 to 2013. There are minor exceptions around 1998, 2003 and 2005. 

These results point to a stronger evidence of causality from EMU to EPU over most of the periods. We also present 

the density plots in Figures A1 and A2. They show where the predictive power is concentrating from a 

nonparametric estimation. Based on the density plots, we find no evidence that EPU can help predict EMU, and very 

strong evidence that EMU has predictive power for EPU. 

 

[INSERT FIGURE 2] 

 

[INSERT FIGURE 3] 

 

The strong causality from EMU to EPU can be linked to a number of important events that have strong 

financial and market connection. These include the 1987 stock market crash, 1997 Asian crisis,  the 1997–2000 dot-

com bubble, the 9/11 terrorist destruction of the World Trade Center’s Twin Towers, the stock market crash of 

2000–2002, the stock-market scandals of early 2002 (WorldCom, Enron etc), Lehman Brother’s collapse in 2008 due 
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to the continuing subprime mortgage crisis, 2007-2009 global financial crisis and the 2011 debt ceiling debate. These 

findings suggest that the stock market uncertainty would increase uncertainty about economic policy in the US. The 

few cases where EPU hold predictive power for EMU may be associated with a number of events as well. The 

unanticipated election outcome that saw Bill Clinton as the winner in late 1992 will hold explanation to the around 

1993 effect. The 2004 period effect may reflect the expiration of accelerated capital depreciation allowances. The 

Federal Reserve somewhat surprising move from a cycle of increasing interest rates, to a cycle of flat rates between 

June 2004 to August 2007 may also have influenced investors decisions and hence the equity market uncertainty. 

Further, we consider the magnitude of the total effect of EPU on EMU and that of EMU on EPU. The 

bootstrap estimates of the sum of the rolling coefficients that EPU (EMU) does not have significant effect on EMU 

(EPU) is 0.0257 (0.0510) with the lower and upper 90% confidence bounds of -0.0121 and 0.0647 (0.0411 and 

0.0612). These results show that EMU has a larger, positive and significant impact on EPU at the 10 percent level. 

However, EPU has smaller but insignificant impact on EMU.5  

IV. Conclusion 

Using a new economic policy uncertainty (EPU) and equity market uncertainty (EMU) indexes from Baker et al. 

(2013a), we investigate the causality between the two series using US daily data from 1985 to 2013. Empirical 

results based on the full-sample classical linear causality, heteroscedasticity-consistent covariance matrix estimator 

and wild bootstrap versions of the linear test, indicate a bi-directional causality between the two series. We conduct 

parameter stability tests on the full sample standard Granger tests and find that the short run relationship between 

EPU and EMU for the US is unstable over the sample period. Therefore, we also examine causality using various 

nonlinear Granger causality tests. While the Hiemstra and Jones (1994) nonlinear tests suggest evidence of 

bidirectional causality at higher but uncommon lags, the Diks and Panchenko (2006) nonlinear test suggest evidence 

of bidirectional causality at all common lags. Using the Kyrtsou–Labys (2006) nonlinear symmetric and asymmetric 

tests, we observe evidence of bidirectional causality with the symmetric tests while the asymmetric tests indicates 

that only positive values of EMU index cause EPU index with strong evidence while only  negative values of the 

EPU significantly cause the EMU but only at 10% level.  

                                                           
5 We also apply the Hafner and Herwartz (2006) causality in variance test and found that  the volatility in the equity uncertainty more strongly 

affects economic uncertainty. Specifically, in terms of volatility: EMU  EPU: LM-stat: 486.9296 (p-value=0.000000); EPU  EMU: LM-stat: 

