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Abstract The aimof this paper is to introduce a new type of generalizedmultivalued contrac-
tion mappings and to present some results regarding fixed points of new class of multivalued
contractions. As applications we obtain some basic results in fixed point theory like char-
acterization of metric completeness, data dependence of fixed points and homotopy result.
We prove the existence and uniqueness of bounded solution of functional equation arising in
dynamic programming. Our results generalize, extend and unify various comparable results
in the existing literature.
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1 Introduction and preliminaries

The Hausdorff metric H induced by the metric d of X is given by

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
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for every A, B ∈ CB(X), where CB(X) denotes the collection of closed and bounded subsets 
of X. It is well known that if (X, d) is a complete metric space, then the pair (CB (X), H) is 
a complete metric space. In 1969, Nadler [16] obtained the following multivalued version of 
Banach contraction principle.

Theorem 1.1 Let (X, d) be a complete metric space and T : X −→ CB(X) a multivalued
mapping such that

H(T x, T y) ≤ kd(x, y)

for all x, y ∈ X and for some k ∈ (0, 1). Then there exists a fixed point x ∈ X of T, i.e.,
x ∈ T x.

A number of fixed point theorems (see [5,6,8,9,12,14,19,21]) have been proved in the 
context of generalization of Theorem 1.1. Kikkawa and Suzuki [13] refined Nadler’s result 
by proving the following result.

Theorem 1.2 Let (X, d) be a complete metric space and T : X → CB(X) a multivalued

mapping. Define the mapping β : [0, 1) → ( 12 , 1] by β(b) = 1

1 + b
. If there exists a

b ∈ [0, 1) such that

β(b)d(x, T x) ≤ d(x, y) implies H(T x, T y) ≤ bd(x, y)

for all x, y ∈ X. Then T has a fixed point. In this case, we call T as b-KS multivalued
operator.

Theorem 1.2 has further been generalized in [7,10,11,15,23].

Definition 1.3 [20] L e t (X, d) be a metric space. A mapping T : X → CB (X) is called a 
multivalued weakly Picard operator (MWP operator), if for all x ∈ X and y ∈ T x , there  
exists a sequence {xn }n≥0 satisfying (a) x0 = x, x1 = y (b) xn+1 ∈ T xn for all n ≥ 0 (c) the  
sequence {xn }n≥0 converges to a fixed point of T .

The sequence {xn} satisfying (a) and (b) is called a sequence of successive approximations
(briefly s.s.a.) of T starting from x0.

Let (X, d) be a metric space and T : X −→ CB(X) a multivalued mapping. We define

MT (x, y) = max

{
d(x, y), d(x, T x), d(y, T y),

d(x, T y) + d(y, T x)

2

}
(1)

for all x, y ∈ X .
Recently Popescu [18] introduced the following class of multivalued operators.

Definition 1.4 [18] L e t  (X, d) be a complete metric space. A mapping T : X −→ CB (X) is 
called an (s, r)-contractive multivalued operator if r ∈ [ 0, 1), s ≥ r and x, y ∈ X with d(y, 
T x ) ≤ sd(y, x) implies H(T x , T y ) ≤ rM T (x, y).

Theorem 1.5 [18] Let (X, d) be a complete metric space and T : X −→ CB (X) an (s, r)-
contractive multivalued operator with s > r. Then T is a MWP operator.

In this paper, we introduce a new type of generalized multivalued contraction in metric 
spaces. As a result we generalize results given in [5,13,15,16,18].

2



2 Main results

Let ψ : [0, 1) → (0,
1

2
] be a strictly decreasing mapping defined by

ψ(s) =
⎧⎨
⎩

1
2(1+s) if 0 ≤ s < 1

2

1−s
2 if 1

2 ≤ s < 1
. (2)

We define (ψ, r)-contractive multivalued operators as follows:

Definition 2.1 Let (X, d) be a metric space. A mapping T : X → CB(X) is said to be a
(ψ, r)-contractive multivalued operator if r ∈ [0, 1), s ≥ r and x, y ∈ X with

ψ(s)(d(x, T x) + d(y, T x)) ≤ d(x, y) (3)

implies

H(T x, T y) ≤ rMT (x, y). (4)

Theorem 2.2 Let (X, d) be a complete metric space and T : X −→ CB(X) a (ψ, r)-
contractive multivalued operator. Then T is a MWP operator and has a fixed point.

Proof Let r1 be a real number such that 0 ≤ r < r1 < 1 and r1 ≤ s. Let u1 be a given point
in X . We can arbitrary choose u2 ∈ Tu1. If h = 1√

r
, then there exists u3 ∈ Tu2 such that

d(u2, u3) ≤ 1√
r
H(Tu1, Tu2). As ψ(s) ≤ 1, so we have

ψ(s)(d(u1, Tu1) + d(u2, Tu1)) ≤ d(u1, Tu1) + d(u2, Tu1)

≤ d(u1, Tu1) ≤ d(u1, u2),

which implies that ψ(s)(d(u1, Tu1) + d(u2, Tu1)) ≤ d(u1, u2). Now by (4), we have

d(u2, u3) ≤ 1√
r
H(Tu1, Tu2) ≤ r

1√
r
MT (u1, u2)

= √
r max

{
d(u1, u2), d(u1, Tu1), d(u2, Tu2),

d(u1, Tu2) + d(u2, Tu1)

2

}

≤ √
r max

{
d(u1, u2), d(u2, u3),

d(u1, u2) + d(u2, u3)

2

}
.

Thus

d(u2, u3) ≤ √
r max{d(u1, u2), d(u2, u3)}.

