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milieu of RA, are playing an even greater role than previ-
ously assumed.
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Introduction

Rheumatoid arthritis (RA) is a chronic systemic disease 
affecting joints, connective tissues, muscles, tendons and 
fibrous tissue. It is typically associated with some degree of 
immobility, persistent synovitis, inflammation and genera-
tion of autoantibodies and can be disabling and sometimes 
disfiguring [1]. The disease prevalence varies between 0.3 
and 1 %, and despite advances in treatment over past few 
decades, as a result of its comorbidities, the life expectancy 
of patients is reduced by 3–10  years [2]. The risk factors 
can be classified into non-modifiable, such as genetic or 
gender-based categories, and modifiable, such as environ-
mental or lifestyle-based categories. The majority of RA 
falls into those caused by genetic factors, while environ-
mental factors add cumulatively to the risk of developing 
the disease [3, 4].

The pathophysiology of RA is complex, perpetuated by 
an arsenal of cells whose functions have been altered often 
by RA-associated genes and/or environmental triggers and 
converted to autoimmune cells and complexes, or made to 
follow an inflammatory pathway [5, 6]. Prominent amongst 
the cytokine mediators of inflammation triggered by lym-
phocytic activities are tumour necrosis factor (TNF-α) and 
interleukins (IL-1, IL-6) [5], resulting in increasing levels 
of oxidative stress [7]. Lipid parameters (e.g. cholesterol 
levels) of sufferers are also distinctly altered and resistant 
to potential modification [8]. The inflammatory processes 

Abstract  Cytokines, lymphocytes, platelets and several 
biomolecules have long been implicated in the pathology 
of rheumatoid arthritis (RA), and the influences of anti-
body production and tagging, and cytokine, chemokine 
and enzyme production at specific rheumatoid joints were 
thought to be exclusive to the advancement of disease 
parameters. Another role player in RA is red blood cells 
(RBCs) which, of late, have been found to be involved in 
RA pathobiology, as there is a positive correlation between 
RBC counts and joint pathology, as well as with inflam-
matory biomarkers in the disease. There is also an associa-
tion between RBC distribution width and the incidence of 
myocardial infarction amongst RA patients, and there is a 
change in the lipid distribution within RBC membranes. 
Of late, certain RBC-associated factors with previously 
obscure roles and cell-derived particles thought to be incon-
sequential to the other constituents of plasma were found 
to be active biomolecular players. Several of these have 
been discovered to be present in or originating from RBCs. 
Their influences have been shown to involve in membrane 
dynamics that cause structural and functional changes 
in both platelets and RBCs. RBC-derived microparticles 
are emerging entities found to play direct roles in immu-
nomodulation via interactions with other plasma cells. 
These correlations highlight the direct influences of RBCs 
on exacerbating RA pathology. This review will attempt 
to shed more light on how RBCs, in the true inflammatory 
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in turn alter the attributes and functions of platelets and 
red blood cells (RBCs), manifesting in the development of 
other progressive features of the disease [9, 10]. Research 
has already established that there is a positive relationship 
existing between platelet and RBC counts and the levels of 
erosion occurring in RA joints [11]. However, the capac-
ity of inflammation to transform RBC into pathogenic cells 
has not fully been explored in RA.

Therefore, in the current manuscript, we performed a 
comprehensive search on MEDLINE, Google Scholar, Sco-
pus and Web of Science, following the guidelines stipulated 
by Gasparyan and coworkers in 2011 [12]. We performed 
our search for the literature using keywords specific to the 
red blood cell (RBC) in rheumatoid arthritis, and the key-
words were: erythrocyte rheumatoid arthritis, erythrocyte 
autoimmunity, erythrocyte platelet interaction, erythrocyte 
membrane, erythrocyte protein, erythrocyte microparticle, 
erythrocyte inflammation, lysophosphatidic acid. Figure  1 
shows a layout of the current manuscript.

RBC pathology in relation to RA pathology

A prominent measure recommended by the American Col-
lege of Rheumatology and utilized by rheumatologists 
through which disease activity may be monitored is the 
erythrocyte sedimentation rate (ESR), and this is affected 
by changes in the indices of blood cells, especially those 
of RBCs [13]. The ESR for RA patients is increased, as the 
inflammatory state causes platelets to be in a hyperstimu-
lated state and induces clustering of immune cells and pro-
teins, which have been shown to be markers of the disease 
process [14]. The predisposition to clotting is as a result 
of inflammation which increases the presence and activity 
of clotting factors [15]. A recent study demonstrated how 
raised levels of this marker directly correlated with the risk 
for heart failure in patients [16]. Properties like RBC size 
and the blood pH also affect the ESR, and these may be 
altered in the disease.

