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Abstract

In many situations the times between certain events are observed and moni-
tored instead of the number of events themselves, particularly when the events
occur rarely. In this case it is common to assume that the times between
events follow an exponential distribution. Control charts are one of the main
tools of statistical process control and monitoring. Control charts are used
in Phase I to assist operating personnel in bringing the process into a state
of statistical control. In this paper, Phase I control charts are considered for
the observations from an exponential distribution with an unknown mean. A
simulation study is carried out to compare the in-control (IC) robustness and
out-of-control (OOC) performance of the proposed chart. It is seen that the
proposed charts are considerably more IC robust than two competing charts
and have comparable OOC properties.

keywords: Phase I and Phase II control charts; Exponential distribution;
In-control robustness; TBE; Performance; Dixon’s statistic.

1 Introduction

A control chart is a very useful statistical tool used to distinguish between common
and special causes of variation. In the literature, two phases of control charting
practice have been discussed. In Phase I, a set of process data is gathered and
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analyzed all at once in a retrospective analysis, constructing trial control limits to
determine if the process has been in control over the period of time where the data
were collected, and to see if reliable control limits can be established to monitor
the future production process. Control charts are used primarily in Phase I to assist
operating personnel in bringing the process into a state of statistical control. In Phase
II, we use the control chart to monitor the process by comparing the sample statistic
for each successive sample as it is drawn from the process to the control limits. The
Phase I or the retrospective phase is an important component of an overall control
charting and monitoring regime where the objectives are somewhat different from
the Phase II or the monitoring phase. The reader is referred to Chakraborti et al. 1

for an overview of Phase I control charts.
In many situations the time between certain events are observed and monitored

instead of the number of event occurrences, particularly when the events occur rarely.
In this case it is common to assume that the times between events (TBE) follow an
exponential distribution. Montegomery 2 recommends that the times between fail-
ures be monitored with regard to the quality of the process. Several TBE control
charts have been proposed in the literature3–5. Liu et al. 6 compare some of these
charts including the CUSUM and EWMA charts. Some authors suggest applying the
regular Shewhart charts after a transformation of the data7–9. Jones and Champ 10

emphasize the early stage process improvement activities when failures occur accord-
ing a homogeneous Poisson process. Jones and Champ 10 They also addressed the
seriousness of the problem when the Phase I control chart is used to control the
individual false alarm rate and suggested that the Phase I control charts should be
designed to control the overall false alarm rate (probability) and not the individual
false alarm rate.

Robustness is an important desirable property of a control chart so that the IC
chart performance is stable. If a control chart is not IC robust, its performance prop-
erties become somewhat pointless. Robustness of control charts has been discussed
by many authors11–13. Dovoedo and Chakraborti 13 examined the robustness Jones
and Champ 10 charts and proposed new Phase I control charts based on a modified
box-plot for individual observations from an exponential distribution with an un-
known mean, so that the overall false alarm rate is controlled at a given nominal
value. In this paper, we improve on these charts further and consider new Phase
I control charts for observations from an exponential distribution with an unknown
mean.

The key idea is that since the proposed charts are constructed from the median
of the data, the resulting control limits are expected to be more IC robust than those
proposed by Jones and Champ 10 , which are based on the mean, in the presence of
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one or more OOC observations.
The paper is structured as follows: In Section 2, the control limits for the one-

sided control chart are proposed. The control limits for two-sided control chart are
developed in Section 3. A simulation study is carried out to compare the in-control
robustness of the proposed procedure with the Jones and Champ 10 and Dovoedo
and Chakraborti 13 procedures in Section 4 and is compared the OOC performance
in Section 5. In section 6, a numerical example is given for illustration and the
concluding remarks are made in Section 7.

2 The One-sided control chart

Suppose that the events in a process occur according to a homogeneous Poisson
process with a constant failure rate. Under this assumption, the times between two
consecutive failures are independent and follow an exponential distribution. Further
suppose that there are n random times between failures, denoted by Xi, i = 1, . . . , n.
Assume that these random variables X1, . . . , Xn are independent and follows an
exponential distribution with an unknown mean µ1, . . . , µn respectively. The process
is IC at time i when µi = µ (unknown). Let X̄ = (1/n)

∑
Xi denote the sample

average and let α denote the overall false alarm rate. Jones and Champ 10 proposed
the following one-sided control chart to maintain the overall false alarm rate at a
nominal level α0 .