If max{d(u1, u2), d(u2, u3)} = d(u1, u2), then we have d(u2, u3) ≤ √
rd(u1, u2). If

max{d(u1, u2), d(u2, u3)} = d(u2, u3), then we get d(u2, u3) ≤ √
rd(u2, u3) which

implies that d(u2, u3) = 0, that is, u2 = u3 ∈ Tu2. Hence the result follows. So we
assume that max{d(u1, u2), d(u2, u3)} = d(u1, u2). Thus

d(u2, u3) ≤ √
rd(u1, u2) ≤ √

r1d(u1, u2).

By continuing this way, we can obtain a sequence {un} in X such that un+1 ∈ Tun , we
have

d(un, un+1) ≤ (
√
r1)

n−1d(u1, u2), (5)
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which implies that limn→∞ d(un, un+1) = 0. Now we show that {un} is a Cauchy sequence.
For a positive integer p, we have

d(un, un+p) ≤ (d(un, un+1) + . . . + d(un+p−1, un+p))

≤ ((
√
r1)

n−1d(u1, u2) + . . . + (
√
r1)

n+p−2d(u1, u2))

≤ (
√
r1)

n−1 1

1 − √
r1
d(u1, u2),

which on taking limit as n tends to infinity implies that

lim
n→∞d(un, un+p) = 0. (6)

Therefore {un} is a Cauchy sequence in (X, d). Since (X, d) is complete, there exists an
element z ∈ X such that limn→∞un = z, that is, limn→∞d(un, z) = 0. Next we show that

d(z, T x) ≤ r max{d(z, x), d(x, T x)} (7)

for all x �= z. As limn→∞ d(un, z) = 0, so there exists a positive integer n0 such that
d(z, un) < 1

9d(z, x) for all n ≥ n0. Using un+1 ∈ Tun, we obtain

2ψ(s)(d(un, Tun)+d(x, Tun)) ≤ d(un, Tun) + d(x, Tun) ≤ d(un, un+1) + d(x, un+1)

≤ d(un, z)+d(z, un+1)+d(x, z)+d(z, un+1) ≤ 4

3
d(z, x)

= 2[d(z, x) − 1

3
d(z, x)] ≤ 2[d(z, x) − 1

9
d(z, x)]

≤ 2[d(z, x) − d(un, z)] ≤ 2d(un, x).

So for any n ≥ n0,

ψ(s)(d(un , Tu n ) + d(x, Tu n)) ≤ d(un, x). 

Also from (4), we have

d(un+1, T x) ≤ H(Tun, T x)

≤ r max

{
d(un, x), d(un, Tun), d(x, T x),

d(un, T x) + d(x, Tun)

2

}

≤ r max

{
d(un, x), d(un, un+1), d(x, T x),

d(un, T x) + d(x, un+1)

2

}
.

On taking limit as n → ∞ on both sides of above inequality, we have

d(z, T x) ≤ r max

{
d(z, x), d(x, T x),

d(z, T x) + d(x, z)

2

}
.

Now we claim that

d(z, T x) ≤ r max{d(z, x), d(x, T x)}
holds for all x �= z. Indeed, if we suppose that

max

{
d(z, x), d(x, T x),

d(z, T x) + d(x, z)

2

}
= d(z, T x) + d(x, z)

2
,

4



then we have d(z, T x) ≤ r d(z,T x)+d(x,z)
2 . As r < 1, so we have d(z, T x) ≤ 2r

2−r d(x, z) <

rd(x, z) ≤ r max{d(z, x), d(x, T x)}. Thus
d(z, T x) ≤ r max{d(z, x), d(x, T x)}

holds for all x �= z. If x = z then d(z, T z) ≤ r max{d(z, z), d(z, T z)} implies that
d(z, T z) = 0, that is, z ∈ T z . Now we prove that z ∈ T z, given that

d(z, T x) ≤ r max{d(z, x), d(x, T x)}
holds for all x �= z. For this we consider the case for 0 ≤ r ≤ s < 1/2. Assume on contrary
that z /∈ T z, we can choose a ∈ T z such that

d(a, z) < d(z, T z) +
(

1

2r
− 1

)
d(z, T z)

that is

2rd(a, z) < d(z, T z). (8)

As a ∈ T z and z /∈ T z, so a �= z, and hence we have

ψ(s)(d(z, T z) + d(a, T z)) ≤ d(z, T z) ≤ d(z, a).

Thus

ψ(s)(d(z, T z) + d(a, T z)) ≤ d(z, a).

By (4), we have

H(T z, Ta) ≤ r max

{
d(z, a), d(z, T z), d(a, Ta),

d(z, Ta) + d(a, T z)

2

}

≤ r max

{
d(z, a), d(a, Ta),

d(z, a) + d(a, Ta)

2

}
= r max {d(z, a), d(a, Ta)} . (9)

Clearly, d(a, Ta ) ≤ H(T z , Ta ). B y ( 9), we obtain H(T z , Ta ) ≤ r max {d(z, a), 
H(T z , Ta )}. N o w r < 1 implies that

H(T z, Ta) ≤ rd(z, a). (10)

Hence d(a, Ta ) ≤ d(z, a). Now by (7), (9) a n d  ( 10), we have

d(z, T z) ≤ d(z, Ta) + H(T z, Ta) ≤ r max{d(z, a), d(a, Ta)} + rd(z, a)

= rd(z, a) + rd(z, a) = 2rd(z, a) < d(z, T z),

a contradiction. Hence z ∈ T z. If
1

2
≤ r ≤ s < 1 and r ≤ s, then first we show that

H(T x, T z) ≤ r max

{
d(x, z), d(x, T x), d(z, T z),

d(x, T z) + d(z, T x)

2

}
(11)

for all x ∈ X with x �= z. Now for each n ∈ N , there exists yn ∈ T x such that

d(z, yn) < d(z, T x) + 1

n
d(x, z).
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So we have

d(x, T x) + d(z, T x) ≤ d(x, yn) + d(z, T x) ≤ d(x, z) + d(z, yn) + d(z, T x)

< d(x, z) + 2d(z, T x) + 1

n
d(x, z).