The inflammatory milieu in rheumatoid arthritis has 
been shown to affect RBCs [10, 17, 18]. Anaemia, a 
comorbidity in RA, is a result of increased eryptosis of 
bone marrow erythroid cells [19]. It has a prevalence of 
about 30  % and was found to be more frequently asso-
ciated with chronic conditions [20]. In early stages, it is 
caused by IL-6 suppression of erythropoiesis in bone mar-
row, but this type does not contribute to mortality [21]. 
The direct cause of anaemia in chronic RA has therefore 
frequently been attributed to the same factors that propa-
gate disease parameters.

In addition to effects that RA pathology causes to RBCs, 
evidence suggests that they are equally potent in their 
capacity to aggravate inflammation in situations where 

platelet influences were thought to dominate. Their num-
bers have been found to be directly correlated with degrees 
of cartilage erosion occurring in the rheumatoid synovium 
[11], and there seems to be a direct link between the pres-
ence of these cells and inflammatory biomarkers in RA 
[22] and also on raising the risk for myocardial infarction 
amongst patients [23].

RBCs maintain characteristic structures with the help 
of a phospholipid bilayer and several transmembrane pro-
teins. Proteins, functioning as receptors or transporters, 
are responsible for the elastic and structural properties of 
RBCs, as well as their interactions with the biochemical 
milieu [24]. Some of these proteins such as calpastatin have 
the potential to stimulate inflammatory activities in other 
cells or become antigens in the autoimmune atmosphere of 
the RA patient’s physiology [25, 26].

The protein content in the rheumatoid circulation is stag-
gering. The disease is characterized by predominance of 
acute-phase response proteins such as fibrinogen, amyloid 
proteins and the globulins over albumin [27]. RBCs in these 
patients have been shown to be affected by the presence of 
excessive amounts of proteins circulating in the blood, as 
well as the levels of generated free radicals [28]. Levels of 
these proteins have been found to be the most significant 
indicators of radiographic progression [29]. An integrin-
associated protein CD47 was also found to be a mediator for 
fibrinogen interactions with RBC membranes [30]. Recent 
studies have unveiled the potential for high-concentration 
fibrinogen to affect membrane deformability and regula-
tion of free radicals in the presence of acetylcholine [31, 
32]. The adsorption of these proteins into RBC membranes 
within the RA circulation is also a possibility that cannot 
be ruled out [33]. Furthermore, adsorption of charged pro-
teins has also been shown to affect the distribution of lipids 
within membranes [34]. The structure and interactions of 
RBCs may consequently be hampered by the transmem-
brane protein changes, a possible cause for the characteristic 
phenomenon of high sedimentation rates in plasma.

RBC
• RBC Pathology in relation to RA pathology

Platelet
• Platelet contributions to RA pathology

RBC+Platelet
• RBC & Platelet interactions in RA

Future
• Implications for further research

Fig. 1   Layout of manuscript—summary of underscored roles of red 
blood cells (RBCs) within rheumatoid arthritis (RA)
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The oxidative state of RBC membrane proteins in rheu-
matoid circulation is altered, resulting in the severe state 
of oxidative stress in RA [35]. Free radicals such as nitric 
oxide have been found to bind and exacerbate the oxidative 
states of RBCs [36]. Furthermore, an RBC carries an over-
all negative charge, which should enable it offset the influ-
ence of pro-inflammatory factors, but this charge is altered 
by raised levels of oxidative stress [35]. Ergothioneine, 
an active transporter of cations on the RBC membrane is 
found at significantly higher levels in RA patients com-
pared to patients with other chronic inflammatory diseases 
[18]. On the other hand, protective glutathione reductase, 
normally produced by RBCs, is insufficient to cancel out 
effects of the toxic oxygen metabolites, resulting in lipid 
peroxidation [37]. Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), a critical metabolic enzyme affiliated with 
the membrane undergoes ADP ribosylation and is inhibited 
from participation in its multiple roles within the cell cycle 
[38]. With overwhelming oxidation of proteins responsible 
for reversing these effects, the cell cycle suffers and eryp-
totic pathways eventually ensue.