LCL = [1− (1− α0)
1/(n−1)]X̄

CL = X̄
(1)

LetX(1), . . . , X(n) be the ordered observations and letX(l), X(m), X(u) denote the first,
the second and the third quartile, respectively. Dovoedo and Chakraborti 14 use the
following definition for the indices l ,m, and u: m = ceil(m/2); l = floor(m/4) + 1
if mod(m, 4) 6= 0 and l = floor(m/4) otherwise, where ceil(a) denotes the smallest
integer greater than or equal to a, floor(a) denotes the largest integer less than or
equal to a, and mod(a, b) denotes the remainder in the division of an integer a by an
integer b; u = m− l + 1.

Motivated by a boxplot, Dovoedo and Chakraborti 13 proposed the following
lower control limit and the center line for a one-sided chart for the same problem.

LCL = X(m) − kl(X(m) −X(l))

CL = X(m)

(2)

The constant kl is called a fence constant, which is determined to control the
overall false alarm rate at some nominal level α0 . Thus kl is found such that
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α0 = Pr[X(1) < X(m) − kl(X(m) −X(l))|IC]

=

∫ ∞
0

∫ ∞
0

IGl(yl)(α = 1, β = l − 1)fZ(l),Z(m)
(z(l), z(m))dz(m)dz(l) (3)

where y(l) = z(m)−kl(X(m)−X(l)), IGl(yl)(α = 1, β = l−1) denotes the incomplete
Beta function evaluated at Gl(y(l)) = F (y(l))/F (z(l)) and z(i) denotes the value of
Z(i), the ith order statistic of a random sample of size n from the distribution of the
standardized exponential random variable Z = X/µ.

Dovoedo and Chakraborti 13 suggested the lower control limit based on the spac-
ing between the median and the first quartile, X(l) and X(m). As the observation
X(l+1) is expected to be mostly affected directly by its predecessor X(l), we consider
a new lower control limit for the one-sided chart, based on the the spacing between
these two order statistics, as

LCL = X(m) − k1(X(l+1) −X(l))

CL = X(m)

(4)

For a given nominal value α0 the new fence constant k1 is obtained from the
following equation, which is the overall false alarm rate, that is the probability of
the event that at least one observation falls below the lower control limit when the
process is IC.

α0 = Pr[X(1) < X(m) − k1(X(l+1) −X(l))|IC].

Note that the above equation may be re-written as

α0 = Pr

[
X(l+1) −X(l)

X(m) −X(1)

< 1/k1|IC
]
.

Now denoting

T1 =
X(l+1) −X(l)

X(m) −X(1)

. (5)

The fence constant k1 for the new procedure can be obtained as

α0 = Pr[T1 < 1/k1|IC]. (6)

It turns out that the statistic T1 is a particular case of Dixon’s (Dixon 15 ) statistic.
Likes 16 obtained its distribution for testing outliers in an exponential sample, which
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is given in the appendix. Thus, the IC distribution of the statistic T1 can be simply
obtained by substituting suitable quantities (s = l + 1, r = l, q = m, p = 1) in the
statistic (A.1)and its distribution (A.2). This is given by

1− FT1(t)

=
(n− 1)!

(n−m)!
(1− t)

[
m−l−1∑
i=1

[
(−1)i+1(m− l − i)[(n− l)t+ (n−m+ i)(1− t)]−1

(i− 1)!(m− i− 1)!(n− l)

]

+
l−1∑
j=1

[
(−1)m−l+jj[(n− l)t+ (n− l + j)(1− t)]−1

(l − j − 1)!(m− l + j − 1)!(n− l)

]]
(7)

Since equation (6) may be written as

α0 = FT1(1/k1) = FT1(t1) (8)

with t1 = 1/k1. The new fence constant can be obtained using (7).
Thus for a fixed nominal value α0, equation (8) can be solved numerically (using,

for example, the solve function in MATLAB), where FT1(t1) is given by (7). Once the
fence constant k1 is found, the lower control limit of the proposed one-sided control
chart can be constructed by using equation (4). The values of the fence constant k1
for some selected values of n and some typical values of the overall false alarm rate
α0 are presented in Table 1.