Hence by (7), we have

d(x, T x) + d(z, T x) < d(x, z) + 2r max{d(z, x), d(x, T x)} + 1

n
d(x, z). (12)

If max{d(z, x), d(x, T x )} =  d(x, z), then by (12), we have

d(x, T x) + d(z, T x) < d(x, z) + 2rd(z, x) + 1

n
d(x, z)

<

(
(1 + 2r) + 1

n

)
d(x, z) ≤

(
(1 + 2s) + 1

n

)
d(x, z),

which implies that

ψ(s)(d(x, T x)+d(z, T x)) = 1 − s

2
(d(x, T x) + d(z, T x))

≤ 1

1 + 2s
(d(x, T x) + d(z, T x)) <

(
1 + 1

(1 + 2s)n

)
d(x, z).

On taking limit as n tends to ∞, we obtain that

ψ(s)[d(x, T x) + d(z, T x)] ≤ d(x, z).

Now by (4) with y = z, we get (11). If max{d(z, x), d(x, T x )} = d(x, T x ), then by (8), 
we have

d(x, T x) ≤ d(x, z) + d(z, T x) ≤ d(x, z) + rd(x, T x).

Hence

d(x, T x) ≤ 1

1 − r
d(x, z).

Now by (12), we have

d(x, T x) + d(z, T x) ≤ d(x, z) + 2rd(x, T x) + 1

n
d(x, z)

≤ d(x, z) + 2r

1 − r
d(x, z) + 1

n
d(x, z) ≤ 2

1 − r
d(x, z) + 1

n
d(x, z).

As
1

2
≤ r < 1 and r ≤ s, so we have

ψ(s)(d(x, T x) + d(z, T x)) = 1 − s

2
(d(x, T x) + d(z, T x))

≤ 1 − r

2
(d(x, T x) + d(z, T x)) ≤ d(z, x) + 1 − r

2n
d(z, x),

which on taking limit as n tends to ∞ gives that

ψ(s)(d(x, T x) + d(z, T x)) ≤ d(x, z).
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We get (11). Now by (11) with x = un and y = z, we have 
d(un+1, T z) ≤ H(Tun{, T z)

≤ r max d(un, z), d(un, Tun), d(z, T z),
d(un, T z) + d(z, Tun)

2

}

≤ r max

{
d(un, z), d(un, un+1), d(z, T z),

d(un, T z) + d(z, un+1)

2

}
,

which on taking limit as n tends to ∞ implies that

d(z, T z) ≤ rd(z, T z).

As r < 1, so we have d(z, T z) = 0, that is, z ∈ T z. 	

Remark 2.3 Let (X, d) be a complete metric space and T : X −→ CB(X). We show that
every (s, r)-contractive multivalued operator is (ψ, r)-contractive multivalued operators. We
consider the case when 0 ≤ r ≤ s < 1

2 . If d(y, T x) ≤ sd(y, x) then we have

d(x, T x) − d(y, x) ≤ d(y, T x) ≤ sd(y, x),

which implies that

d(x, T x) ≤ (1 + s)d(y, x), (13)

that is 1
1+s d(x, T x) ≤ d(y, x). As 1

1+s ≤ 1 and ψ(s) ≤ 1
2 , so we have

2ψ(s)(d(x, T x) + d(y, T x)) ≤ d(x, T x) + d(y, T x) ≤ (1 + 2s)d(y, x) ≤ 2d(x, y).

Hence

ψ(s)(d(x, T x) + d(y, T x)) ≤ d(x, y).

If 1
2 ≤ r ≤ s < 1, then 1 − s ≤ 1

2 and 1
1+s < 1. Then we have

2ψ(s)(d(x, T x) + d(y, T x)) = (1 − s)(d(x, T x) + d(y, T x))

≤ 1

2
d(x, T x) + 1

2
d(y, T x) ≤ 1 + s

2
d(x, y) + s

2
d(y, x)

≤ 1 + 2s

2
d(x, y) ≤ 3

2
d(x, y) ≤ 2d(x, y).

Thus

ψ(s)(d(x, T x ) + d(y, T x )) ≤ d(x, y).

Remark 2.4 Theorem 2.2 extends and generalizes results in [5,13,15,16,18]. 

Example 2.5 Let X = {0, 1, 2} and d be the metric on X defined by:

d(0, 0) = d(1, 1) = d(2, 2) = 0, d(0, 1) = d(1, 0) = 1

4
,

d(0, 2) = d(2, 0) = 1

3
, d(2, 1) = d(1, 2) = 1

2
.

Define the mapping T : X −→ CB(X) by

T x =
{

{0}, when x �= 2

{0, 1}, when x = 2
.
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Note that, for all x, y ∈ X, and any s ∈ [0, 1), we have

ψ(s)(d(x, T x) + d(y, T x)) ≤ d(x, y).

If s = 4

5
>

3

4
= r, then ψ(s) = 1

10
. Note that

H(T x, T y) ≤ rMT (x, y)

is satisfied for all x, y ∈ X. Thus, all the conditions of Theorem 2.24 are satisfied.