The lipid parameters of RBC membranes have also been 
shown to influence their inflammatory state and participa-
tion in thrombotic pathologies, and this is critical to RA 
plasma characterized by dyslipidaemia [39]. Lipids are 
particularly influential in modulating the levels of inflam-
mation occurring in the disease and determining the occur-
rence of comorbidities [40]. It was revealed that the lipid 
distribution in RA plasma and RBC bilayers is altered, 
showing a decreased level of cholesterol and phospholip-
ids when compared to healthy controls [17]. Studies have 
shown that the amounts of cholesterol incorporated into 
the cell’s phospholipid bilayer can determine its capac-
ity to express phosphatidylserine (PS) on the outer leaflet 
independent of ATP-driven flippases [41]. This supports the 
possibility that portions of the membrane are budding off 
to form microparticles (MPs). They have been described in 
several inflammatory diseases and could be involved in RA 
pathobiology [42]. Investigation of the proteome of these 
RBC-derived microparticles (RMPs) provides evidence that 
they occasionally carry the crucial band 3 protein, which 
increases the chances that they may also express Rh-asso-
ciated CD47 and present fibrinogen as an antigen [43, 44]. 
Expression of PS on cell membranes has also been shown 
to play a role in influencing the electrostatic association of 
cationic ligands with the cell [45]. With the reduced quan-
tities of cholesterol in RA RBCs, they are likely to show 
greater degrees of membrane pathology.

Lysophosphatidic acid (LPA), a recently described lipid-
derived potentiator of synovial events originating from 
platelets, has been described in RA [46]. Emerging stud-
ies of signalling pathways suggest that its production is 
triggered when phospholipase A2 (PLA2) hydrolyses and 

causes exposure of PS [47, 48]. This leads to the opening 
of calcium (Ca2+) channels in the membrane, which acti-
vates calpain/calpastatin pathways and ends in vesiculation 
[49, 50]. This directly affects the deformability and aggre-
gatory properties of the cells [51]. LPA has also been found 
capable of inducing RMP generation [52]. The composition 
of lipids and proteins of the RMPs is varied and affected 
by the membrane domains of the originating cell, which in 
turn determines its stimulatory signal on the target cell [53, 
54]. The expression of PS by RBC membranes could also 
indicate disengagement in the some lipid associations criti-
cal to the maintenance of structure by underlying spectrin 
proteins, resulting in changes in membrane ultrastructure 
[55].

Beyond the influence of inflammatory stress on these 
cells, RBCs also contribute directly to RA pathology 
through immunoregulation. They have been shown capa-
ble of regulating cell cycles of the CD4+ and CD8+ T cell
population and releasing factors that promote their growth 
and survival [56–58]. RMPs were also recently implicated 
in immune cell activation in addition to initiating thrombin 
generation [59]. Lipid rafts and their constituents are also 
critical to determining constituent membrane proteins and 
therefore affect intercellular biochemical signalling. There 
is proof within the literature that T cell antigen recep-
tors are influenced by similar modifications [60]. Taking 
into account what the literature says, and considering the 
substantial role T cell signalling contributes to the patho-
physiology of the disease, we suggest that some signalling 
between RBC membranes and T cells might therefore have 
been taking place undetected. The participation of these 
cells in immune activities requires further study in RA. A 
proposed pathway to RBC membrane pathology and direct 
involvement in RA is described in Fig. 2.

The influences of platelet MPs on immunity have been 
well investigated in the disease, and those from RBCs 
might therefore also play an important role in the disease. 
Considering the degree of lipid dysregulation occurring 
within RBC membranes, it is likely that many more undis-
covered pathways are aggravating the autoimmune milieu. 
Figure  3 is a depiction of the implied interrelationships 
between RBCs and RA pathology.

Platelet contributions to RA pathology

The inflammatory milieu of rheumatoid plasma provides suf-
ficient agonistic stimuli for platelets in RA. Their numbers 
and degree of activity have been found to be significantly 
amplified in the disease [9]. Thrombocytosis was found in 
a large proportion of RA patients, attributed mostly to their 
reduced survival and increased turnover rates [61]. Plate-
let numbers have been directly correlated with clinical and 
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other investigative measures of disease activity such as ESR, 
C-reactive protein, rheumatoid factor, levels of leucocyte and 
acute-phase proteins but inversely associated with albumin 
and haemoglobin levels [62]. Their volumes have also been 
markedly correlated with disease activity [63]. Increased 

platelet volumes were found to be directly affiliated with the 
risk of cardiac complications and hypertension [9, 64]. This 
links them directly to the comorbidity risk of RA.