3 The two-sided control chart

Jones and Champ 10 give the approximate lower and upper control limits to maintain
the overall false alarm rate at the nominal level α0 as follows:

LCL =
nX̄

1 + (n− 1)F2(n−1),2(1− α0/n+ τ)

CL = X̄

UCL =
nX̄

1 + (n− 1)F2(n−1),2(τ)

(9)

where the F -distribution has numerator and denominator degrees of freedom 2(n−1)
and 2; and τ satisfies 0 < τ < α0/n.
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For the same problem, Dovoedo and Chakraborti 13 proposed the two-sided con-
trol limits, for a given nominal value α0,

LCL = X(m) − kl(X(m) −X(l))

CL = X(m)

UCL = X(m) + ku(X(u) −X(m))

(10)

We propose new control limits for two-sided control chart based on the spacing
X(u) − X(u−1) and X(l+1) − X(l) as the observation X(u) is most affected by X(u−1)
and X(l+1) by X(l). Hence the proposed two-sided control chart is given by

LCL = X(m) − k1(X(l+1) −X(l))

CL = X(m)

UCL = X(m) + k2(X(u) −X(u−1))

(11)

The fence constants k1 and k2 may be obtained using the following statistics

T1 =
X(l+1) −X(l)

X(m) −X(1)

T2 =
X(u) −X(u−1)

X(n) −X(m)

(12)

The IC distribution of T1 is given by (7). The statistic T2 and its IC distribution can
be obtained by replacing s = u, r = u− 1, q = m and p = m in equations (A.1) and
(A.2). This is given by

1− FT2(t)

= (n−m)!(1− t)

[
n−u∑
i=1

[
(−1)i+1(n− u− i+ 1)[(n− u+ 1)t+ i(1− t)]−1

(i− 1)!(n−m− i)!(n− u+ 1)

]

+
u−m−1∑
j=1

[
(−1)n−u+j+1j[(n− u+ 1)t+ (n− u+ j + 1)(1− t)]−1

(u−m− j − 1)!(n− u+ j)!(n− u+ 1)

]]
(13)

Thus the overall false alarm rate is given by

α = Pr[X(1) < X(m) − k1(X(l+1) −X(l)) ∪X(n) > X(m) + k2(X(u) −X(u−1))|IC]

Hence for a nominal value α0 of the overall false alarm rate, the fence constants k1
and k2 are obtained such that

α0 = Pr[X(1) < X(m) − k1(X(l+1) −X(l)) ∪X(n) > X(m) + k2(X(u) −X(u−1))|IC]
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that is

α0 = Pr[T1 < 1/k1 ∪ T2 < 1/k2|IC]. (14)

Using the property of the exponential distribution, it can be seen that the events
Pr[T1 < 1/k1] and Pr[T2 < 1/k2] are independent but are not disjoint. Hence (14)
may be written as

α0 = Pr[T1 < 1/k1|IC] + Pr[T2 < 1/k2|IC]− Pr[T1 < 1/k1 ∩ T2 < 1/k2|IC]

= Pr[T1 < 1/k1|IC] + Pr[T2 < 1/k2|IC]− Pr[T1 < 1/k1|IC].Pr[T2 < 1/k2|IC]
(15)

Thus, one way to find the constants k1 and k2 from (15) is to make the term
Pr[T1 < 1/k1|IC] in equation (15) equal to α0/(2−α0) and the term Pr[T2 < 1/k2|IC]
equal to α0/2. Following this line of argument, the charting constants k1 and k2 are
calculated and provided in Table 2 for some selected values of n and the overall
nominal false alarm rate α0.