10.36887 (p-value=0.005603).  
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Using the Sato et al. (2007) time-varying Granger causality tests, we show that the causality between EPU and EMU 

is not constant over time but rather time-varying. Therefore, we extend our analysis by fully taking structural breaks 

into account using the bootstrap rolling window approach proposed by Balcilar et al. (2010). The bootstrap rolling 

window approach allows the causal relationship between series to be time-varying, instead of assuming that a 

permanent causal relationship holds over the whole period. Using the intensity plots of the bootstrap p values from 

the rolling testing approach, we observe that EPU has predictive power for EMU only for the 1993, 2004 and, 2006 

sub-periods while EMU has predictive power for EPU almost at all sub-periods except for 1998, 2003 and 2005 sub-

periods.  Finally, our bootstrap residual-based total effects test based on sum of coefficients suggest a positive and 

stronger significant effect of EMU on EPU but smaller and insignificant predictive power from EPU to EMU. Our 

findings provide vital implications for policy makers and investors. First, the uncertainties surrounding the US equity 

market in recent years may be largely attributed to other factors (e.g declined expectations for economic growth) 

other than the economic policy uncertainty at least based on the time varying tests which takes into full account 

structural changes and regime switches . This is not to say that economic policy uncertainty does not matter for 

equity market uncertainty. Definitely, the need for the U.S. government to reduce uncertainty about economic policy 

in order to reduce potential risks in the stock market and hence increase investor confidence cannot be over stressed. 

However, the weak causal effect of EPU on EMU in this study simply shows that there are other fundamental factors 

that accounts for much of the movement in the US stock market other than economic policy uncertainty. This result 

is consistent with that of Li et al (forthcoming) who found a weak causal relationship between EPU and stock returns 

for China and India, thus concluding that robust economic growth coupled with favourable economic conditions, 

such as trade surplus and abundant capital inflows, dominates the stock market performance in China and India.  

Secondly, the strong in-sample predictive power of EMU for EPU, indicates that both soaring and crashing stock 

market performance may increase uncertainty about economic policies. Therefore, reducing stock market 

uncertainties for enhanced economic policy, investor confidence and overall economic growth is important. Future 

research may test if stock market uncertainty and economic policy uncertainty have out-of-sample forecasting ability 

for each other.  
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Figure 1. Economic policy uncertainty and equity market unceratinty 

 

 
Figure 1a. Policy uncertainty index and equity uncertainty index  

 
Figure 1b. Policy uncertainty index and equity uncertainty index in logs 
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Figure 1c. Moving average of policy uncertainty index and equity uncertainty index (levels) 

 

 
Figure 1d. Moving average of policy uncertainty index and equity uncertainty index (logs) 
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Figure 2. Intensity plot of p-value for testing economic policy uncertainty does not Granger cause 
stock market volatility 

 

Figure 3. Intensity plot of p-value for testing stock market volatility does not Granger cause 
economic policy uncertainty 

 

Table 1. Unit root testing 

    Trend and Intercept Intercept 
Conclusion 

EPU 

ADF -13.705*** -12.899*** 

I(0) PP -97.716*** -97.656*** 

NP -4.99*** -3.654*** 

EMU ADF -6.838*** -6.836*** I(0) 
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PP -150.881*** -150.889*** 

NP -4.44*** -4.482*** 

Notes: *** indicates significance at the 1% level.  

 
 
Table 2. Results from linear causality tests 
Classical Granger Causality test  

Hypothesis p-value 

EPU  EMU 2.2473× 10-08a 

EMU  EPU 0.000a 

  

Granger causality tests with the heteroscedasticity-robust variance covariance matrix  

Hypothesis p-value 

EPU  EMU 5.194×10-05a 

EPU  EMU 0.000a 

  

Granger causality tests with the wild-bootstrap procedure  

Hypothesis p-value 

EPU  EMU 0.003a 

EPU  EMU 0.000a 

Notes: This table reports the p-values of the Granger causality tests. a indicates the rejection of the null hypothesis of absence of 
causality at the 1% level.  

