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One Sentence Summary: Empirical evidence from grasslands around the world shows a 

humped-back relationship between biomass production and plant species richness.  

 

Abstract: The search for predictions of species diversity across environmental gradients 

has challenged ecologists for decades. The humped-back model (HBM) suggests that plant 

diversity peaks at intermediate productivity; at low productivity few species can tolerate 

the environmental stresses and at high productivity a few highly competitive species 

dominate. Over time the HBM has become increasingly controversial, and recent studies 

claim to have refuted it. Here, using data from coordinated surveys conducted throughout 

grasslands worldwide, and comprising a wide range of site productivities, we provide 

strong evidence in support of the HBM pattern, at both global and regional extents. The 

relationships described here provide a strong foundation for further research into the local, 

landscape, and historical factors that ensure the maintenance of biodiversity. 

 

Main Text: Despite a long history of research, the nature of basic patterns between 

environmental factors and biological diversity remain poorly defined. A notable example is the 

mailto:lfraser@tru.ca
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relationship between plant diversity and productivity, which has stimulated a long-running 

debate (1-6). A classic hypothesis, the humped-back model (HBM) (7), states that plant species 

richness peaks at intermediate productivity, taking above-ground biomass as a proxy for annual 

net primary productivity (7-9). This diversity peak is driven by two opposing processes. In 

unproductive ecosystems with low plant biomass, species richness is limited by abiotic stress, 

such as insufficient water and mineral nutrients, which few species are able to tolerate. In 

contrast, in the productive conditions that generate high plant biomass, competitive exclusion by 

a small number of highly competitive species is hypothesized to constrain species richness (7-9). 

Other mechanisms that may explain the unimodal relationship between species richness and 

biomass include disturbance (7, 10), evolutionary history and dispersal limitation (11, 12), and 

the reduction of total plant density in productive communities (13).  

 

Since its initial proposal a range of studies have both supported and rejected the HBM, and three 

separate meta-analyses reached different conclusions (14-17). While this inconsistency may 

indicate a lack of generality of the HBM, it may instead reflect a sensitivity to study 

methodology, including the plant community types considered, the taxonomic scope, the range 

of site productivities sampled, the spatial grain and extent of analyses (17, 18), and the particular 

measure of net primary productivity used (19).  The question therefore remains open as to what 

the form of the relationship between diversity and productivity is, and whether the HBM serves 

as a useful and general model for grassland ecosystem theory and management. 

 

We quantified the form and strength of the richness-productivity relationship using globally 

coordinated surveys (20), which yielded scale-standardized data, and were distributed across 30 
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sites in 19 countries and 6 continents (Fig. 1). Collectively, our samples spanned a broad range 

of biomass production (from 2 to 5,711 g m
-2

) and grassland community types, including natural 

and managed (pastures, meadows) grasslands over a wide range of climatic zones (temperate, 

Mediterranean and tropical), and altitudes (lowland to alpine) (table S1). Our protocol involved 

sampling sixty-four 1 m
2
 quadrats within 8 m x 8 m grids (18, 21). At each site, between two and 

14 grids were sampled, thus resulting in 128 – 896 quadrats per site. In each 1 m
2
 quadrat, we 

identified and counted all plant species, and harvested above-ground biomass and plant litter. 

Litter production is a function of annual net primary productivity in grasslands and can have 

profound effects on the structure and functioning of communities, from altering nutrient cycling 

to impeding vegetative growth and seedling recruitment (22, 23), thereby also playing a major 

role in driving community structure. Indeed, the HBM was originally defined in terms of live 

biomass plus litter material (7, 8). Most of the sites in our survey were subject to some form of 

management, usually livestock grazing or mowing.  In this respect, our sites are representative of 

most of the world’s grasslands.  Our sampling was conducted at least three months after the last 

grazing, mowing or burning event, and at the annual peak of live biomass, which, when coupled 

with litter constitutes a reliable measure of annual net aboveground production in herbaceous 

plant communities (24). 