4 Comparison of IC robustness

Here, we first investigate the IC robustness of the one-sided control charts to the
assumption of the underlying exponential distribution via simulation. Similar com-
parisons are then done for the two-sided charts. The IC robustness is an important
attribute of a control chart and should be investigated thoroughly since in practice
the underlying distribution may not be exactly exponential. The more robust the
control chart, the more confidence the user has on the advertised false alarm rate as-
sociated with that control chart. Without the assurance of a robust false alarm rate,
the performance of a control chart in detecting changes by a OOC signal becomes
somewhat meaningless.

The simulation study is modeled after Dovoedo and Chakraborti 13 . For this,
we consider two slightly more and two slightly less skewed distributions than the
exponential distribution. The two more skewed distributions are the Gamma(1.1,1)
and the Gamma(1.2,1) and the two less skewed distributions are the Gamma(0.8,1)
and the Gamma(0.9,1), respectively. The results in this section are based on 100,000
simulations with a sample of n = 20 observations. The results for the one-sided
control charts are reported in the Table 3.

From Table 3, it is seen that in almost all cases, the empirical overall false alarm
rates for the Jones and Champ 10 chart deviate most significantly from the nom-
inal overall false alarm rate α0, whereas those for the proposed chart deviate the
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least. In other words, in all of the 16 cases considered, the proposed procedure
is most IC robust in terms of the overall false alarm rate. For example, for the
Gamma(0.8,1) distribution with α0 = 0.2, the absolute deviation of the overall false
alarm rate is 96.0% for the Jones and Champ 10 chart, it is 29.8% for the Dovoedo
and Chakraborti 13 chart, but it is only 0.9% for the proposed chart. Moreover, the
variation among the empirical overall false alarm rates is also seen to be negligible for
the proposed control chart for any given nominal probability α0. Thus the proposed
one-sided chart is far more IC robust than both of its competitors, the Jones and
Champ 10 chart and the Dovoedo and Chakraborti 13 chart.

A similar simulation study was carried out for two-sided control charts and the
results are presented in the Table 4. To compute the control limits for Jones and
Champ 10 charts, τ was taken to be equal to α0/2n, the mid-point between 0 and
α0/n in equation (9).

From Table 4, we reach the same conclusion as for Table 3. The empirical false
alarm rates for the Jones and Champ 10 chart deviate most significantly from the
desired overall nominal false alarm rate, whereas the proposed procedure is seen to
be the most robust. In fact in all the 16 cases, the proposed procedure turns out to
be the most robust. For example, for the Gamma(1.2,1) distribution, using α0 = 0.2,
the deviation is 53.1% for the Jones and Champ 10 chart, 10.7% for Dovoedo and
Chakraborti 13 whereas it is only 1.6% for the proposed chart. This is a significant
improvement.

A simulation study was also done to study the impact of n. It is seen that as the
sample size increases the Jones and Champ 10 , Dovoedo and Chakraborti 13 proce-
dures both become less IC robust than the proposed chart. However, the proposed
chart remains almost robust for all n. As the nominal value α0 increases, the charts
other than the proposed chart deviate more significantly whereas the proposed chart
shows the same robustness in terms of overall nominal false alarm rate α0.

Next we examine the OOC performance of the charts.

5 The OOC performance

To compare the out-of-control performance of the proposed charting procedure with
the other two, we follow the same set up as in Dovoedo and Chakraborti 13 . We use
the shift values for δ: -0.05; -0.1; -0.25; and -0.5.

Tables 5 and 6 show the performance of the one-sided and two-sided control
charts, respectively, in terms of the observed proportions of out-of-control signals.
All these results are based on 100,000 simulations with n = 20. The 95% margin of
error for reported results in Tables 5 and 6 is approximately 0.00295.
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It is seen that the proposed charts are comparably effective in detecting an OOC
situation. For example for a nominal value α0 = 0.1, with 5 out of the 20 observa-
tions replaced by OOC observations from Expo(0.5) (δ = −0.5), the proportion of
cases with at least one signal is 0.10116 = 10.116% for the proposed procedure for
the one-sided Phase I control chart, while it is 0.09115 = 9.115% for Dovoedo and
Chakraborti 13 and 0.10156 = 10.156% for Jones and Champ 10 chart. It may be
noted that none of these charts seems entirely superior or satisfactory in respect of
OOC performance. However, the key for a Phase I is a robust IC performance.

