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Abstract By considering the contact rate as a function of infective individuals and by using
a general distribution of the infective period, the SIS-model extends to a Volterra integral
equation that exhibits complex behaviour such as the backward bifurcation phenomenon. We
design a nonstandard finite difference (NSFD) scheme, which is reliable in replicating this
complex dynamics. It is shown that the NSFD scheme has no spurious fixed-points compared
to the equilibria of the continuous model. Furthermore, there exist two threshold parameters

cand Ry, Ri <1 < Ry, suchthat the disease-free fixed-point is globally asymptotically
stable (GAS) for Ry, the basic reproduction number, less than R(‘)' and unstable for Rg > 1,
while it is locally asymptotically stable (LAS) and coexists with a LAS endemic fixed-point
for Rj < Ro < 1. A unique GAS endemic fixed-point exists when Ry > R and Rj < oo.
Numerical experiments that support the theory are provided.
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1 Introduction

Let S = S(¢) and I = I(¢) denote the fractions of susceptible and infective individuals at
time ¢, which satisfy the conservation law

S+1=1. ey



The classical SIS-model reads as the logistic equation
=00~ @+l 1(0)=1o =0, (@)

where A > 0,y > 0and b = d = pu > 0 are the contact, the recovery, the recruitment and
the natural death rates, respectively.

Put Io(1) = Ipe="+Y)" and P(f) = e~ ¥*. Then the SIS-model (2) is equivalent to the
following Volterra integral equation (VIE):

t
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In this paper, we assume that X is a function of the fraction of infective individuals and we
make general assumptions on the distribution of the infective period P () and on the initial
function Iy (¢). The fraction 7 (¢) of individuals that are in the infective class at time ¢ > 0 is
then given by the SIS—Volterra integral equation (SIS-VIE) ([6]):
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Unlike the classical SIS-model (2) or (3) where the value Rg = 1 of the basic reproduction
number is a forward bifurcation, the solutions of Eq. (4) have a complex behaviour including
the possibility of backward bifurcation phenomenon.

The purpose of this paper is to extend the NSFD approach to the integro-differential
equation (4). This is done in the spirit of the exact scheme of the logistic equation (2), which
is given in [1,4] and is written for the purpose of this paper in the form of the Volterra
difference equation (VDE):
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where 7, = kAt represents here and after the discrete times, A > 0 being the time step
size. Using Mickens’ rules on complex denominator functions and nonlocal approximation
of nonlinear terms [1,4], we obtain a nonstandard Volterra difference equation (NS-VDE),
which is dynamically consistent. To the authors’ best knowledge, NSFD schemes have never
been developed for Volterra-integral equations, apart from a restrictive situation in [5].

In the next section, we give details on the continuous model (4) and state its qualitative
behaviour. The construction and dynamic consistency of the NSFD scheme is investigated
in Sect. 3. Numerical simulations are provided in Sect. 4, which is followed by concluding
remarks in Sect. 5.

2 SIS-Volterra integral equation model

The biological relevance of expressing the contact rate as a function of the infective population

has been emphasised in the literature (see [6] and the references therein). This is particularly
formalised in [6] in terms of the SIS-VIE (4) under the following assumptions:

A(I) > 0is continuous, and A(/)I (1 — I') has continuous derivative, on [0, 1];  (6)

P(t) > 0 is decreasing, differentiable for ¢ > 0 and satisfies P(07) = 1; 7

Ip(t) = 0 is decreasing, differentiable and satisfies lim;_,~ Io(t) = 0. (8)
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For the qualitative analysis, Eq. (4) is written in the equivalent form
t
1(t) = Io(1) + Ro/ IT@w) fI )P — u)du, )
0

where: Rp = A(0)T and 7 = fooo P(u)e "™ du are the basic reproduction number and the
period of infe~ctivity, respectively; f(I) = A(I)(1—=1)/A(0); PO =t 'P)e ™, t >0
so that fooo P(u)du = 1. With f(I), we associate the quantities:

(Rg)_] =max{f(I): I =0 or I €(0,1); f'(I)=0},
(726”)_1 =min{f(I): I =0 or I €(0,1); f'(I)=0}.
Note finally that I € [0, 1] is an equilibrium solution of (9) if and only if
I =RoIf). (10)
Theorem 1 [6] Suppose that (6)—(8) hold and 0 < Iy(t) < 1. Then the SIS-VIE (4) has a
unique continuously differentiable solution I satisfying 0 < I(t) < 1. Furthermore:

1. The DFE is the only equilibrium and it is GAS when Ro < R{;

2. There exists only one EE, which is GAS when Ry > Ry and R{j < +00, with the DFE
being unstable in the larger interval Ro > 1;