 

Our results strongly support the humped-back model of the plant richness-productivity 

relationship.  Using a global-extent regression model (N = 9631 1 m
2
 quadrats; 21) we found that 

plant richness formed a unimodal relationship with productivity (Fig. 2A), that is characterized 

by a highly significant concave-down quadratic regression (negative binomial generalized linear 

model; Table 1). This relationship was not sensitive to the statistical model used; the hump-
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backed relationship was also evident when we used a negative binomial generalized linear mixed 

model (GLMM) that accommodated the hierarchical structure of our sampling design (grids 

nested within sites; Table 1 and fig. S1). 

 

At a sampling grain of 1 m
2
, 19 of 28 site level analyses (68%) yielded significant concave-down 

relationships (table S2 and Fig. 2A). This contrasts markedly with the results of Adler et al. (1), 

who found only 1 of their 48 within-site analyses to be significantly concave-down.  We also 

found the form of the productivity-diversity relationship to be robust to sampling grain: using 

grains of 1 m
2
 up to 64 m

2
, each time maintaining a global extent, we consistently found a 

significant concave-down relationship, though the proportion variation explained tended to 

decrease with increasing grain (fig. S2). 

 

The HBM predicts a boundary condition or upper limit to diversity that, in any given site, may 

not be realized for a variety of reasons (18). Consistent with this view, our global-extent 

association is characterized by a significant concave-down quantile regression (95
th

 percentile) 

(Table 1), below which considerable scatter exists (Fig. 2A).  This pattern was also insensitive to 

the statistical method used; a hierarchical Bayesian analysis that accommodated the nested 

sampling design, and that enabled both the mean and the variance of species richness to be 

modeled more accurately against (log-transformed) biomass, also revealed a significant 95
th

 

percentile quantile regression (fig. S3). Likewise, we found a significant, concave-down quantile 

regression (95
th

 percentile) between the maximum (quadrat-scale) richness found within a grid 

and the total biomass of the same quadrat (Table 1; fig. S4).  Each of these approaches to 

characterizing boundary conditions suggests the existence of a “forbidden space”, wherein high 
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productivity precludes high local diversity.  Furthermore, they suggest that extremely low -

productivity sites rarely accommodate high diversity. 

 

Why do our data show a hump-backed relationship while those of Adler et al. (1), or related 

studies (4, 6), do not? One possibility is that data limitations can thwart detection of the HBM 

(18).  For example, the data used by Adler et al. differed from ours in the following potentially 

important ways: (i) they exhibited a maximum live biomass of only 1,535 gm
-2

 (ours was 3,374 

gm
-2

) (ii) litter was not included within the calculation of biomass, and (iii) sample size was 

limited to 30 quadrats per site (ours ranged from 128 to 894 quadrats per site; table S1).  We 

conducted a form of sensitivity analysis in which we re-ran our statistical analyses using random 

subsets of our data that were constrained to exhibit similar properties to those of the Adler et al. 

dataset. Specifically, after limiting the overall dataset to less than 1,535 gm
-2

 and excluding litter, 

we randomly selected 30 quadrats per site 500 times, each time conducting the within-site 

regression analyses (N = 30 for each of the 28 site-level GLMs conducted per subsampling 

iteration).  For each iteration, we also calculated the average range of biomass spanned by the 28 

site-level relationships. Across the 500 iterations (one example set of outcomes shown in Fig. 

2B), the average proportion of significant concave-down, within-site regressions was 0.31  

0.003 (SEM), significantly less than our observed proportion of 0.68 (fig. S5). Moreover, when 

significant concave-down relationships were detected, they tended to span a broader range of 

biomass than the remaining forms (including non-significant relationships). Specifically, in 458 

of the 500 iterations (92%), the mean biomass range of the concave-down regressions was larger 

than the mean of the remaining forms’ biomass ranges (Binomial test: P < 2.2 x 10
-16

). Finally, 

the 48 within-site analyses of Adler et al. spanned, on average, a live biomass range of 428.7gm
-2
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 38.36 (range: 89 – 1217 gm
-2

).  This is (i) less than half of the average range encompassed by 

our 28 site-level analyses shown in Fig. 2A (mean = 1,067.5 gm
-2

  140.63; range 286 to 3,256 

gm
-2

), and (ii) almost 50% narrower than the smallest average biomass range encompassed by 

our 500 random subset analyses (627.4 gm
-2

) (fig. S6).  Taken together, these findings strongly 

suggest that we were able to detect more concave-down relationships because of the greater 

sample sizes and biomass ranges in our analysis.   