Next we illustrate the proposed control chart with an example.

6 An Illustration

Table 7 shows a set of 30 failure time data generated from a Poisson distribution
with a mean of 0.1. For these data n = 30, l = 8, m = 15 and u = 23. We monitor
these data with the proposed Phase I chart.

The center line for the proposed two-sided control chart is CL = X(15) = 6.91
and the lower and upper control limits are given by:

LCL = −53.9213 and UCL = 47.2320

Since LCL < 0 we fix the lower control limit as LCL = 0. It can be seen from
Figure 1 that the 11th observation 52.32 plots outside the UCL which indicates an
OOC situation, that needs further invetigation. Note that for these data, neither
the Dovoedo and Chakraborti 13 nor the Jones and Champ 10 control chart indicates
any OOC situation.

7 Concluding remarks

In this paper Phase I control charts are considered for observations from an expo-
nential distribution with an unknown mean. The proposed charts are based on the
median and hence hold the IC robustness property well. In fact the proposed charts
are shown to be more IC robust than both the Jones and Champ 10 and the Dovoedo
and Chakraborti 13 charts currently available in the literature. Further work is nec-
essary on the out-of-control performance of these charts.
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A The distribution of Dixon’s statistic

Likes 16 proposed Dixon’s15 statistic to identify suspected observations in exponential
samples. This is given by

Z =
X(s) −X(r)

X(q) −X(p)

, 1 ≤ p ≤ r < s ≤ q ≤ n; q − p > s− r (A.1)

The distribution of Z is shown to be

1− FZ(z)

=
(n− p)!
(n− q)!

(1−z)

{
q−s∑
i=1

s−r∑
k=1

[
(−1)i+k(q − r − i)![(n− s+ k)z + (n− q + i)(1− z)]−1

(i− 1)!(k − 1)!(q − s− i)!(s− r − k)!(q − p− i)!(n− s+ k)

]

+

r−p∑
j=1

s−r∑
k=1

[
(−1)q−s+j+k(s− r + j − 1)![(n− s+ k)z + (n− r + k)(1− z)]−1

(j − 1)!(k − 1)!(r − p− j)!(s− r − k)!(q − r + j − 1)!(n− s+ k)

]}
(A.2)
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Table 1: Fence constants for the proposed one-sided control chart
Number of Phase I observations n

α0 10 15 20 25 30

0.01 280.0482 620.906 823.4736 1104.8554 1308.5535

0.05 54.4843 121.2247 160.9200 216.0615 255.9534

0.1 26.2788 58.74 78.0677 104.9175 124.3375

0.2 12.1576 27.4521 36.5802 49.2624 58.4318

Table 2: Fence constants for the proposed two-sided control chart

Number of Phase I observations n

10 15 20 25 30

α0 k1 k2 k1 k2 k1 k2 k1 k2 k1 k2
0.01 560.1742 1161.1827 1240.2384 1859.9880 1644.3525 2708.1128 2205.6963 4112.5772 2611.8057 5069.8775

0.05 109.0588 225.1749 240.9067 360.5456 319.2869 524.9170 428.1643 796.9483 506.9276 982.5032

0.1 52.6642 108.1645 115.9775 173.0985 153.6365 251.9917 205.9495 382.4547 243.7901 471.5313

0.2 24.4568 49.64082 53.4879 79.3422 70.7777 115.4788 94.7966 175.1298 112.1674 215.9476

Table 3: Empirical overall false alarm rates for the one-sided control charts

Distribution

α0 Method Gamma(1.2,1) Gamma(1.1,1) Gamma(0.9,1) Gamma(0.8,1)

0.01 Proposed 0.00921 (7.9%) 0.00954 (4.6%) 0.00971 (2.9%) 0.01000 (0.0%)

DC 0.01508 (50.8%) 0.01148 (14.8%) 0.00789 (21.1%) 0.00605 (39.5%)

JC 0.00256 (74.4%) 0.00507 (49.3%) 0.01965 (96.5%) 0.04009 (300.9%)

