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We design explicit nonstandard finite difference schemes for the nonlinear Allen-Cahn reaction
diffusion equation in the limit of very small interaction length ε. In the proposed scheme, the
perturbation parameter is part of the argument of the functional step size, thereby minimis-

ing the restrictions normally associated with standard explicit finite difference schemes. The
derivation involves splitting the equation into the space independent and the time independent
different models. An exact nonstandard scheme is proposed for the space independent model
and energy conservative schemes are proposed for the time independent model. We show the
power of the derived scheme over the existing schemes through several numerical examples.
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1. Introduction

The Allen-Cahn equation

ut −∇2u+ ε−2f (u) = 0, x ∈ Ω, t > 0, (1)

is a binary alloy model, where Ω ⊂ Rd, u(x, t) is an order parameter and ε is
the interaction length which is extremely small in practice. The nonlinear term
f (u) = F ′(u) where F (u) = 0.25(u2 − 1)2. Equation (1) finds its origin in the work
of Allen and Cahn [1] to describe the phase separation process in binary alloy. It
has also been used in different areas of applied sciences including image processing,
crystal growth, biology, geology, to name just a few. The Allen-Cahn equation is a
result of the Ginzburg-Landau free energy

E(u) =

∫

Ω

{

1

2
|∇u|2 + 1

ε2
F (u)

}

dΩ, (2)

and it is known that the energy decreases with time, [18, 19].
Equation (1) belongs to the class of nonlinear partial differential equations not

amenable to analytical solutions. As a result, it has been approximated using vari-
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ous numerical approaches, see for example [8, 9, 17–19], and the literature therein.
However, there are two main areas of concern when numerical approximations are
used for equation (1). First, it is critical that the nonlinear term is handled properly
as this will affect the long term dynamics of the solution such as boundedness and
preservation of equilibrium solutions. Secondly, the restriction of standard explicit
schemes which require that the step size be o(ε2). In particular, the optimal error
bound for the equation is dependent upon ε. Therefore, as ε → 0, spurious oscil-
lations or the non physical effect of ε is reduced provided there is a corresponding
reduction in the mesh size.
Recently, nonstandard finite difference (NSFD) methods, first introduced by Mick-

ens [12], has become a very efficient tool for approximating the solutions of several
differential equations arising from mathematical physics, see for example [10–12]. In
light of the work under investigation here, we highlight the work [6, 14, 15] where
NSFD schemes were designed for ordinary differential equations with three distinct
fixed points. An extension to a general number of distinct fixed points is given
in [14]. In particular, [6] considered the general function f (u) = αu3 − βu with
β > 0 and α > 0, and derived a semi-explicit and semi-implicit NSFD schemes.
On the other hand the authors in [13] and [14] considered functions of the form
f (u) = ±u(u − 1)(u − α) with 0 ≤ α ≤ 1. While the first case is applicable here,
the second case cannot be used here since it is limited to positive solutions.
Nonstandard finite difference schemes for reaction diffusion equations were con-

sidered in [2, 3, 6]. The authors in [6] designed and analysed explicit and implicit
nonstandard schemes for a reaction diffusion equation with three fixed points. The
diffusion free equation was discretised using different nonstandard schemes while
the diffusion term was approximated by standard discretisation. Later in [3] both
the diffusion free and the steady state sub equations were discretised via the non-
standard approach. The scheme for the steady state sub equation was derived in
such a way as to preserve the conservation of energy. The schemes were carefully as-
sembled together to approximate the solution of the full reaction diffusion equation.
In particular, the NSFD approach is credited for the preservation of the qualitative
property of the physical models in addition to its inherent stability and boundedness
of the solutions.
The focus of this work can be summarized with a reference to the work [19],

where the authors highlighted the need to choose the spatial step size and the
time-step in connection with the small parameter ε. We provide, via the use of
NSFD schemes, some insight into how this idea can be captured and we will give
numerical simulations supporting our findings for small ε. The structure of this
paper is as follows. We discuss the main ideas in the design of numerical schemes
and the splitting to sub equations in Section 2. We end the section by testing
the the performance of the designed scheme for the space independent differential
equation. Some numerical experiments to show the strength of the schemes for the
full equation are demonstrated in Section 3 and we summarise our discoveries in
Section 4.

2. Numerical schemes derivation

In this section we give a detailed description on the design of nonstandard finite
difference schemes for equation (1). For simplicity, we will restrict ourselves to the
1D equation. The numerical approximation of the unknown u(x, t) on a uniform
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grid will be written as vnm at time tn = n∆t and spatial point xm = m∆x, where
m = 0, 1, 2, · · · ,M and n = 0, 1, 2, · · · .
Following the rules outlined in [3] and the literature therein, we design the non-

standard finite difference schemes for equation (1) using the following three major
steps. In the first step, we design a scheme for the space independent equation,
followed by the scheme for the time independent equation and we end by assem-
bling the two schemes. The explicit approximation to the solution of the continuous
equation will be represented by an explicit finite difference scheme of the form

vn+1 = F∆t(v
n), (3)

for some function F∆t.