Platelets have the capacity to function as delivery vehi-
cles for a plethora of chemokines, cytokines, growth fac-
tors, autocrine and paracrine moieties which may or may 
not be present in the surrounding serum, and their activa-
tion sustains autoimmune pathways [65, 66]. They are 
also capable of post-translational automodification of their 
mRNAs following release from megakaryocytes via activa-
tion by molecular signals common to oxidative or haemo-
static pathways [67]. They enhance vascular permeability 
and release MPs, which have been implicated in aiding the 
formation of immune complexes via autoantigen expres-
sion [68, 69]. MPs were also found to be carriers of the 
C-type lectin-like receptor 2 (CLEC-2) as with the origi-
nating cells which enables cleavage of the platelet glyco-
protein GPVI [70]. Whether this is required prior to acti-
vation via collagen binding is yet to be established. Their 
mitochondria are capable of promoting oxidative stress and 
increasing pathophysiologic functions in the cell [71].

Platelet function in peripheral circulation has also been 
found to be different from its activity in the RA synovium. 
Hyperactive platelets and their products are found in higher 
proportions at inflammatory sites than in circulation [72]. 
While inflammatory pathways differ from haemostatic, they 
share several common mediators that may cause platelet func-
tions to overlap [73]. Disease features like invasion of syno-
vial membranes and angiogenesis indicate platelet participa-
tion [74]. Differential binding and functions of the platelet 
receptors within circulation are different from their functions 
in the rheumatoid synovium, causing corresponding variations 
in its degrees of activity within circulation of RA patients.

RBC and platelet interactions in RA

Platelet interactions with RBCs are likely events that hap-
pen frequently within macro- and microvasculature. Hence, 

PLA2 hydrolyses PS on RBC 
membrane

? PLA2 from coagulation 
pathway

PS exposure on RBC 
membrane

LPA generated

Ca2+ channels opened on 
RBC membrane

Calpain 
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Binding
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RBC 
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budding

Fig. 2   Proposed inter- and intracellular pathophysiology connecting 
RA RBCs to T cell activation

Fig. 3   Possible RBC and RA 
pathology interconnectedness
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understanding their biochemical and biomolecular associa-
tions is important to detect potential implications to RA 
pathophysiology. Far beyond the placid role allotted to 
these cells within circulation, their associations are proving 
to be critical to the disease parameters. The magnitude of 
RBC and platelet influences on pathology can be observed 
just based on their proximity within circulation. The αIIbβ3 
platelet integrin proteins (GPIIbIIIa) are central to coagula-
tion and fibrinogenesis and platelet interactions. However, 
following activation via collagen binding, these receptor’s 
responses were found to be significantly enhanced by pro-
thrombotic releasates from a suspension containing both 
platelets and RBCs [75]. The releasates contained greater 
amounts of ADP, ATP and thromboxane B2 (TX B2) than 
those derived from platelets acting alone [76]. These RBC-
induced responses were found to be sustained even after 
the removal of the initial agonist trigger and following inhi-
bition of TX synthesis.

It has been established that majority of the cell-derived 
microparticles occurring within circulation and a few 
occurring within the synovial space, as described by 
investigators, originate from RBCs [77, 78]. These RMPs 
effected expansion of the T lymphocyte pool via antigen 
presentation. Some of those investigated were found to be 
carriers of complement proteins or tissue factors and were 
less sensitive to clearance by annexin V [79]. There is fur-
ther evidence that they serve as vectors and modify activi-
ties within target cells [80].

Interactions of these particles with platelets have also 
triggered thrombotic signalling [77, 81]. Assays of throm-
bin production were able to confirm that RBCs and their 
products were capable of independent thrombin generation, 
once stimulated [82, 83]. Several studies of other diseases 
confirm this role of consistent contribution to hyperco-
agulability by RBCs [84–86]. RBC MPs are also capable 
of inducing platelet hyperstimulation following collagen  
activation [76]. These RMPs were found capable of induc-
ing ex vivo platelet–platelet aggregates [87] and sometimes 
express PS on their surface which enables platelet binding 
and activation and in turn modifies the chemokine ligands 
they carry [88]. With angiogenesis at inflamed joints being 
a direct consequence of disease progression, these cells 
gain direct access to each other’s molecular and biochemi-
cal influences so there is likely exponentiation of stimula-
tion. This could possibly be a mechanism through which 
adjacent RBCs elevate the inflammatory responses of the 
platelets within rheumatoid serum, in which variable vol-
umes of degraded collagen are present [89]. Figure  4 
depicts some of the physiological relationships described.