 

Table 3. Parameter stability tests  

 EMU Equation EPU Equation VAR (8) System 

 Statistics Bootstrap p-
valuea 

Statistics Bootstrap p-
valuea 

Statistics Bootstrap p-
valuea 

Sup-F 243.38 <0.01 417.76 <0.01 644.43 <0.01 

Ave-F 104.60  <0.01 275.73 <0.01 381.96 <0.01 

Exp-F 114.22 <0.01 203.04 <0.01 316.40 <0.01 

Lc 12.45 <0.01 34.71 <0.01   

Notes: *, **, and *** denote significance at 10, 5 and 1 percent, respectively. ap-values are calculated using 2000 bootstrap 
repetitions.  
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Table 4. Hiemstra and Jones (1994) nonlinear causality test 

 H0: EPU  EMU  H0: EMU  EPU 

Lags CS TVAL Lags CS TVAL 

1 -0.1882 -18.8810 1 -0.5186 -52.0237 

2 -0.1271 -12.7553 2 -0.5265 -52.8226 

3 -0.0517 -5.1948 3 -0.5921 -59.4024 

4 -0.0199 1.9967b 4 -0.8317 -83.4289 

5 0.2898 29.0757a 5 -1.4940 -149.8658 

6 -160.6963 -16119.3726 6 463.0408 46447.4101a 

7 -0.6315 -63.3553 7 1.3329 133.7093a 

8 -0.5153 -59.6967 8 0.6342 63.6236a 

Notes: CS and TVAL are respectively the difference between the two conditional probabilities, and the standardized test statistic. 
“Lags” denote the number of lags in the residual series used in the test. a  and b indicate the rejection of the null hypothesis of 
absence of causality at the 1% and 5% levels, respectively. 

 

Table 5. Diks and Panchenko nonlinear causality test 

LyLx   H0: EPU  EMU H0: EMU   EPU 

1 0.0000a 0.0000a 

2 0.0002 a 0.0000a 

3 0.0051 a 0.0000a 

4 0.0783 b 0.0000a 

5 0.0991 b 0.0000a 

6 0.0010 a 0.0000a 

7 0.0025 a 0.0000a 

8 0.0067 a 0.0000a 

Notes: This Table reports the p-values of the Diks-Panchenko causality tests. a and b indicate the rejection of the null hypothesis of 
absence of causality at the 1% and 10%  levels. 

 

 
Table 6. Parameter-prior selection in the M-G model 

1  2  1c  2c  

7 10 2 1 

Notes: This table reports the results for the parameter-prior selection. 1  
and 2  are the optimal integer delay variables for the 

causality from policy index to equity index, and for the causality from equity index to policy index, respectively. 1c  and 2c  are the 

power of the lagged values of policy index and equity index, respectively. 
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Table 7. Kyrtsou-Labys nonlinear causality test 

Relation  ( BA ) F-statistic Probability 

EUEPU   8.2228 0.0041 

EPUEU   2988.2 0.0000 

EUEPU 
 

1.9490 0.1627 

 EPUEU  
30.6654 0.0000 

EUEPU 
 

3.1822 0.0745 

 EPUEU  
584.0920 0.0000 

EPUEU 
 

41.8094 0.0000 

 EUEPU  
3.4596 0.0629 

EPUEU 
 

0.0246 0.8753 

 EUEPU  
0.0035 0.9526 

Notes: we consider the null hypothesis that A does not cause B.  