Example 2.6 Let X = [0, 10] be a usual metric space. Define T : X → CB(X), where

T x = [0, ke− 1
2 x2 + 1)], where k ∈ (0, 1

20 ). Fix x, y ∈ X such that ψ(s)(d(x, T x) +
d(y, T x)) ≤ d(x, y). Note that

H(T x, T y) = ke− 1
2
∣∣x2 − y2

∣∣ = ke− 1
2 |x − y| |x + y| ≤ 20ke− 1

2
∣∣x2 − y2

∣∣
≤ e− 1

2 |x − y| = e− 1
2 d( f x, f y) ≤ rMT (x, y)

for all x, y ∈ X, where MT (x, y) is defined in (1) a n d r = e− 2
1 
. Then√for any 0√< r < s

√< 1 T is (ψ, r)-contractive multivalued mapping. Note that every x ≤ 10 e − 2e 5(5e − e) 
is such that x ∈ T x .

2

Corollary 2.7 Let (X, d) be a complete metric space and T : X −→ CB (X) a multivalued 
mapping. Let ψ be the same as defined in Theorem 2.2 and ψ1(s) = ψ(s) . I f t h e r e 

e x i s t0 ≤ r ≤ s < 1 such that

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y) implies that

H(T x, T y) ≤ rMT (x, y) (14)

for all x, y ∈ X whenever x �= y. Then T has a fixed point.

2

Corollary 2.8 Let (X, d) be a complete metric space and T : X −→ CB (X) a multivalued 
mapping. Let ψ be the same as defined in Theorem 2.2 and ψ1(s) = ψ(s) . I f t h e r e 

e x i s t0 ≤ r ≤ s < 1 such that

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y) implies

H(T x, T y) ≤ r max{d(x, y), d(x, T x), d(y, T y)}

for all x, y ∈ X whenever x �= y. Then T has a fixed point.

2

Remark 2.9 Let (X, d) be a complete metric space and T : X −→ CB (X) a multivalued 
mapping. Let ψ be the same as defined in Theorem 2.2 and ψ1(s) = ψ(s) . Suppose that there
exists 0 ≤ r ≤ s < 1 satisfying

1

1 + r
d(x, T x) ≤ d(x, y) ≤ 1

1 − s
d(x, T x) implies (15)

H(T x, T y) ≤ r max{d(x, y), d(x, T x), d(y, T y)}. (16)
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Above contraction condition [18, Theorem 2.7] was employed to prove the existence of
fixed points of T . Now if 0 ≤ r ≤ s < 1

2 , then 4ψ1(s) < 1 and we have

4ψ1(s)(d(x, T x) + d(y, T x)) ≤ 1

1 + s
d(x, T x) + 1

1 + s
d(y, T x)

≤ 2

1 + s
d(x, T x) + 1

1 + s
d(y, x)

≤ 2(1 + r)

1 + s
d(x, y) + 1

1 + s
d(y, x)

≤ 4d(x, y).

Thus

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y).

When 1
2 ≤ r ≤ s < 1. Then

4ψ1(s)(d(x, T x) + d(y, T x)) ≤ (1 − s)d(x, T x) + (1 − s)d(y, T x)

≤ 2(1 − s)d(x, T x) + (1 − s)d(y, x)

≤ 2(1 − s)d(x, T x) + d(x, T x)

≤ (3 − 2s)d(x, T x) ≤ 2(1 + r)d(x, y) ≤ 4d(x, y).

Hence we obtain

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y).

Corollary 2.8 can be viewed as a generalization of results in [18, Theorem 2.7] which in 
turn generalize the results in [13, Theorem 1.6].

2

Corollary 2.10 Let (X, d) be a complete metric space and T : X −→ CB (X) a multivalued 
mapping. Let ψ be the same as defined in Theorem 2.2 and ψ1(s) = ψ(s) . I f t h e r e 

e x i s t0 ≤ r ≤ s < 1 and α ∈ [0, 1
3 ) such that

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y) implies

H(T x, T y) ≤ α[d(x, y) + d(x, T x) + d(y, T y)]
for all x, y ∈ X whenever x �= y and r = 3α. Then T has a fixed point.

For single valued mappings, Theorem 2.2 reduces to the following corollary:

Corollary 2.11 Let (X, d) be a complete metric space and T : X −→ X a single valued
mapping. Let ψ(s) be given as in Theorem 2.2. If there exist 0 ≤ r ≤ s < 1 such that

ψ1(s)(d(x, T x) + d(y, T x)) ≤ d(x, y) implies

d(T x, T y) ≤ r max

{
d(x, y), d(x, T x), d(y, T y),

d(x, T y) + d(y, T x)

2

}

for all x, y ∈ X whenever x �= y. Then T has a unique fixed point.

Proof Existence of fixed point follows from Theorem 2.2. We prove the uniqueness. If there 
exist z1 �= z2 such that z1 = T z1 and z2 = T z2. Then

ψ(s)(d(z1, T z1) + d(z2, T z1)) ≤ d(z1, T z1) + d(z2, T z1)

= d(z1, z1) + d(z2, z1) ≤ d(z1, z2),
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which implies that

ψ(s)(d(z1, T z1) + d(z2, T z1)) ≤ d(z1, z2).

It follows that

d(z1, z2) = d(T z1, T z2)

≤ r max{d(z1, z2), d(z1, T z1), d(z2, T z2),
d(z2, T z1) + d(z1, T z2)

2
}

≤ r max{d(z1, z2), d(z1, z1), d(z2, z2)} ≤ rd(z1, z2).

Hence d(z1, z2) = 0, that is, z1 = z2. 	