 

It has been suggested (2) that some previous studies, including Adler et al (1), failed to support 

the HBM because they excluded litter. Although we do find a significant concave-down 

relationship at the global extent using only live biomass (Table 1), a comparison of models using 

biomass versus biomass+litter (both N = 9,631) shows total biomass to provide a far better fit 

(residual deviance = 10,105 (live) versus 10,037 (total); Vuong z-statistic for comparing non-

nested models: -13.4; P < 0.001). It has also been suggested that previous surveys failed to 

adequately represent high-productivity communities. Indeed, our high-biomass quadrats (1,011 

samples were over 1,000 gm
-2

, approximately 10% of the 9,631 samples; maximum 5,711 gm
-2

), 

contributed considerably to the right-hand part of the fitted humped-back regression. This could 

be a reason why the dataset of Adler et al. (1) (in which only 0.5% of samples were over 1,000 

gm
-2

 and a maximum of 1,534 gm
-2

) failed to support the HBM. Our results therefore show that a 

test of the HBM in herbaceous plant communities yields the expected pattern when it is robust 

and comprehensive; spans a wide range of biomass production (from 1 to at least 3,000 dry gm
-2 

yr
-1

), and provides sufficient replication of quadrats along the productivity gradient. 
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Competitive exclusion has been cited as the primary factor driving low species numbers at high 

plant biomass (7, 8, 25). However, in the case of nitrogen addition the negative relationship 

between productivity and species richness has been shown to diminish over time (26 but see 27, 

28). It may be that low species richness in high-productivity conditions arises in part because 

most such habitats are anthropogenic, and there are few species in the local pool adapted to these 

conditions (11, 12). If so, it is possible that species will eventually immigrate from distant pools, 

so that the right-hand part of the hump will then flatten out. 

 

We have shown a global-scale concave-down unimodal relationship between biomass production 

and richness in herbaceous grassland communities. However, the original HBM (7) is vaguely 

articulated by the standards of modern ecological theory and it is clear that more work is needed 

to determine the underlying causal mechanisms that drive the unimodal pattern (1, 6, 17, 18). We 

recognize that in our study and many others productivity accounts for a fairly low proportion of 

the overall variation in richness, and that many other drivers of species richness exist (28, 29). 

Accordingly, we echo the call of Adler et al. (1) for additional efforts to understand the 

multivariate drivers of species richness.  
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Table 1.  Regression results. Results of regression analyses of the relationship between productivity and species richness, measured at 

a global extent and a sampling grain of 1m
2
 quadrat.  Total biomass = live biomass + litter biomass.  All linear and quadratic term 

coefficients were highly significant (P < 0.001).  

Productivity 

measure 

Type of regression Sample size Test of 

model fit 

Intercept 

estimate  

SEM 

Linear term 

coefficient  

SEM 

Quadratic term 

coefficient  

SEM 

Total 

biomass 

negative binomial GLM (log-

link function) 

9631 quadrats Likelihood 

ratio stat.         

= 1602.2 

-2.52  0.235  4.69  0.186) -1.04  0.037 

Total 

biomass 

negative binomial GLMM 

(log-link function) 

random effects: grid nested in 

site 

9631 quadrats 

151 grids 

28 sites 

Likelihood 

ratio stat.      

= 114.0 

0.91  0.191 1.33  0.133) -0.29  0.028 

Total 

biomass 

quantile (95
th

 percentile) 9631 quadrats 

 

pseudo-F 

statistic       

= 179.1  

-12.9  7.159 45.6  5.833) -11.3  1.173 

Live 

biomass 

negative binomial GLM (log-

link function) 

9644 quadrats 

 

Likelihood 

ratio stat.      