 

Table 8. Sato et al. (2007) time-varying test  

Dynamic Granger causality test  

Hypothesis P-value 

EPU  EMU 0.0000a 

EMU   EPU 0.0000a 

  

Time-varying Granger causality test  

Hypothesis P-value 

EPU  EMU 0.0000a 

EMU   EPU 0.0000a 
Notes: − The dynamic Granger causality test allows to test whether the Granger causality between two time series is time-invariant 
or not (i.e., H0: The causality from X to Y is constant over time vs. H1: The causality from X to Y is not constant over time). − The 
time-varying Granger causality test examines the following hypotheses: H0: X does not cause Y vs. H1: X causes Y at least at one 
point in time. − Values in table are p-values. a indicates the rejection of the null hypothesis of absence of causality at the 1% level. 
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Appendices: 

 

A1.  The classical linear Granger causality testing 

Granger (1969) defines causality between two stationary series in terms of predictability. Suppose tx  and ty  of 

length n  are EMU and EPU, respectively. Testing for causal relations between the two series involves estimating a 

p-order linear vector autoregressive model, VAR(p), as follows: 
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                                          (A1) 

 

where  is a white noise process with zero mean and covariance matrix  and p is the lag order of the 

process. In the empirical section, the Schwarz Information Criteria (SIC) is used to select the optimal lag order p. 1

and 2  are constants and s'   are parameters. In this setting, the null hypothesis that EMU does not Granger cause 

EPU can be tested by imposing zero restrictions 0,12 i for pi ,...2,1  . In other words, EMU does not contain 

predictive content, or is not causal, for EPU if we do not the joint zero restrictions under the null hypothesis: 

 

,0...: ,122,121,120  p
EPUH                                                                                                     (A2) 

Analogously, the null hypothesis that EPU does not Granger cause EMU implies that we can impose zero 

restrictions 0,21 i for pi ,...2,1 . In this case, EPU does not contain predictive content, or is not causal, for EMU if 

we do not reject the joint zero restrictions under the null hypothesis: 

,0...: ,212,211,210  p
EMUH                                                                                                                          (A3) 

In either case, the rejection of non-Granger causality means that the movement in one series can be 

predicted by the other series. If only the hypothesis in either Eq. (2) or Eq. (3) is rejected, then there is a 

unidirectional causality. In the case that both hypotheses in Eq. (2) and Eq. (3) are rejected, the evidence points to 

bidirectional causality, which in this context implies a feedback system where EMU and EPU react to each other. It 

is also possible that neither of the two hypotheses are rejected implying that neither of the two variables has 

predictive content for the other.  

et = (e1t ,e2t ¢)
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A2. Heteroscedasticity-consistent covariance matrix estimator 

The HCCME is given by: 

),)1/(ˆ(ˆ:3 22
ii hdiagHC  

                                                                                                                                  
(A4) 

where î  are the estimated residuals from a VAR(p) model and ℎ𝑖 is the ith diagonal hat matrix. The HC3 estimator 

appears to have better performance in small samples. A more extensive study of small sample behavior was carried 

out by Long and Ervin (2000) which arrive at the conclusion that the HC3 estimator provides the best performance in 

small samples as it gives less weight to influential observations. 

 

A3. Wild bootstrap procedure 

The wild bootstrap procedure is set up as follows: 

1. Estimate the VAR(p) model and obtain the Wald statistic for non-causality as described by Hafner and 

Herwatz (2009). 

2. Estimate the restricted VAR(p) model and obtain the estimated parameter values and the restricted residuals

î . 

3. Form a bootstrap sample of t observations, ,ˆ*
tit   where 𝜂𝑡 are a sequence of random variables with 

zero mean and unit variance being also independent of the variables occurring in VAR model. The pseudo 

disturbances 𝜂𝑡 are generated using the Rademacher distribution 

𝜂𝑡 = {
−1     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋 = 0.5
+1      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋

 

4. Estimate the VAR(p) model for each artificial series and compute the Wald statistic in order to obtain the 

empirical distribution under the null hypothesis. 

5. Repeat previous steps 1000 times to form a bootstrapping distribution. The p-value (pb) of the test can be 

obtained as the proportion of the number of times the Wald test is smaller than the bootstrapped-Wald test. 