2.1. Space independent equation

Consider the sub equation

ε2
du

dt
= u(1− u)(1 + u), (4)

with an initial condition u(t0) = u0. This space independent equation is an ordinary
differential equation with three distinct equilibrium points, i.e., ũ1 = −1, ũ2 =
0, ũ3 = 1. It can be shown that (4) is bistable with stable equilibrium points ũ1,3 =
±1, while ũ2 = 0 is unstable. In addition, the solution to (4) enjoys the following
properties

P1 : If u0 ∈ (−1, 0) and u0 ∈ (0, 1), then u(t) ∈ (−1, 0) and u(t) ∈ (0, 1) respec-
tively.

P2 : If u0 ∈ (0, 1) or u0 ∈ (−∞,−1) then the solution is monotonically increas-
ing, and if u0 ∈ (−1, 0) or u0 ∈ (1,∞) then the solution is monotonically
decreasing.

P3 : If u0 coincide with an equilibrium point, then the solution remains on the
equilibrium point.

2.1.1. NSFD scheme

In this section we are interested in a finite difference scheme that is stable with
respect to these properties, i.e., preservation and stability of fixed points, bounded-
ness of solutions and monotonicity of solutions. We begin with the exact solution
of equation (4) as given by

u(t) =
1

√

1 + (1/u(t0)− 1) exp
(

− 2
ε2 (t− t0)

)

, (5)

satisfying initial condition u(t0). Considering the solution at discrete times tn and
tn+1 with some mathematical adjustments we derived an exact scheme for equation
(4) as stated below

ε2
vn+1 − vn

φ(∆t)
=

2(vn+1)2

vn+1 + vn
(1− vn)(vn + 1), (6)

3



where

φ =
1− exp

(

−2∆t/ε2
)

2/ε2
, (7)

see [16].

Remark 1. The NSFD scheme (6) is dynamically consistent with equation (4). By
this we mean that the scheme (6) reproduces the properties P1 – P3 in addition to
the preservation of the three fixed points.

In particular, equation (6) leads to an explicit difference scheme with

F∆t(v
n) =

vn
√

1− 2
ε2φ(1− vn)(1 + vn)

. (8)

The exact scheme (6) preserves all the fixed points, is elementary stable and topolog-
ically dynamically consistent with the continuous solution operator of the discussed
equation, see [4, 5]. By this, we mean that the value of the derived quantity

dF∆t

dvn
(±1) = exp

(

− 2

ε2
∆t

)

> 0

for the scheme (6).
The boundedness condition P1 for scheme (8) follows from the observation that

the function

g(z) =
z

√

1− (1− exp(−2∆t/ε2))(1 − z2)
,

is monotonically increasing on the interval −1 ≤ z ≤ 1 with g(−1) =
−1 and g(1) = 1. Since (1 − exp(−2∆t/ε2))(1 − (vn)2) ≥ 0 then
√

1− (1− exp(−2∆t/ε2))(1 − (vn)2) < 1, therefore from (8),

|vn| < |vn+1|,

and scheme (6) satisfies property P2. In addition, if vn = ṽn, it can be shown
from scheme (6) via (8) that ṽn+1 = ṽn. Therefore, scheme (6) reproduces all the
properties of the continuous problem.

2.1.2. Chen et al. (2003) scheme

For completeness we will also consider the NSFD scheme derived under Method 2
in [6] with α = β = 1/ε2. The scheme is given by

ε2
vn+1 − vn

∆t
= 2vn − vn+1 − (vn)2vn+1. (9)

The schemes (6) and (9) satisfy the NSFD rules highlighted for nonstandard schemes
in [12].
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2.1.3. Forward Euler scheme

On the other hand, recall the standard forward Euler scheme for equation (4), i.e.,

vn+1 = vn +
∆t

ε2
vn(1− vn)(1 + vn). (10)

Scheme (10) preserves the fixed points of the continuous equation but it is not
elementary stable. Consider

dF∆t

dvn
(±1) = 1− 2∆t

ε2
.

Hence the Euler scheme requires that ∆t < ε2

2 , to preserve the stability of the
equilibrium points.

2.1.4. Numerical simulations of the ODE subproblem

In this section we compare the performance of schemes (6), (10) and (9) using the
following example.

Experiment 1. Consider the following ordinary differential equation subproblem

ε2
du

dt
= u(1− u)(1 + u), u(0) = u0. (11)

We solve equation (11) using schemes (10), (6) and (9). Fig. 1 compares the
performance of the standard finite difference scheme and the derived nonstandard
scheme as ε → 0. In both cases, the solid line represent the exact solution. As
expected, the standard scheme requires many grid points to avoid the spurious
oscillations in Fig. 1(a).
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(a) Standard scheme (10). (b) Exact scheme (6).