0.05 Proposed 0.05033 (0.7%) 0.05046 (0.9%) 0.04977 (0.5%) 0.04992 (0.2%)

DC 0.06864 (37.3%) 0.05781 (15.6%) 0.04182 (16.4%) 0.03238 (35.2%)

JC 0.01747 (65.1%) 0.02920 (41.6%) 0.08521 (70.4%) 0.14140 (182.8%)

0.1 Proposed 0.10035 (0.3%) 0.10062 (0.6%) 0.09980 (0.2%) 0.10044 (0.4%)

DC 0.13323 (33.2%) 0.11625 (16.3%) 0.08442 (15.6%) 0.06565 (34.4%)

JC 0.04075 (59.3%) 0.06426 (35.7%) 0.15469 (54.7%) 0.23709 (137.1%)

0.2 Proposed 0.20070 (0.3%) 0.20178 (0.9%) 0.20088 (0.4%) 0.20185 (0.9%)

DC 0.25265 (26.3%) 0.22573 (12.9%) 0.17322 (13.4%) 0.14038 (29.8%)

JC 0.09845 (50.8%) 0.13859 (30.7%) 0.28209 (41.0%) 0.39207 (96.0%)
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Table 4: Empirical overall false alarm rates for the two-sided control charts

Distribution

α0 Method Gamma(1.2,1) Gamma(1.1,1) Gamma(0.9,1) Gamma(0.8,1)

0.01 Proposed 0.01006 (0.6%) 0.00987 (1.3%) 0.01005 (0.5%) 0.01000 (0.0%)

DC 0.01135 (13.5%) 0.01044 (4.4%) 0.00972 (2.8%) 0.01028 (2.8%)

JC 0.00281 (71.9%) 0.00494 (50.6%) 0.01983 (98.3%) 0.03941 (294.1%)

0.05 Proposed 0.04941 (1.2%) 0.05056 (1.1%) 0.05026 (0.5%) 0.04996 (0.1%)

DC 0.05536 (10.7%) 0.05149 (3.0%) 0.04833 (3.3%) 0.04856 (2.9%)

JC 0.01791 (64.2%) 0.03000 (40.0%) 0.08027 (60.5%) 0.13365 (167.3%)

0.1 Proposed 0.09923 (0.8%) 0.10091 (0.9%) 0.10159 (1.6%) 0.10184 1.8%)

DC 0.10860 (8.6%) 0.10354 (3.5%) 0.09506 (4.9%) 0.09673 (3.3%)

JC 0.04125 (58.8%) 0.06263 (37.4%) 0.14634 (46.3%) 0.22658 (126.6%)

0.2 Proposed 0.20310 (1.6%) 0.20010 (0.0%) 0.20500 (2.5%) 0.20130 (0.6%)

DC 0.22140 (10.7%) 0.21020 (5.1%) 0.19180 (4.1%) 0.18630 (6.9%)

JC 0.09380 (53.1%) 0.12780 (36.1%) 0.25660 (28.3%) 0.36430 (82.2%)
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Table 5: OOC performance of the one-sided Phase I control charts
Shift size δ

α0 t Method -0.05 -0.1 -0.25 -0.5
0.01 t=1 Proposed 0.01008 0.00961 0.01007 0.00977