6. Reject the null if pb is smaller than the chosen significance level. 
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A4. Hiemstra and Jones (1994) Nonlinear Causality Test 

Hiemstra and Jones (1994) proposed a nonparametric statistical method for detecting nonlinear causal relationships 

based on the correlation integral. To define nonlinear Granger causality, assume that there are two strictly and 

weakly dependent time series }{ tX and }{ tY , Tt ,...,3,2,1 . Let m -length lead vector of tX  be designated by 
m
tX , 

and the Lx -length and Ly -length vectors of tX  and tY , respectively, by 
Lx

LxtX  and Ly
LytY . For given values of m , 

Lx  and 1Ly and for all 0e ,  tY  does not strictly Granger }{ tX if:6  
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                                                                                 (A5) 

where )(P denotes probability and  denotes the maximum norm. Eq. (5) states that the conditional probability that 

two arbitrary m -length lead vectors of  tX  are within distance e , given that the corresponding lagged Lx -length 

lag vectors of  tX  are e -close, is the same as when one also conditions on the Ly -length lag vectors  tY  of being 

e -close.  

A test based on Eq. (5) can be implemented by expressing the conditional probabilities in terms of the 

corresponding ratios of joint probabilities: 

 
 eLyLxC

eLyLxmC

,,2

,,1 
 = 

 
 

,
,4

,3

eLxC

eLxmC 
                                                          (A6)

           

where 1C , 2C , 3C  and 4C are the correlation integral estimator of the joint probabilities which are discussed in 

detail by Hiemstra and Jones (1994).  With an additional index n , Hiemstra and Jones (1994) show that, under the 

assumption that }{ tX and }{ tY are strictly stationary, weakly dependent, if }{ tY does not strictly Granger cause }{ tX  

then,  

                                                           
6 Strict Granger causality relates to the past of one time series influencing the present and future of another time  series (Hiemstra and Jones 1994). 
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                                                                  (A7) 

where ),max(1 LyLxmTn  . See the appendix of Hiemstra and Jones (1994) for both definition and an 

estimator of ),,,(2 eLyLxm . One-sided (right-tailed) critical values are used, based on this asymptotic result, 

rejecting when the observed value of the test statistic in Eq. (7) is too large.  

To test for nonlinear Granger causality between }{ tX and }{ tY , the test in Eq. (7) is applied to the 

estimated residual series from the bivariate VAR model. The null hypothesis is that tY  does not nonlinearly strictly 

Granger cause tX , and Eq. (7) holds for all m , Lx , 1Ly and 0e . By removing linear predictive power from a 

linear VAR model, any remaining incremental predictive power of one residual series for another can be considered 

as nonlinear predictive power (Baek and Brock 1992).  

 

A5. Diks and Panchenko (2006) Nonlinear Causality Test 

Diks and Panchenko (2005, 2006) argue that their test reduces the risk of over rejection of the null hypothesis of 

noncausality, observed in the Hiemstra and Jones (1994) widely used test.  In this line, Dicks and Panchenko (2006) 

introduced a new nonparametric test for Granger non-causality which avoids this by replacing the global test statistic 

by an average of local conditional dependence measures. On the basis of these arguments, we employ both Hiemstra 

and Jones (1994) and Diks and Panchenko (2006) nonlinear Granger causality tests in this study.  

Suppose that Xl

tX = (Xt − ℓ X + 1,…, Xt) and Yl

tY = (Yt − ℓ Y + 1,…, Yt) are the delay vectors - where ℓX, ℓY ≥ 1. 