= 950.3 

-2.03  0.212 4.27  0.178 -0.96  0.037 
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FIGURE LEGENDS 

 

Figure 1.  Site locations. Locations of the geographic centroids of the 30 study sites, which 

include 151 sampling grids. Some points overlap and are therefore indistinguishable.  Additional 

site details are provided in table S1. Map is displayed using the Robinson projection. 

 

Figure 2. A Biomass production-species richness relationships for 28 study sites. Solid black 

line: significant quantile regression (95
th

 percentile) of overall relationship (quadratic coefficient 

P < 0.001; N = 9,631 quadrats).  Dashed black line: significant negative binomial GLM 

(quadratic coefficient P < 0.001; N = 9,631).  Colored lines indicate significant GLM regressions 

(Poisson or quasi-Poisson), with N ranging from 128 to 894 quadrats. The inset bar graph 

presents the frequencies of each form of relationship observed across study regions; B Same as A 

but the results are derived from the analysis of an example, random sub-sample of the complete 

dataset, that satisfies the following criteria: litter biomass excluded, quadrats with biomass 

>1,534 gm
-2

 excluded, and including 30 (randomly selected) quadrats per site (total N = 840).  

These criteria match the characteristics of the dataset used by Adler et al. (1). 
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Figure 1  



Fraser et al. Productivity-diversity relationship 

19 
 

 

 

Figure 2A  
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Figure 2B 
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Supplementary Materials for 
 

 

Materials and Methods 

 

Site selection: The Herbaceous Diversity Network (HerbDivNet) is a network of researchers 

working at herbaceous grassland sites in 19 countries located on 6 continents performing 

coordinated distributed experiments and observations (20). The full sampling design is detailed 

here and in Fraser et al. (18). All HerbDivNet sites are located in areas dominated by herbaceous 

vegetation representing the regional species composition. 

 

Sampling protocol: The design is an 8 x 8 meter grid containing 64 1 m
2
 plots.  Within all 30 

sites included in the current analysis (Fig. 1) we collected biomass and species richness data 

from at least two and up to fourteen 8 x 8 m grids. All grids were marked and GPS coordinates 

were recorded for future use. Our study focused on herbaceous grassland community types. For 

each 1 m
2
 plot, all species were identified and the number counted. In the rare instances where 

species were unidentifiable, morphotypes were assigned. Total above-ground biomass (including 

plant litter) at peak biomass was harvested, dried and weighed by plot. Live biomass and litter 

were separated prior to drying and weighing. We did not separate biomass by species. Sampling 

was restricted to herbaceous plant communities; however, the occasional small woody plant was 

found within a sample area, which was noted but not included in the analyses. Cryptogams were 

not included in either measures of species richness, or biomass.   
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The ideal level of participation for each investigator was to sample at least six grids of 64 

quadrats, two each at three relatively different levels of productivity from low (~1-300 g m
-2

) to 

medium (~300-800 g m
-2

) to high (>800 g m
-2

). However, logistical constraints meant this was 

not possible at all sites and some sites had as few as two grids, taken at the low and high ends of 

the gradient. Most sites had a history of grazing or fire and were currently under some form of 

management. Therefore, sampling was performed at least three months after the last grazing or 

burning event.  

 

Supplementary Text 1 

Assessing the richness-productivity relationship at the global extent: 

 

In the main text we present the results of generalized linear model (GLM) analysis, in which 

species richness was modeled as a function of total biomass (log10 transformed) using a negative 

binomial GLM.  We complement this analysis with a generalized linear mixed model (GLMM) 

analysis, which accommodates the spatially nested structure of our sampling design (grids nested 

within sites). Regression diagnostics revealed a negative binomial distribution to be appropriate 

again (as in the main GLM analyses), with grids nested within sites, both coded as random 

effects, and log10-transformed total biomass as the fixed effect.  This was achieved using the 

“glmmADMB” package in R (31).  The predicted association from this regression is shown in 

Figure S1 below. 
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Assessing the diversity-productivity relationship at the spatial extent of sites: 

 

A total of 28 sites were analyzed, keeping sampling grain fixed (1 m
2
) with the number of 

sample quadrats ranging from 128 to 894 (Table S1). For these regressions we followed the 

methods of Adler et al. (1) as closely as possible.  Specifically: 

(i) Scatterplots between species richness and productivity were inspected to flag potential 

violations of regression assumptions. 