3 Characterization of metric completeness for multivalued mappings

Motivated by the work of Suzuki [24] we prove the characterization of metric space com-
pleteness for the class of (ψ, r)-contractive multivalued mappings.

Theorem 3.1 Let (X, d) be a metric space then the following statements are equivalent:

(a) (X, d) is complete;
(b) For each r ∈ [0, 1) and s ≥ r, every mapping T : X −→ CB(X) such that

ψ(s)((d(x, T x) + d(y, T x)) ≤ d(x, y) implies

H(T x, T y) ≤ rMT (x, y) (17)

for all x, y ∈ X has a fixed point.

Proof By Theorem (2.1) (a) ⇒ (b). Now we prove that (b) ⇒ (a). Suppose on contrary
that (X, d) is not complete. That is there exists a Cauchy sequence {un} which does not
converge. Define a function f : X → [0,∞) by f (x) = limn→∞ d(x, un) for x ∈ X.

Since f (x) > 0 and limn→∞ f (un) = 0 therefore for every x ∈ X there exists υ ∈ N

such that f (uυ) ≤ ψ(s)r
4+r+ψ(s)r f (x). We put T (x) = {un : f (un) ≤ ψ(s)r

4+r+ψ(s)r f (x)}. Define
g(x) = supy∈T x f (y), then g(x) ≤ ψ(s)r

4+r+ψ(s)r f (x) for all x ∈ X. Since f (y) < f (x) for
all y ∈ T x, therefore T has no fixed point. By the definition of mapping f we have

f (x) − f (y) ≤ d(x, y) ≤ f (x) + f (y) for all y ∈ T x, (18)

f (y) − f (x) ≤ d(x, y) ≤ f (x) + f (y) for all y ∈ T x . (19)

This implies

f (x) − g(x) ≤ d(x, T x) ≤ f (x) + g(x), (20)

H(T x, T y) ≤ g(x) + g(y). (21)

Now fix x, y ∈ X such that ψ(s)((d(x, T x ) + d(y, T x )) ≤ d(x, y), we need to show that 
17 holds. Observe that⎧⎨

⎩
d(x, y) ≥ ψ(s)((d(x, T x) + d(y, T x)) ≥ ψ(s)(d(x, T x)

≥ ψ(s) f (x) − g(x) ≥ ψ(s)
(
1 − ψ(s)r

4+r+ψ(s)r

)
f (x) =

(
(4+r)ψ(s)
4+r+ψ(s)r

)
f (x).

(22)
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Case (1) when f (y) ≥ f (x), then by

H(T x, T y) ≤ g(x) + g(y) = 4 + r

4
(g(x) + g(y)) − r

4
(g(x) + g(y))

≤ 4 + r

4

ψ(s)r

4 + r + ψ(s)r
( f (x) + f (y)) − r

4
(g(x) + g(y)) + r

4
( f (y) − f (x))

≤ r

4

(4 + r)ψ(s)

4 + r + ψ(s)r
( f (x) + f (y)) − r

4
(g(x) + g(y))

+ r

4
( f (y) − f (x)) + r

4
( f (x) − f (y))

≤ r

4
( f (x) + f (y)) − r

4
(g(x) + g(y)) + r

4
( f (y) − f (x)) + r

4
( f (x) − f (y))

≤ r

4
d(x, T x) + r

4
d(y, T y) + r

4
d(x, y) + r

4
d(x, y)

≤ r

4
(4MT (x, y)) = rMT (x, y).

Case (2) when f (y) < f (x), then

H(T x, T y) ≤ g(x) + g(y) ≤ ψ(s)r

4 + r + ψ(s)r
( f (x) + f (y))

= ψ(s)r

4 + r + ψ(s)r
f (x) + ψ(s)r

4 + r + ψ(s)r
f (y)

≤ ψ(s)r

4 + r + ψ(s)r
f (x) + ψ(s)r

4 + r + ψ(s)r
f (x)

≤ ψ(s)r

4 + r
d(x, T x) + r

4 + r
d(x, y) ≤ r

4
d(x, T x) + r

4
d(x, y)

≤ r

4
(2MT (x, y)) ≤ rMT (x, y).

Hence ψ(s)((d(x, T x) + d(y, T x)) ≤ d(x, y) implies

H(T x, T y) ≤ rMT (x, y)

for all x, y ∈ X. this implies that T has a fixed point, a contradiction. Hence X is complete
and consequently (b) ⇒ (a). 	


4 Data dependence of the fixed point set

Let (X, d) be a metric space and and T : X −→ P(X) (the collection of all the subsets of
X ) be a MWP operator. Define a multivalued operator T∞ : G(T ) → P(Fix(T )) by

T∞(x, y) = {z ∈ Fix(T ) : there exists a sequence of successive approximations

of T starting from (x, y) that converges to z}.
Further

G(T ) = {(x, y) : x ∈ X, y ∈ T x}
is called graph of multivalued mapping T . A selection for T is a single valued mapping
t : X → X such that t x ∈ T x for all x ∈ X.
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Definition 4.1 [20] L e t  (X, d) be a metric space and T : X −→ P(X) a MWP operator. 
Then T is called c-multivalued weakly Picard (briefly c-MWP) operator if c > 0 and t her e 
exists a selection t∞ of T ∞ such that

d(x, t∞(x, y)) ≤ cd(x, y) (23)

for all (x, y) ∈ G(T ).

One of the main result concerning c-MWP operators is the following:

Theorem 4.2 [20] Let (X, d) be a metric space and T1, T2 : X → P(X) two multivalued 
operators. Suppose that:

(i) Ti is a ci -MWP operator for each i ∈ {1, 2};
(ii) There exists λ > 0 such that H(T1x, T2x) ≤ λ, for all x ∈ X.