The null hypothesis of Xl

tX contain any additional information about Yt + 1 is specified as: 

);(10
Yx l

t
l
tt YXYH  ~ ,1

Yl
tt YY                                                                        (A8) 

The null hypothesis becomes a statement about the invariant distribution of the (ℓX + ℓY + 1)-dimensional vector 

Wt = ( Xl

tX , Xl

tY , Zt), where Zt = Yt + 1. If we ignore the time index and we assume that ℓX = ℓY = 1, the distribution 

of Z - given that (X, Y) = (x, y) - is the same as that of Z - given Y = y. In other words, X and Z are independent 
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conditionally on Y = y for each fixed value of y, so the joint probability density function fX,Y,Z(x,y,z) and its 

marginals must satisfy the following relationship: 

)(
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                                                                              (A9) 

Diks and Panchenko (2006) show that the restated null hypothesis implies: 

,0)],(),()(),,([ ,,,,  ZYfYXfYfZYXfEq ZYYXYZYX                                       (A10) 

where f̂ W(Wi) is a local density estimator of a dW-variate random vector W at Wi , defined by f̂  W(Wi) = (2εn)− d W

(n − 1)− 1∑j,j ≠ iIij
W, where Iij

W = I( Wi − Wj <εn), I(·) the indicator function and εn the bandwidth, which depends on 

the sample size n.  

The test statistic, which is a scaled sample version of q in Eq. (10), is simplified as: 

 





i

iiZYiiYXiYiiiYZXnn ZYfYXfYfYZXf
nn

n
T )),(ˆ),(ˆ)(ˆ),,(ˆ(.

)2(

1
)( ,,,,                                                       (A11) 

where Tn consist of a weighted average of local contributions  ),,(ˆ),(ˆ)(ˆ),,(ˆ
,,,, iiZYiiYXiYiiiZYX ZYfYXfYfZYXf   

which tend to zero in probability under the null hypothesis. 

Diks and Panchenko (2006) prove  that if )
3

1

4

1
,0(     CCnn  for one lag that the test statistic in 

Eq. (11) satisfies the following: 

)1,0(
))((

N
S

qT
n

D

n

nn 


                                                                                   (A12) 

where 
D

 denotes convergence in distribution and Sn is an estimator of the asymptotic variance of Tn(·).  

 

A6. The Kyrtsou and Labys (2006) nonlinear approach 
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 Kyrtsou and Labys (2006) introduced the bivariate noisy Mackey-Glass (hereafter "M-G") model defined as follows 
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),),1,0(
11

1222212121
2

2

2

1

1

1 NY
Y

Y
X

X

X
Y tttc

t

t

tc

t

t

t 





 



















        

where  ),max(,,...., 21   Nt  and 1010 ,...,,,...,   YYXX are given. The ij  and ij  are parameters to be 

estimated, i  are integer delays, and ic  are constants which can be chosen via prior selection. In this respect, the 

best delays, 1  and 2 , are selected on the basis of likelihood ratio tests and the Schwarz criterion. Different values 

for   and c can change dramatically the dynamic behaviour of the process. As pointed by Kyrtsou and Labys 

(2007) the multivariate transformation of the model does not modify its dynamic properties in a univariate context.  

 Kyrtsou and Labys (2006) are the first to highlight Granger causality testing in this nonlinear setting by 

finding nonlinear positive feedback in the relationships between commodity prices and US inflation. Later, this 

nonlinear Granger causality testing was well explained in Hristu-Varsakelis and Kyrtsou (2008) and Hristu-

Varsakelis and Kyrtsou (2010).  

 The model in Eq. (13) is more appropriate than a simple VAR in case where dependency structures of 

time series are more complicated and cannot be taken into account by vector autoregressions. The M-G-based 

causality test is similar to the linear Granger causality test, except that the models fitted to the series are M-G 

processes. This test is performed by estimating the M-G model parameters under no constraint with ordinary least 

squares. To examine whether Y causes X, another M-G model is estimated under the constraint 012    that 

reflects our null hypothesis. Such a constraint arises from the fact that when Y has a significant nonlinear effect on 

the current value of X in the model M-G, 12  must be significantly different from zero. Let t̂  and t̂  
be the 

residuals obtained respectively by the unconstrained and constrained best-fit M-G models. Thus, the corresponding 

sums of residuals squares can be defined as 
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2̂ . Recall that 4un  is the number of free 
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parameters in the M-G model and on the other side 1cn  is the number of parameters required to be zero when 

estimating the restricted model. Obviously, the test statistic follows a Fisher distribution as 
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S                                                            (A14) 

where FS  is the test statistic. 