(ii) Because species richness data comprises counts, we first modeled richness using a Poisson 

regression in a GLM framework. We used the “AER” package (32) in R to test whether the 

dispersion parameter differed significantly from the assumed value of 1 (either under- or over-

dispersed). If it was, we used a quasi-GLM model to adjust the standard errors (33).   

(iii) For each regression, we fit species richness as both a linear and quadratic function of 

biomass, and inspected regression diagnostics including leverage values and residual plots.   

(iv) If the inclusion of the quadratic term did not result in a significant reduction in residual 

deviance (at  = 0.10) then it was removed from the model. If the remaining single-term model 

was no better than the null (based on deviance), then the model was designated “not significant” 

(NS). These results were identical when we judged significance based on the coefficient estimate 

(not shown). 

The results of these analyses are presented in Figure 2A, and in Table S2. 
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Assessing the richness-productivity relationship across different sampling grains: 

 

Using the entire global dataset as the extent of analysis, we evaluated how the richness-

productivity association varied across increasing sampling grain, from 1 m
2
 to 64 m

2
. For each of 

the 8 grain sizes, we equated richness with the number of unique species encountered in the 

given area, and productivity with the total biomass (live biomass+litter) across the area. Thus, in 

each regression analysis, each sampling grid provided one data point. Missing biomass values for 

31 individual quadrats reduced the number of grids for some analyses. We used normal least-

squares regression, as a Gaussian error distribution was found to be suitable. Examination of 

regression diagnostics also led us to eliminate 2 grids with high leverage (with low richness and 

extremely high biomass), though results were qualitatively identical otherwise. Thus, final 

sample sizes ranged between N = 133 and 149. For the first suite of 8 regressions, we used 

quadrats “grown” in size from one consistent corner of the grid. We then constructed three new 

regression models, each time using data from a different starting grid corner and thus orientation. 

Parameter estimates and coefficients of determination were averaged across the 4 orientations for 

each grain size. We used alpha = 0.05 throughout. The results of this analysis are presented in 

Figure S2, below. 

 

Hierarchical Bayesian analyses of the boundary richness-productivity relationship:  

 

We used a hierarchical Bayesian modeling approach, in which both the mean and variance of 

species richness were modeled nonlinearly against (log-transformed) biomass, and that included 
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random effects to account for the nested spatial structure of the dataset. Posterior distributions 

for upper quantiles (envelope) of richness were calculated from normal distributions of estimated 

means and variances across the biomass gradient.  

Because we expected nonlinear relationships for both the mean and variance of richness 

against biomass, we included quadratic expressions for the mean and variance of richness in the 

following way: 

Species richnessi ~ N(µi,σ
2

i) 

µi = β0 + β1*Biomassi + β2*Biomassi
2
 + N(0,σ

2
study) + N(0,σ

2
grid) 

σ i = α0 + α1*Biomassi + α2*Biomassi
2
 

where the richness of quadrat i is distributed normally with mean µ and variance σ
2
, and mean 

richness includes random intercept effects of study site and grid-within-study. To generate 

posteriors for an upper quantile, we used fitted mean and variance estimates to calculate the 

value of the 95
th

 quantile for each MCMC iteration: 

 q95i = qnorm(0.95,mean=µi,variance=σ
2

i) 

Models were fit via Markov chain Monte Carlo optimization as implemented in JAGS 

(34) run from R 3.03 (31) in the R2jags package (35). We ran three parallel MCMC chains for 

10,000 iterations after a 500-iteration burn-in, and evaluated model convergence with the 

Gelman & Rubin statistic (36) such that chain results were indistinguishable. We used flat 

normal priors for β and α coefficients, with the exception of uniform positive priors for α1 to 

ensure positive variance estimates.  
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Fitted 95
th

 quantiles and associated 95% credible intervals for biomass including litter are 

shown below (Fig. S3). Note that we did not attempt to include richness observations at 

extremely low (< 50 g; 0.7% of the data) or high biomass values (> 1500 g; 3% of the data, half 

of which were richness values of 1) due to low sample sizes that precluded envelope 

calculations. 