Then

H(Fi  x(T1), Fi  x(T2)) ≤ λ max{c1, c2}. 
Mo¸t a n d P e t r u ¸ sel [15] proved the following result.

Theorem 4.3 [15] Let (X, d) be a metric space and T1, T2 : X → P(X) two multivalued 
operators. If

(i) Ti is a bi -KS multivalued operator for each i ∈ {1, 2};
(ii) There exists λ > 0 such that H(T1x, T2x) ≤ λ, for all x ∈ X.

Then:

(a) Fix(Ti ) ∈ CB(X), i ∈ {1, 2};
(b) Each Ti is a MWP operator and

H(Fix(T1), Fix(T2)) ≤ λ

1 − max{b1, b2} . (24)

Recently Popescu [18] proved the following theorem.

Theorem 4.4 Let (X, d) be a metric space and T1, T2 : X → P(X) two multivalued
operators. If

(i) Ti is an (1, ri )-contractive multivalued operator for each i ∈ {1, 2};
(ii) There exists λ > 0 such that H(T1x, T2x) ≤ λ, for all x ∈ X.

Then:

(a) Fix(Ti ) ∈ CB(X), i ∈ {1, 2};
(b) Each Ti is a MWP operator and

H(Fix(T1), Fix(T2)) ≤ λ

1 − max{r1, r2} . (25)

Now we prove the following result for (ψ, r)-contractive multivalued operators.

Theorem 4.5 Let (X, d) be a complete metric space and T1, T2 : X → P(X) two multival-
ued operators. If

(i) Ti is (ψ, ri )-contractive multivalued operators for each i ∈ {1, 2};
(ii) There exists λ > 0 such that H(T1x, T2x) ≤ λ, for all x ∈ X.

12



Then:

(a) Fix(Ti ) ∈ CB(X), i ∈ {1, 2};
(b) Each Ti is a MWP operator and

H(Fix(T1), Fix(T2)) ≤ λ

1 − max{r1, r2} . (26)

Proof From Theorem 2.2, Fi  x(Ti ) is nonempty for each i ∈ { 1, 2}. Let xn ∈ Fi  x(T1) be 
such that xn → z as n → ∞, that is,

lim
n→∞ d(xn, z) = 0. (27)

Note that

ψ(s)(d(xn, T1xn) + d(z, T1xn)) = ψ(s)d(z, xn) ≤ d(z, xn).

Thus

d(z, T1z) ≤ d(z, xn) + d(xn, T1z) ≤ d(z, xn) + H(T1xn, T1z)

≤ d(z, xn)+r1 max

{
p(z, xn), p(z, T1z), p(T1xn, xn),

p(z, T1xn)+ p(xn, T1z)

2

}
≤ d(z, xn) + r1d(z, xn).

Taking limit as n → ∞, we obtain that d(z, T1z) = 0, that is, z ∈ T1z. Hence Fi  x(T1) is 
closed. In the same way, we can prove that Fi  x(T2) is closed. Using arguments as in proof 
of the Theorem 2.2, each Ti is a MWP operator. To prove

H(Fix(T1), Fix(T2)) ≤ λ

1 − max{r1, r2} .

(C1) A “Classical” proof: Let a > 1. Then for an arbitrary x0 ∈ Fix(T1), there exists
x1 ∈ T2x0 such that

d(x0, x1) ≤ aH(T1x0, T2x0).

As x1 ∈ T2x0, so there exists x2 ∈ T2x1 such that

ψ(s)(d(x0, T2x0) + d(x1, T2x0)) ≤ ψ(s)d(x0, x1) ≤ d(x0, x1),

which implies that

d(x1, x2) ≤ aH(T2x0, T2x1)

≤ ar2 max

{
d(x0, x1), d(x0, T x0), d(x1, T x1),

d(x0, T x1) + d(x1, T x0)

2

}
≤ ar2d(x0, x1).

Continuing this way, we can obtain a sequence {xn} in X such that xn+1 ∈ T2xn and

d(xn, xn+1) ≤ ar2d(xn, xn+1) ≤ . . . ≤ (ar2)
nd(x0, x1).

Thus

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+p−1, xn+p)

≤ (ar2)
nd(x0, x1) + . . . + (ar2)

n+p−1d(x0, x1) ≤ (ar2)n

1 − ar2
d(x0, x1). (28)

13



Chose 1 < a < min
{

1
r1

, 1
r2

}
. This implies that {xn} is Cauchy sequence in X. Then there

exists u in X such that xn → u as n → ∞ . Following arguments similar to those given in 
Theorem 2.2, it follows that u ∈ T2u. By (28), we obtain that

d(xn, u) ≤ (ar2)n

1 − ar2
d(x0, x1) (29)

Thus, in particular

d(x0, u) ≤ 1

1 − ar2
d(x0, x1) ≤ λ

1 − ar2
. (30)

In a similar way, we conclude that for each z0 ∈ Fix(T2), there is an x ∈ Fix(T1) such
that

d(z0, x) ≤ 1

1 − ar1
d(z0, z1) ≤ λ

1 − ar1
. (31)

By (30) a n d  ( 31), we obtain that

H(Fix(T1), Fix(T2)) ≤ λ

1 − max{ar1, ar2} .

Letting a ↘ 1 we get the conclusion.