 What we have just presented is called the Kyrtsou-Labys "symmetric" version of the causality between X 

and Y. The "asymmetric" version of Kyrtsou-Labys test can be implemented by conditioning for positive or negative 

values of the causing series. Note that, since both series contain only positive values, we use demeaned data for this 

part of the analysis. To keep the matters tractable, suppose that we test, in Eq. (13), whether nonnegative returns in 

the series X cause the series Y. In this case, an observation ),( tt YX  is included in the regression model only if 

0
1
tX . The same restricted set of observations is used to compute the model corresponding to the null 

hypothesis, i.e., 021  . The procedure is then repeated with the order of the series reversed. That is, one can test 

whether positive returns in Y cause X and again with the subset of nonnegative returns. Note that conditioning in 

terms of causing series sign is not the only way to carry out an asymmetric causality. The sign conditioning is 

frequently chosen because it offers many advantages in practical relevance. Moreover, the nonpositivity, or 

respectively nonnegativity is not the only possible conditioning way as one can consider other events such as 

start/end of the week, price movement thresholds. 

 

A7. Sato, Morettin, Arantes and Amaro (2007) time-varying causality analysis 

The VAR used in Granger causality testing is an adequate approach only in cases when the processes to be modeled 

are stationary, i.e., the property of the models (expectation, variance, auto/cross-correlations) are invariant in time. 

These restrictions are not valid in many cases, since the system dynamics in real datasets exhibit changes depending 

on external factors (e.g., crisis, governmental interventions, and multinational agreements). In this line, Sato et al. 

(2007) have introduced a time-varying vector autoregressive modelling, by considering the model parameters as 

functions of time. 
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The time-varying vector autoregressive model (Sato et al., 2007) for a multivariate time series𝑥𝑡,𝑇 =

(𝑥1𝑡,𝑇 , 𝑥2𝑡,𝑇 , … , 𝑥𝑠𝑡,𝑇)′, where s is the dimension and T is the number of observations, is given by 
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                                                     (A15) 

 

where 𝜀𝑡,𝑇 is an error vector of independent random variables with zero mean and covariance matrix Σ(𝑡 𝑇⁄ ), u(𝑡 𝑇⁄ ) 

is the vector of intercepts and Al(𝑡 𝑇⁄ ) are the autoregressive coefficients matrices with 𝑙 = 1,2, … , 𝑝. 

The time-varying vector autoregressive model is an extension of the conventional VAR model. In this 

model, each VAR coefficient is described as a function of time.  Here, we proposed to decompose these functions by 

using the B-splines decomposition (Eilers and Marx 1996) because it’s less restrictive than the wavelets.   

By using the B-splines time-function decomposition approach, the multivariate time-varying autoregressive 

model can be represented as:   
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where 𝜓𝑘(𝑡) are B-splines functions (obs: 𝜓0(𝑡) = 1, constant for all t, 𝑢𝑘 are vectors and  𝐴𝑘
(𝑙)

 (𝑙 = 1,2, … , 𝑝; 𝑘 =

0,1,2, … ) are matrices containing the B-splines expansion coefficients. 

The basic idea of the estimation of the time-varying VAR is to represent the decomposition of the intercept 

and autoregressive time-functions as an approximation using finite linear combination of B-splines functions. In 

other words, each intercept and autoregressive function is described as a linear combination of M B-splines 

functions. By using this expansion, the model is approximated by a linear model with finite parameters, given by 
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and the parameters of this model (which are the B-splines expansion coefficients) can then be estimated by using the 

least squares method in a linear multiple regression, similarly to the estimation of the conventional VAR models. 
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Then, the time-varying Granger causality test can be carried out by testing whether there is at least one 

autoregressive time-function from yit to ylt which is different from zero at least in one time point7. 