 

Assessing the boundary richness-productivity relationship using maximum grid richness as 

the response, and employing quantile regression: 

 

Using the global dataset as the extent of analysis, we quantified the upper boundary of the 

richness-productivity relationship using maximum richness observed in a grid (among the 1m
2
 

quadrats) as the response variable, and the total biomass associated with the quadrat of maximum 

richness as the predictor variable. We employed quantile regression, using the 95
th

 percentile.  

For comparison, we include the results of a least-squares regression. The results of this analysis 

are presented below in Figure S4.  

 

Examining the sensitivity of the richness-productivity relationship to biomass range, measures 

of productivity, and sample size: 

 

The goal of this suite of analyses was to mimic the properties of the dataset used by Adler et al. 

(1), and to re-analyze this subset of data using the same methods employed to produce Figure 

2A. The details of the subsampling procedure are described in the main document, and the 
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regression methods we used are identical to those described in section “C” above. For the GLM 

analysis conducted on each of the 500 random subsets of data (see main document), we 

calculated the proportion of the within-site regressions (out of 28 total) falling into each of the 

five categories of form. In Figure S5 below we show how these proportions compare to our 

observed proportions.  

Lastly, for each iteration, we calculated the range of biomass encompassed by each site 

(based on its random sample of 30 quadrats). We then calculated the average of these biomass 

ranges across the 28 site-level analyses, for each iteration. Figure S6 below shows a histogram of 

the resulting 500 average biomass ranges, along with the average biomass range encompassed by 

the 48 site-level analyses of Adler et al. (data kindly provided by Jim Grace, and is housed at the 

Nutrient Network website: http://nutnet.umn.edu/data). 
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Supplementary Figures 

 

 

Supplementary Figure 1:  The unimodal productivity-richness relationship.  Superimposed 

over the individual quadrat values (light grey points; N = 9631) are the regression lines from the 

negative binomial GLM (black line; see Table 1) and the negative binomial GLMM in red 

(population level prediction), in which grids (N = 151) are nested within sites (N = 28), both as 

random effects (Log-likelihood = -23097.9; quadratic term coefficient = -0.29, Z-value = -10.4, 

P < 0.001).   
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Supplementary Figure 2: Biomass-species richness relationship as it relates to scale. 

Varying the sampling grain (maintaining global extent) does not change the general form of the 

relationship between species richness and biomass, though the amount of variation accounted for 

by the model (see adjusted R
2
 values) generally decreases with increasing grain. At every scale, 

the quadratic term was significant (P < 0.05). Dashed lines indicate the least-squares regression.   

 

 

 

Supplementary Figure 3: Bayesian model results. Posteriors of the 95
th

 quantile of species 

richness along a biomass gradient (mean and 95% credible intervals) from the Bayesian models. 
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Supplementary Figure 4: Estimating the upper boundary of richness in relation to 

productivity.  Individual points show the maximum richness observed among 1 m
2
 quadrats 

within a grid (N = 151 grids) paired with its associated total biomass. The solid black line 

represents the 95
th

 percentile quantile regression that determines the boundary condition 

(quadratic term coefficient = -37.77, SE = 13.36, P = 0.005; pseudo R
2
 = 0.14). The grey line 

represents the least-squares regression that includes a highly significant quadratic term (quadratic 

term coefficient = -0.94, SE = 0.14, P < 0.001; adjusted R
2
 = 0.33). Excluding the two points 

with zero richness (bottom right) did not affect the significance of the quadratic term in either 

regression, though for the least-squares regression the adjusted R
2
 was reduced to 0.16. 
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Supplementary Figure 5:  Proportion of the 28 GLM regressions within study regions that 

correspond to the different forms.  Each box includes N = 500 proportions, derived from the 

analyses of the 500 random subsets of data. The red lines correspond to our observed proportions 