(C2) Proof based on MWP operator technique: Suppose that T is a (ψ, r)-contractive multi-
valued operators. Now we show that T is c-MWP operator with c = 1 

1 
r . Then the 

conclusion will follow from Theorem 4.2. L e t a > 1, x ∈ X and y ∈ T x  be
−
arbitrary 

chosen. By a similar approach to (C1), we obtain a sequence of successive approximations 
{xn } starting from (x = x0, y = x1) ∈ G(T ) such that

d(xn, xn+p) ≤ (ar2)n

1 − ar2
d(x0, x1),

for each n ∈ N and p → +∞ in the above estimation we get that d(xn, u) ≤ (ar2)n

1−ar2
d(x0, x1),

for each n ∈ N. For n = 0 we obtain that d(x, u) ≤ 1
1−ar2

d(x, y). Letting a ↘ 1 we obtain

d(x, u) ≤ 1
1−r d(x, y). Thus T is a 1

1−r -MWP operator. 	


5 Application in dynamic programming

A dynamic process consists of a state space (a set of initial states, actions and transitions) and
a decision space (set of possible input and output actions). We assume U and V are Banach
spaces where W ⊆ U is state space and D ⊆ V is decision space. Now define the mappings
as

τ : W × D −→ W, g : W × D −→ R,G : W × D × R −→ R,

where R is the field of real numbers. Dynamic programming provides tools for mathematical
optimization and computer programing as well. It is well known that the problem of dynamic
programming related to multistage process reduces to the problem of solving the functional
equation:

q(x) := sup
y∈D

{g(x, y) + G(x, y, q(τ (x, y)))}, x ∈ W. (32)
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For the detailed background of the problem (see [1–4,17,22]). Let B(W ) be the set of all
bounded real-valued functions onW . For an arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |hx |.
Then (B(W ), ‖·‖) is a Banach space endowed with the metric d defined by

d(h, k) = sup
x∈W

|hx − kx | (33)

where h, k ∈ B(W ). Suppose that the following conditions hold:
(DT − 1) functions G and g are bounded.
(DT − 2) For h, k ∈ B(W ) and x, z ∈ W, define T by

T (hx) := sup
y∈D

{g(x, y) + G(x, y, h(τ (x, y)))}. (34)

Moreover, there exist 0 ≤ r ≤ s < 1 such that

|G(x, y, hz) − G(x, y, kz)| ≤ rMT (hz, kz)

for all h, k ∈ B(W ) and x, z ∈ W, where

MT (hz, kz) = max

{
d(hz, kz), d(hz, Thz), d(kz, T kz),

d(hz, T kz) + d(kz, Thz)

2

}
.

Theorem 5.1 If conditions (DT − 1) and (DT − 2) are satisfied, then the functional Eq.
(32) has a unique bounded solution.

Proof Note that (B(W ), d) is a complete metric space and T is a self map of B(W ). Let λ

be an arbitrary positive number and h1, h2 ∈ B(W ). Choose x ∈ W and y1, y2 ∈ D such
that

Th1x < g(x, y1) + G(x, y1, h1(τ (x, y1))) + λ, (35)

Th2x < g(x, y2) + G(x, y2, h2(τ (x, y2))) + λ, (36)

Th1x ≥ g(x, y2) + G(x, y2, h1(τ (x, y2))), (37)

Th2x ≥ g(x, y1) + G(x, y1, h2(τ (x, y1))). (38)

By (35) a n d  ( 38), we have

Th1x − Th2x < G(x, y1, h1(τ (x, y1))) − G(x, y1, h2(τ (x, y2))) + λ

≤ |G(x, y1, h1(τ (x, y1))) − G(x, y1, h2(τ (x, y2)))| + λ

≤ rMT (h1x, h2x) + λ.

That is

(39)Th 1x − Th 2x ≤ rM T (h1x, h2x) + λ. 

By (36) a n d  ( 37), we obtain

(40)Th 2x − Th 1x ≤ rM T (h1x, h2x) + λ. 

Finally, by (39) a n d  ( 40), we have

|Th1x − Th2x | ≤ rMT (h1x, h2x) + λ, (41)

that is

d(Th1, Th2) ≤ rMT (h1x, h2x).
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As above inequality is true for any x ∈ W , ψ and λ > 0, so

ψ(s)(d(h, Th) + d(k, Th)) ≤ d(h, k) implies d(Th1, Th2) ≤ rMT (h1x, h2x).

Thus all the conditions of Corollary 2.11 are satisfied for the mapping T. So functional 
Eq. 32 has a unique bounded solution. 	

Example 5.2 Let U = V = R, W = [0, 20] and D = [0, 10]. Consider the functional
equation

q(x) = max
y∈D

{
2x2y + x

30 + 30x2y
cos(q(

x + y

2
))

}
, x ∈ W. (42)

For each h, k ∈ B(W ), define the functional

Th(x) = max
y∈D

{
2x2y + x

30 + 30x2y
cos(h(

x + y

2
))

}
, x ∈ W.

Suppose that g(x, y) = 2x2y, G(x, y, z) = x
2+2x2 y

cos(hz). Clearly g,G are bounded
and

|G(x, y, hz) − G(x, y, kz)| =
∣∣∣∣ x

30 + 30x2y
cos(hz) − x

30 + 30x2y
cos(kz)

∣∣∣∣
≤ x

30 + 30x2y
|cos(hz) − cos(kz)| ≤ x

30 + 30x2y
|hz − kz|

≤ 2

3
sup
z∈W

|hz − kz| = 2

3
d(h, k) ≤ rMT (h, y)

for all ∈ B(W ), where r = 23 . Hence all the conditions of Theorem 5.1 are satisfiend and 
consequently functional Eq. (42) has a unique and bounded solution.

6 Homotopy result

Following is the local fixed point result for (ψ, r)-contractive multivalued mappings.