 

A8. Sub-sample Bootstrap Rolling Window Causality Approach 

Generally, standard causality test statistics for joint parameter restriction and standard asymptotic properties include 

the Wald, Likelihood ratio (LR) and Lagrange multiplier (LM) statistics. With non-stationary data, as is typical in 

macroeconomic studies, these tests may not have standard asymptotic distributions (Toda and Phillips 1993, 1994). 

To address the problems of non-stationary underlying data, Toda and Yamamoto (1995) proposed a modified Wald 

test by estimating an augmented VAR model with I(1) variables to obtain standard asymptotic distribution for the 

Wald test. However, Mantalos and Shukur (1998) and Shukur and Mantalos (2000, 2004) have shown that the 

modified Wald test does not have correct size in small and medium size samples using Monte Carlo simulations. 

Hence, it is suggested that an improvement (in terms of power and size) can be achieved by using residual based 

bootstrap (RB) method critical values.  

Further, the excellent performance of the RB method over the standard asymptotic tests, regardless of 

integration order or whether the series are cointegrated or not, has been confirmed in a number of Monte Carlo 

simulation studies (Shukur and Mantalos 2000; Hacker and Hatemi-J 2006;  Balcilar et al. 2010). In light of this we 

also use the bootstrap RB based modified-LR statistics proposed by Balcilar et al. (2010) to examine the causality 

between EPU and EMU in the US.  The starting point of the bootstrap RB based modified-LR Granger causality is 

Eq. (1) and the corresponding hypotheses in Eqs. (2) and (3). 

Although the presence of structural changes can be detected beforehand and the estimations can be modified 

to address this issue using several approaches, such as including dummy variables and sample splitting, such an 

approach introduces pre-test bias. To overcome the parameter non-constancy and avoid pre-test bias, the rolling 

window sub-sample Granger causality tests, based on the modified bootstrap test is implemented.8  

The rolling window estimators, also known as fixed-window estimators, are based on a changing subsample 

of fixed length that moves sequentially from the beginning to the end of sample by adding one observation at the end 

of the sample while dropping one at the start.  Specifically, given a fixed-size rolling window including l 

observations, the full-sample is converted to a sequence of T-l subsamples, that is, τ-l+1, τ-l,..., T, for  τ = l, l+1, ..., T.  

                                                           
7 Further technical details about the estimation of the time-varying VAR and hypothesis testing can be found in Sato et al. (2007). 
8 The technical details of the bootstrap test are explained in the appendix of Balcilar et al. (2010). 
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The RB based modified-LR causality is then applied to each subsample, instead of estimating a single causality test 

for full sample. Possible changes in the causal links between EPU and EMU for US are intuitively identified by 

calculating the bootstrap p-values of observed LR-statistic rolling through T-l sub-samples. More importantly, the 

magnitude of the effect of EPU on EMU as well as that of EMU on EPU is also assessed in this study. The effect of 

EMU on EPU is defined as the mean of all the bootstrap estimates, that is,  

 p

k
kbN

1

*
,12

1 ̂ , where bN  equals the 

number of bootstrap repetitions. Analogously, the effect of EPU on EMU is calculated as the mean of all the 

bootstrap estimates, that is  
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1 ̂ . The estimates *
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ˆ
k  and *

,21
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k  are the bootstrap least squares estimates 

from the VAR in Eq. (1) estimated with the lag order of p determined by the SIC. The 90-percent confidence 

intervals are also calculated, where the lower and upper limits equal the 5th and 95thquantiles of each of *
,12

ˆ
k  and 

*
,21

ˆ
k , respectively. 

 

Figure A1. Kernel density of p-value for testing economic policy uncertainty does not Granger cause stock 

market volatility 
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Figure A2. Kernel density of p-value for testing stock market volatility does not Granger cause economic 

policy uncertainty 
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