(see inset of Figure 2A in main document). Our observed proportions differed significantly from 

those expected, based on the subsampled data (
2
 = 11.54; P =0.009).  None of the 500 analyses 

yielded proportions of “concave down” relationships as large as our observed proportion. 
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Supplementary Figure 6: Histogram of the average biomass range observed within each of 

the 500 iterations of site-level analyses.  For comparison, the red line shows the average 

biomass range (428.7 gm
-2

) encompassed by the 48 site-level analyses of Adler et al. (1). 

 

 

Supplementary Tables
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Supplementary Table 1: Herbaceous Diversity Network sites. Grassland type is separated into 5 categories (Temp = temperate; 

Wet = temperate wet meadow; Med = Mediterranean; Trop = tropical and subtropical; and Alpine), with numbers in parentheses 

indicating number of grids within each grassland type. A grid represents one 8 x 8 m
2
 sampling area.  Coordinates are provided in 

decimal degrees, and use the WGS84 datum. 

Region Country 
Grassland 

type 

Number 

of grids 

Centroid 

longitude  

Centroid 

latitude  

Mean total 

biomass 

(gm
-2

) 

SD total 

biomass 

(gm
-2

) 

Mean species 

richness (m
-2

) 

SD species 

richness (m
-2

) 

1 Hungary Temp 4 20.1885 46.6159 358.8 267.15 11.7 6.39 

2 Germany Temp 6 11.5636 49.9169 412.7 305.22 13.9 8.92 

3 Mongolia 

Temp (2) / 

Wet (4) 

6 105.0168 48.8515 317.8 111.90 14.7 4.51 

4 Canada Temp 6 -111.9590 50.8912 473.7 317.65 7.6 1.94 

5 Canada Temp 6 -111.5615 53.0848 293.9 159.08 13.2 4.33 

6 USA Med 2 -117.1685 32.8839 314.2 121.90 7.7 1.62 
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Region Country 
Grassland 

type 

Number 

of grids 

Centroid 

longitude  

Centroid 

latitude  

Mean total 

biomass 

(gm
-2

) 

SD total 

biomass 

(gm
-2

) 

Mean species 

richness (m
-2

) 

SD species 

richness (m
-2

) 

7 Romania Alpine 4 25.9518 46.4089 495.1 87.18 31.8 6.94 

8 Argentina Temp 4 -64.4257 -31.1287 959.5 779.13 20.3 7.49 

9 Brazil Trop 4 -47.8668 -17.9540 781.9 318.12 8.8 5.95 

10 USA Temp 4 -95.1912 39.0575 515.6 268.09 12.2 6.79 

11 Canada 

Temp (12) 

/ Wet (2) 

14 -120.5730 50.9167 489.4 459.69 7.8 2.68 

12 Canada Temp 2 -81.3175 43.1930 390.8 84.79 5.4 1.44 

13 Hungary Temp 4 17.7028 47.1466 494 82.09 22.4 3.90 

14 Austria Alpine 6 10.7048 47.1456 324.9 112.83 25.0 7.35 

15 Iran 

Med (6) / 

Alpine (5) 

11 50.9557 36.8583 431.4 291.03 12.0 4.32 

16 China Alpine 4 102.7787 37.2012 308.2 179.09 15.3 3.34 

17 UK Temp 4 -1.6837 55.2172 568.4 355.13 10.9 2.05 
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Region Country 
Grassland 

type 

Number 

of grids 

Centroid 

longitude  

Centroid 

latitude  

Mean total 

biomass 

(gm
-2

) 

SD total 

biomass 

(gm
-2

) 

Mean species 

richness (m
-2

) 

SD species 

richness (m
-2

) 

18 USA 

Temp (4) / 

Wet (2) 