DC 0.01017 0.01030 0.00985 0.00956

JC 0.01012 0.00984 0.01033 0.00989

t=3 Proposed 0.01015 0.00993 0.00993 0.00966

DC 0.00953 0.01000 0.01004 0.00953

JC 0.01037 0.01015 0.01016 0.01054

t=5 Proposed 0.01017 0.01017 0.00965 0.01016

DC 0.00966 0.01005 0.01000 0.00987

JC 0.01023 0.01043 0.01059 0.01013

0.05 t=1 Proposed 0.04970 0.05025 0.04946 0.05041

DC 0.05010 0.05006 0.04960 0.04833

JC 0.04977 0.05105 0.04939 0.05085

t=3 Proposed 0.05024 0.04973 0.05022 0.05009

DC 0.05107 0.05055 0.04890 0.04822

JC 0.04968 0.04899 0.05093 0.05139

t=5 Proposed 0.05176 0.05063 0.05095 0.05118

DC 0.04891 0.05025 0.04999 0.04736

JC 0.04955 0.05052 0.04985 0.05210

0.1 t=1 Proposed 0.09956 0.10009 0.09958 0.10013

DC 0.10029 0.10039 0.09992 0.09616

JC 0.10152 0.10118 0.10070 0.10314

t=3 Proposed 0.09825 0.09864 0.09985 0.09961

DC 0.10157 0.10019 0.09929 0.09679

JC 0.09910 0.09908 0.10348 0.10474

t=5 Proposed 0.10018 0.09998 0.09892 0.10116

DC 0.09954 0.09839 0.09842 0.09715

JC 0.10044 0.09951 0.10072 0.10156

0.2 t=1 Proposed 0.19973 0.20241 0.19704 0.19838

DC 0.19833 0.19913 0.19781 0.19584

JC 0.20093 0.19979 0.20086 0.20411

t=3 Proposed 0.19839 0.19961 0.20018 0.20828

DC 0.20158 0.20180 0.19968 0.18724

JC 0.19873 0.20096 0.20233 0.21122

t=5 Proposed 0.19940 0.20078 0.19984 0.20177

DC 0.19959 0.20182 0.19670 0.19677

JC 0.19848 0.19717 0.20466 0.20701
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Table 6: OOC performance of the two-sided Phase I control charts

Shift size δ

α0 t Method -0.05 -0.1 -0.25 -0.5

0.01 t=1 Proposed 0.00990 0.00996 0.01002 0.00997

DC 0.00987 0.00993 0.00991 0.01012

JC 0.00989 0.00974 0.01067 0.01082

t=3 Proposed 0.00958 0.01042 0.00997 0.01000

DC 0.01024 0.00983 0.01031 0.01115

JC 0.01041 0.00996 0.01060 0.01318

t=5 Proposed 0.01009 0.00953 0.01008 0.01082

DC 0.00971 0.01006 0.01042 0.01132

JC 0.01007 0.01058 0.01116 0.01545

0.05 t=1 Proposed 0.04899 0.05058 0.04955 0.05101

DC 0.05094 0.04890 0.05098 0.05037

JC 0.04891 0.04897 0.04960 0.05304

t=3 Proposed 0.04987 0.05020 0.05033 0.05041

DC 0.04957 0.04920 0.05197 0.05188

JC 0.04821 0.04952 0.05155 0.05913

t=5 Proposed 0.04832 0.05026 0.04904 0.05072

DC 0.05037 0.04999 0.05192 0.05526

JC 0.04983 0.04834 0.05284 0.06777

0.1 t=1 Proposed 0.10052 0.09872 0.10064 0.09993

DC 0.10025 0.09879 0.10212 0.10125

JC 0.09657 0.09519 0.09704 0.10128

t=3 Proposed 0.10056 0.10060 0.10285 0.10048

DC 0.10086 0.10012 0.10277 0.10279

JC 0.09686 0.09723 0.10227 0.11356

t=5 Proposed 0.09756 0.09938 0.10201 0.10175

DC 0.09983 0.10227 0.10215 0.11005

JC 0.09585 0.09647 0.10146 0.12673

0.2 t=1 Proposed 0.20019 0.19734 0.19894 0.20263

DC 0.19984 0.19918 0.20085 0.20116

JC 0.18586 0.18337 0.18427 0.19393

t=3 Proposed 0.20008 0.20120 0.19995 0.20280

DC 0.19909 0.20120 0.20363 0.20335

JC 0.18372 0.18439 0.18715 0.21261

t=5 Proposed 0.20063 0.20112 0.20119 0.20290

DC 0.20074 0.20108 0.20623 0.21133

JC 0.18366 0.18414 0.19366 0.23005

Table 7: Time between failures data
1.24 6.69 9.77 1.23 14.03 18.07 3.90 13.61 18.47 12.85

52.32 14.75 4.69 0.18 13.61 4.57 0.28 7.08 12.00 5.15

6.09 20.41 5.93 19.03 13.65 6.37 2.06 3.30 6.91 12.08
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