Figure 1. Solution for problem (11) using standard finite difference scheme (10) and NSFD scheme (6)
with ∆t = 0.1 and u0 = 0.1.

We also compared the performance of the derived NSFD scheme (6) against the
NSFD scheme (9) from Method 2 of [6]. Fig. 2 shows that our new scheme (6)
converges faster than scheme (9) for the same number of points. We highlight that,
though scheme (9) does not exhibit oscillations in the solution, it also requires a
sufficient number of grid points to converge to the exact solution.
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Figure 2. Comparison of the exact solution with NSFD scheme (9) for ∆t = 0.1 and u0 = 0.1.

2.2. Time independent equation

In this section we discuss the design of nonstandard finite difference scheme for the
time independent equation

0 = ε2
d2u

dx2
+ u(1 + u)(1− u). (12)

The derivation follows the procedures highlighted in [3] and [12]. The stability of
this scheme is inherent in its conservation of energy. The total energy for equation
(12) is given by

ε2

2

(

du

dx

)2

+
u2

2
− u4

4
= E, (13)

where E is a constant. First, following the procedure in [12], we discretize equation
(13) as follows

ε2

2

(

vm − vm−1

ψ(∆x)

)2

+
1

2
vmvm−1 −

1

4
v2mv

2
m−1 = E, (14)

where ψ(∆x) ∼ ∆x + O(∆x2). We highlight here that equation (14) is invariant
under the transformation vm ↔ vm−1. Imposing the difference operator ∆rm =
rm+1 − rm on equation (14) yields the time independent scheme

ε2
vm−1 − 2vm + vm+1

ψ(∆x)2
+ vm − (vm)2

vm+1 + vm−1

2
= 0, (15)

with

ψ(∆x) = 2ε sin

(

∆x

2ε

)

. (16)

In the second procedure, we first write f (u) as a product ug(x) where g(x) =
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(1 + x)(1− x). The scheme takes the form

0 =
vm−1 − 2vm + vm+1

∆x2
+

1

ε2
vm

K(vmvm+1)−K(vmvm−1)

vm(vm+1 − vm−1)
, (17)

where

K(z) =

∫ z

0
g(x) = −z + 1

2
z2.

Therefore

K(vmvm+1) = −vmvm+1 +
1

2
(vmvm+1)

2.

Finally, we propose the scheme for steady state equation (12) as follows

0 = ε2
vm−1 − 2vm + vm+1

(∆x)2
+ vm

(

1− (vm+1 + vm−1)

2
vm

)

. (18)

The above derivation yields similar schemes which are stable with regard to the
conservation of energy. The only difference is the existence of a complex denominator
in (15) as compared to (18). This stability is a result of ∆E = 0. The next step is
to carefully assemble the time independent and the space independent schemes to
approximate the solution of equation (1).

2.3. The full equation

We carefully bring both the space independent scheme (6), and the time independent
schemes (15), together to obtain a scheme for equation (1). To this end, we propose

vn+1
m − vnm
φ(∆t)

=
vnm−1 − 2vnm + vnm+1

ψ(∆x)2
+ ε−2 2(vn+1

m )2

vn+1
m + vnm

(

1− vnm−1 + vnm+1

2
vnm

)

, (19)

where φ(∆) and ψ(∆x) are given in (7) and (16) respectively. This is a quadratic
equation in vn+1

m which can be solved to get

vn+1
m =

−Bn
m ±

√

Bn
m

2 +An
mC

n
m

An
m

,

where

An
m = 1− φε(1− v̄nmv

n
m), Bn

m = R(vnm − v̄nm), Cn
m = Rv̄nmv

n
m − (2R − 1)(vn)2,

R = φ(∆t)/[ψ(∆x)]2, φε(∆t) = 2φ(∆t)/ε2 and v̄nm = (vnm−1+v
n
m+1)/2. If we impose

the condition R = 1
2 , and consider the definition of φ(∆t), then An

m > 0 and Cn
m > 0,

hence, the sign of vn+1
m depends mainly on the sign of the square root. Therefore, we

are able to control the positivity and negativity of the solution as the case requires.
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On the other hand, combining schemes (9) and (18), we have

vn+1
m − vnm

∆t
=
vnm−1 − 2vnm + vnm+1

(∆x)2
+ ε−2

(

[2vnm − vn+1
m ]− vnm

vnm−1 + vnm+1

2
vn+1
m

)

.