6 -81.6034 41.3593 1592.7 1173.77 2.8 2.58 

19 Iran Temp 6 59.0169 36.8936 300.7 184.50 7.0 1.94 

20 Brazil Trop 2 -51.6823 -30.1011 215.8 53.01 27.6 5.87 

21 Canada Alpine 4 -119.4263 50.0118 280.7 161.03 14.0 3.30 

22 Kenya Trop 6 36.8911 0.3882 812.8 451.06 6.0 3.61 

23* Israel Med 6 35.5334 32.5213 288.2 169.03 16.7 8.32 

24 Japan 

Temp (4) / 

Wet (2) 

6 140.9299 41.0162 545.5 282.98 8.7 4.02 

25* Canada Temp 2 -110.4423 49.0361 105.3 37.15 8.1 2.47 

26* Mongolia Temp 4 106.9060 49.0153 282.3 94.80 16.1 3.74 

27 South Africa Temp 6 29.4935 -25.6213 533.4 327.50 8.0 3.24 

28 Italy Alpine 6 13.0179 42.9542 365.3 120.93 19.9 4.92 
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Region Country 
Grassland 

type 

Number 

of grids 

Centroid 

longitude  

Centroid 

latitude  

Mean total 

biomass 

(gm
-2

) 

SD total 

biomass 

(gm
-2

) 

Mean species 

richness (m
-2

) 

SD species 

richness (m
-2

) 

29 New Zealand Temp 2 170.6227 -45.6794 1277 189.75 8.7 1.92 

30 Estonia Temp 10 24.7988 58.4634 479 344.14 19.1 8.32 

* plant litter was not collected at these sites, so these were excluded from total biomass analyses, but included in live biomass 

analyses.   
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Supplementary Table 2: Regression coefficients from the GLM analyses (Poisson or quasi-

Poisson approach) of the relationship between total biomass and species richness. 

Regressions were conducted at the study site extent (28 sites, site numbers corresponding to 

those in Table S1).  All coefficients are significant at P < 0.001, except as follows: ** P < 0.01; 

* P < 0.05.  “NA” = not available. Forms are “CD” concave down; “NEG” negative linear; 

“POS” positive linear, and “NS” not significant. 

  Linear term Quadratic term   

Site N Coefficient SE Coefficient SE 
% Deviance 

explained 
Form 

1 256 6.03 1.258 -0.98 0.259 71.6 CD 

2 373 3.03 0.304 -0.95 0.072 68.7 CD 

3 382 17.25 2.538 -3.77 0.516 43.6 CD 

4 384 -0.51 0.029 NA NA 45.5 NEG 

5 383 10.66 1.434 -2.28 0.3 16 CD 

6 128 NA NA NA NA 1.6 NS 

7 253 33.07 8.824 -6.04 1.648 12.1 CD 

8 256 1.8* 0.79 -0.49 0.138 76 CD 

9 256 24.24 6.409 -3.88 1.106 23.3 CD 

10 256 6.65** 2.422 -1.64 0.466 46.2 CD 

11 894 3.78 0.416 -0.77 0.082 11.1 CD 

12 128 NA NA NA NA 2 NS 

13 256 NA NA NA NA 0.9 NS 

14 382 0.2** 0.096 NA NA 1.1 POS 

15 704 2.45 0.549 -0.43 0.11 9.7 CD 

16 256 3.79 0.736 -0.85 0.156 18.7 CD 

17 256 1.18 0.56 -0.29** 0.107 37.5 CD 

18 384 -2.39 0.128 NA NA 54.2 NEG 

19 380 -0.27 0.038 NA NA 11.4 NEG 

20 128 4.2 2.125 -1.07* 0.475 13.2 CD 

21 256 5.33 1.337 -1.1 0.277 6.1 CD 

22 382 3.89** 1.376 -0.72** 0.252 3.8 CD 

23 384 5.94 0.76 -1.49 0.173 34.9 CD 
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24 378 12.45 1.667 -2.29 0.318 22.7 CD 

25 384 6.04 0.852 -1.36 0.171 46.9 CD 

26 384 -11.67 1.993 2.39 0.391 15.2 CU 

27 128 NA NA NA NA 1.6 NS 

28 640 9.45 1.023 -2.15 0.193 76.2 CD 
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