Theorem 6.1 Let (X, d) be a complete metric space, x0 ∈ X and a > 0. Suppose that
T : B(x0, a) → CB(X) be (ψ, r)-contractive multivalued mappings and d(x0, T x0) <

(1 − s)a. Then T has a fixed point in B(x0, a).

Proof Let 0 < a1 < a be such that B̃(x0, a1) ⊂ B(x0, a) and d(x0, T x0) < (1 − s)a1 <

(1 − s)a. Let x1 ∈ T x0 be such that d(x0, x1) < (1 − s)a1. Then for h = 1√
r

> 1 and
x1 ∈ T x0 there exists x2 ∈ T x1 such that

d(x1, x2) ≤ hH(T x0, T x1)

Since ψ(s)(d(x0, T x0) + d(x1, T x0)) = ψ(s)d(x0, T x0) ≤ ψ(s)d(x0, x1) ≤ d(x0, x1),
therefore we obtain

d(x1, x2) ≤ hH(T x0, T x1) = 1√
r
H(T x0, T x1) ≤ √

rMT (x0, x1)

≤ √
r max

{
d(x0, x1), d(x0, T x0), d(x1, T x1),

d(x0, T x1) + d(T x0, x1)

2

}
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≤ √
r max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x1) + d(x1, x2)

2

}

≤ √
r max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x1) + d(x1, x2)

2

}
≤ √

rd(x0, x1) <
√
r(1 − s)a1 ≤ √

r(1 − r)a1.

Also, we have x2 ∈ B(x0, a) because

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) < (1 − s)a1 + √
r(1 − r)a1

≤ (1 − r)a1 + √
r(1 − r)a1 = (1 − r)(1 + √

r)a1.

In this way, we obtain inductively a sequence (xn)n∈N satisfying (i) xn ∈ B(x0, a); for
each n ∈ N, (ii) xn+1 ∈ T xn, for all n ∈ N, (iii) d(xn, xn+1) ≤ (

√
r)n(1−r)s for each n ∈ N.

From (iii) the sequence (xn)n∈N is Cauchy and hence, it converges to a certain u ∈ B(x0, a).
Following similar arguments to those given in Theorem 2.2, we obtain u ∈ Tu . 	


Now we present a homotopy result for (ψ, r)-contractive multivalued mappings.

Theorem 6.2 Let (X, d) be a complete metric space and U an open subset of X. Let G :
U×[0, 1] → P(X)be amultivalued operator such that the following conditions are satisfied:

h-1 x /∈ G(x, t), for each x ∈ ∂U (boundary of U) and each t ∈ [0, 1];
h-2 G(., t) : U → P(X) is a (ψ, r)-contractive multivalued mappings for each t ∈

[0, 1];
h-3 there exists a continuous increasing function ρ : [0, 1] → R such that

H(G(x, t),G(x, s)) ≤ |ρ(t) − ρ(s)| for all t, s ∈ [0, 1] and each x ∈ U ;
h-4 G : U × [0, 1] → P(X) is closed.

Then G(., 0) has a fixed point if and only if G(., 1) has a fixed point.

Proof Let G(., 0) has a fixed point z, then (h-1) implies that z ∈ U . Define


 = {(t, x) ∈ [0, 1] ×U | x ∈ G(x, t)}.
Since (0, z) ∈ 
 therefore 
 �= ∅, as. Now we define a partial order on 
, that is

(t, x) ≤ (s, y) if and only if t ≤ s and d(x, y) ≤ 2

1 − r
[ρ(s) − ρ(t)]

where 0 ≤ r < 1. Let M be a totally ordered subset of 
 and t∗ := sup{t | (t, x) ∈ M}.
Consider a sequence (tn, xn)n∈N ⊂ M such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗ as
n → ∞. Then

d(xm, xn) ≤ 2

1 − r
[ρ(tm) − ρ(tn)], for each m, n ∈ N,m > n.

Taking limit as m, n → ∞, we obtain d(xm, xn) → 0. Thus (xn)n∈N is Cauchy sequence
which converges to (say) x∗ in X . As xn ∈ G(xn, tn), n ∈ N and G is closed, so x∗ ∈
G(x∗, t∗). Also, from (h-1) we have x∗ ∈ U . Hence (t∗, x∗) ∈ 
. SinceM is totally ordered,
therefore (t, x) ≤ (t∗, x∗), for each (t, x) ∈ M. That is, (t∗, x∗) is an upper bound of M . By
Zorn’s Lemma 
 have a maximal element (t0, x0) ∈ 
. We claim that t0 = 1. Suppose that
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t0 < 1. Choose a > 0 and t ∈ (t0, 1] such that B(x0, a) ⊂ U and a = 2
1−r [ρ(t) − ρ(t0)].

Note that

d(x0,G(x0, t)) ≤ d(x0,G(x0, t0)) + H(G(x0, t0),G(x0, t))

≤ [ρ(t) − ρ(t0)] = (1 − r)a

2
< (1 − r)a.

Thus G(., t) : B(x0, a) → CL (X) satisfies, for all t ∈ [ 0, 1], the assumptions of Theorem 
6.1. Hence, for all t ∈ [ 0, 1], there exists x ∈ B(x0, a) such that x ∈ G(x, t) which implies 
that (t, x) ∈ 
. Now

d(x0, x) ≤ a = 2

1 − r
[ρ(t) − ρ(t0)],

gives (t0, x0) < (t, x), a contradiction to the maximality of (t0, x0). Conversely if G(., 1)
has a fixed point, then by a similar approach we obtain that G(., 0) has a fixed point.

Acknowledgments The authors are thankful to the editor and reviewers for their valuable suggestions and
comments for the improvement of this paper.
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