(20)

We note that scheme (20) is different from Method B in [6]. The current scheme can
be rewritten as

vn+1
m =

ε2(1− 2R)vnm + 2ε2(∆t)vnm + 2ε2Rv̄nm
ε2 + ε2(∆t) + ε2(∆t)vnmv̄

n
m/2

. (21)

Equation (21) reveals that vn+1
m remains positive given that vnm > 0 and negative if

vnm ≤ 0. Imposing the condition R = 1
2 , equation (21) takes the form

vn+1
m =

2ε2(∆t)vnm + ε2v̄nm
ε2 + ε2(∆t) + ε2(∆t)vnmv̄

n
m/2

.

3. Numerical simulations of the full equation

The performance of the derived schemes is demonstrated by applying them to solve
the Allen-Cahn equation. Three schemes will be considered, i.e., our derived scheme
(19), scheme (20) and scheme Method B from [6]. Note that scheme (20) is a result
of [6] for the space independent problem and our energy formulation for the time
independent problem. For all the simulations, we will impose the condition R = 1

2 .

Experiment 2. Consider the Allen-Cahn equation

∂u

∂t
=
∂2u

∂x2
+ ε−2u(1− u)(1 + u), (22)

u(x, 0) = u0(x), ux(−2, t) = ux(2, t) = 0.

with ε≪ 1. For comparison, we use the traveling wave solution

u(x, t) =
1

2

(

1− tanh
x− st

ε2
√
2

)

,

where the traveling wave speed is s = 3/(ε
√
2), see [7].

The approximations using scheme (19) are shown in Figs. 3 and 4 with the error
values tabulated in Table 1. Fig. 3(a) confirms that the convergence of our scheme
is very fast to the extent that the curves for different number of grid point are
indistinguishable. However, while no spurious oscillations can be seen in Fig. 4, the
convergence is much slower. We also highlight that the performance of Method B
of [6] is equally the same as scheme (20) as can be seen in the table of errors albeit
they being two different schemes. Table 1 also confirms the better performance of
the derived scheme.
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Table 1. Error values of the nonstandard scheme for different values of ε

M L∞ Norm error
ε2 = 0.05 ε2 = 0.005

Scheme (19) Scheme (20) [6] Scheme (19) Scheme (20) [6]
26 6.58e − 3 1.86e − 1 1.86e − 1 1.63e − 1 9.94e − 1 9.94e − 1
27 1.34e − 3 5.09e − 2 5.10e − 2 7.09e − 2 8.66e − 1 8.66e − 1
28 6.92e − 4 1.24e − 2 1.24e − 2 2.40e − 2 3.90e − 1 3.90e − 1
29 3.54e − 4 3.48e − 3 3.48e − 3 7.24e − 3 1.01e − 1 1.01e − 1
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Figure 3. The convergence of the scheme (19).
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Figure 4. The convergence of the scheme (20).

Experiment 3. Consider the Allen-Cahn equation

∂u

∂t
=
∂2u

∂x2
+ ε−2u(1− u)(1 + u), (23)

u(x, 0) = exp
(

−5x2
)

, ux(−2, t) = ux(2, t) = 0.

for ε ∈ (0, 1).

A major property of any scheme designed for the Allen-Cahn equation is the dis-
sipation of Ginzburg-Landau energy, see equation (2). Here we consider Experiment
3 to verify this property. The results are shown in Fig. 5 for both schemes (19) and
(20). The faster convergence of scheme (19) is evident in Fig. 5(a). In the last ex-
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periment we changed the initial condition for Experiment 3 to u(x, 0) = sin
(

5π
2 x

)

.
Figure 6 shows the absorption of interphases. Initially, there exists four crests, with
the solution fluctuating between the two stable fixed points. At t = 1, all the crests
are absorbed and we only remain with the widest crest which is the traveling wave
solution indicated in [7].
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Figure 5. This shows the dissipation of the nondimensionalized energy functional E(u)/E(u0) where
u(x, 0) = exp

(

−5x2
)

.
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Figure 6. Numerical solution for Experiment 3 with initial condition u(x, 0) = sin
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4. Discussion and conclusion

In this work we designed an explicit nonstandard finite difference scheme for the
Allen-Cahn reaction diffusion equation. Our analysis centered on the strength of
the schemes to preserve the qualitative properties of the isolated equations. We
highlighted that the difference schemes (6) and (9) preserve the stable fixed points
of the equation (4). Figure 1 shows that the stability of scheme (6) is independent
of ε but this is not true of the standard finite difference scheme. The standard
scheme requires many grid points in order to prevent spurious oscillations. There-
fore, as ε → 0 simulation with the standard scheme will become expensive. Also,
the schemes designed for the steady state equation are stable with respect to the
conservation of energy. Schemes (6) and (9) were carefully assembled with the time
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independent scheme (15). We claim that these explicit schemes have better time
restriction compared to the standard finite difference scheme. Work on the global
stability analysis of the scheme (19) is under investigation and will be submitted
soon.
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