Similarities between the morphological characteristics 
of cells undergoing membrane dysregulation to those fol-
lowing eryptotic pathways suggest they share common bio-
chemical players [90]. An example of this is thromboxane, 

which was found to stimulate RBCs by inducing PS expo-
sure on their surfaces, followed by an increase in cytosolic 
calcium content [76]. These responses have been found 
to be associated with reduced membrane deformability, 
increased adhesion, formation of pathomorphologies and 
a precursor to eryptosis [91–93]. The PS exposure further 
increases the adherence of RBCs to platelets and induces 
thrombosis [93]. It is hence likely that structural variants 
and adhesive associations observable within the RA RBC 
pool could also be a result of this interaction-based effect.

Some adhesion proteins have been identified enabling 
direct contact between platelets and RBCs. Intercellular 
adhesion molecule 4 (ICAM-4 or CD242), a blood group 
antigen within the Landsteiner Wiener family of glycopro-
teins, was recently identified on RBC membranes enabling 
direct binding to the platelet’s αIIbβ3 integrin [94, 95]. Its 
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adhesive potential to diverse other components of vascula-
ture makes it a potential trigger of thrombotic and inflam-
matory pathways. This is likely a preceding step to plate-
let-enabled coagulation during thrombotic events while the 
residues are opsonised for phagocytosis during clot resolu-
tion. However, RBCs that have undergone eryptosis, espe-
cially due to glucose deprivation, have been found to bind 
platelet PS receptors and potentially reduce the solubility 
of the thrombus [93]. It is therefore possible that biophysi-
cal changes, adhesive associations and thrombotic events 
observable within RA vasculature could also be a result of 
this interaction-based effect.

The cumulative effect of RBC presence within the rheu-
matoid milieu is therefore important in understanding the 
disease. Studies of other chronic conditions have demon-
strated that changes occur to the lipid and protein composi-
tion of its cell membrane which potentially contributes to 
disease course [96–98]. In RA, however, literature is sparse 
which demonstrate exclusive roles played by RBC-origi-
nating receptors, molecules and signalling pathways on the 
disease. A general overview of the relationships described 
in this manuscript is shown in Fig. 5.

Conclusion and further research

It is probable that as a result of ex vivo protocols utilized 
in separating and purifying protein systems for analyses of 
intracellular and molecular events and interactions, certain 
biochemical processes are missed in the discovery of patho-
physiological pathways [99]. Pharmaceutical researchers 
targeting molecular markers of disease frequently encoun-
ter their influences during inquiries into unforeseen treat-
ment outcomes. Aspirin resistance has already been estab-
lished to be partly due to contributions from RBCs [100]. A 
combination of biochemical signals from the cellular play-
ers in the disease and the RBCs own propensity to contrib-
ute pathogenic stimuli may therefore be identified through 
investigations of progressive RA. Perhaps a closer look at 
the molecular and biochemical factors present within and 
around RBCs using conditions most identical to those in 
vivo would be a more productive way of improving thera-
peutic outcomes. Investigations of antigen systems being 
targeted by immune cells may also uncover associations 
with the RBC [26]. With the advent of utilizing platelets 
as delivery vehicles for therapeutic modulators of synovial 
diseases, RBCs with their diverse molecular and biochemi-
cal contributions should not be left out.

This review aims to emphasize an existing gap in knowl-
edge with respect to RBCs in RA. Future studies should 
ascertain the following: Are there other contributions of 
RBCs to RA and are there currently limitations to the eval-
uation of the factors present within or being produced by 

RBCs that make investigating their contributions to the dis-
ease onerous?

Existing studies frequently attribute MP origin to either 
platelets, monocytes or immune cells, but could there be 
other sources triggering their formation? Current literature 
is sparse with only one describing the proteome constitu-
tion of RBC-derived microparticles/microvesicles, and 
this is not in RA. Could further investigation discover 
the presence of other factors that may not originate from 
RBCs, platelets, plasma or immune cells? Which markers 
are specific for the identification of these vesicles and what 
procedures are likely to perform the most accurate analy-
ses? If spectrin and other skeletal proteins are involved in 
the maintenance of membrane integrity, could they also 
be present in RA-derived RBC vesicles? What could this 
mean to the functionality of the RBC in RA? Are there dif-
ferences in the composition of microparticles/microvesi-
cles in different diseases and could their formation imply 
increased risk for other comorbidities? In summary, RBCs 
may not be directly culpable for RA pathogenesis, but they 
certainly are involved in advancing disease parameters, 
and their participation in the disease process should be 
explored further.
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