3. For Ry < 1 and R < Ro < 1, the DFE is LAS and it coexists with at least one LAS
equilibrium if )/ (0) # A(0).

3 Nonstandard finite difference scheme
Let I (¢) be the solution of VIE (4). At the discrete time #;1, we have
I(te41) = To(tk41)
k tit1
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where the numbers ¢; € [t;, t;41] are obtained by applying the mean-value theorem for
integrals. In the spirit of the nonlocal approximation of the nonlinear term in (5), we make
the choice ¢; = t; and ¢; = tj41 to approximate I (u) and (1 — 1 (u)) P (tx+1 —u), respectively.
We have approximately

k
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where the complex denominator function that appeared naturally is ¢ = ¢ (A1) = (1 —
e #Aly /. Denoting by I' an approximation of (¢;), we finally obtain the NS-VDE

k
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The terminology NS-VDE is motivated by the fact that Eq. (11) can be written as an
approximation of the Volterra integro-differential equation obtained by formally differenti-
ating Eq. (4) with respect to time. In that equivalent formulation, we have a NSFD scheme
in the sense of [1,4].

Our NSFD scheme is convergent due to the property ¢ (Af) = At + O[(Af)*]. We want
to show that the NSFD scheme is dynamically consistent with the properties in Theorem 1. If
Eq. (11) is solved for 1 k+1 the conservation law S* + I¥ = 1 [see Eq. (1)] and mathematical
induction on k yield the next theorem.

Theorem 2 For the NS VDE (11) : 0 < Io(t) < 1 implies 0 < I¥ <1 Vk.

Theorem 3 The NS-VDE (11) preserves the equilibria as follows:

The disease-free equilibrium point is the disease-free fixed point,
There is no endemic fixed point for Ry < Ry,

There exists at least one endemic fixed point for Ry > Ry,

There exists exactly one endemic fixed point for Ry > Ry, Ry < oo.

bl

Proof Tt can be shown that I* is a fixed-point of the NS-VDE (11) if and only if I* satisfies
(10), the characterising equation of equilibria of the continuous model in Theorem 1. O

Below, we refine the denominator function used so far so that, as in (5), it involves the
key parameters of the continuous model:

¢ (At) = (1 — efqm)/q where ¢ > max [u, max A([),2 max AZ(I)] . (12)
I1€[0,1] I€[0,1]

Theorem 4 With (12) in the NS-VDE (11), we have the following:

1. The disease-free fixed point is LAS for Ry < 1 and unstable for Ry > 1;

2. At least one endemic fixed point 1, given in Theorem 3 (3) is LAS under the specific
condition: )/ (1,) < min{—1 — A(1,), —A(1.)/1,}.

3. For Ry < Ro < 1 and A'(0) # A(0), the LAS disease-free fixed point coexists with at
least one LAS endemic fixed point;

4. For Ro < R, the disease-free fixed point is GAS and for Ro > Ry with R < 0o, the
endemic fixed point is GAS.

Proof The LAS is obtained by linearization of the VDE (11) about the fixed-point and by
using some variants of the Jury conditions in [2,3], which motivates the requirement in item
(2) of the theorem. The GAS follows from Bolzano-Weierstrass theorem that permits to show
that the limit set of the bounded sequence (/ ky is reduced to one LAS fixed-point. ]
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4 Numerical experiments

It is known that standard finite difference methods do not preserve the dynamics of the
(classical SIS-) logistic equation (2) (see [1]). Thus, it is not necessary to generate here
simulations for classical numerical methods. The theoretical analysis in the previous section
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Fig. 1 Left for M(I) = P41+ 1/3: backward bifurcation when R > 'R(C) (top), GAS of DFE (middle)
with u = 0.4, Ip(t) = %870'51‘ and P(1) = ¢ 01" and GAS of EE (bottom) for 1 < Rg = % with
w=0.1 Iyt = %370'2’ and P(r) = e O Right for A(I) = 1 + 5I: backward bifurcation if
Ro > R (10p), GAS of DFE (middle) if Ry = 0.54 < 3, Io(t) = se™!, P()=e" and ;= 0.85 and

1 =1
GAS of EE, I, = 0.83, for Rg = X with 10 =04, Io(r)=L1e72" and P() =2



is illustrated by taking A(1) = —I> + I + %, which satisfies the needed conditions, with
Ri = 0.83 and Rf = 1. On the left of Fig. 1, the following properties of the NS-VDE
with ¢ = 2 in (12) are displayed in accordance with Theorem 4: backward bifurcation (top),
GAS of disease-free fixed-point (middle) and GAS of endemic fixed-points (bottom). We
also take A(/) = 1 + 5I. Then R{ = g and R = 1. On the right of Fig. 1, the properties
listed above are preserved in the same order by the NS-VDE with ¢ = 102. The fact that
this A(I) satisfies rather the realistic condition A'(I*) < (A(I*))/(1 — I*) that holds for a
LAS endemic equilibrium /* of the continuous model than the stronger condition in part (2)
of Theorem 4, suggests that this theorem is valid under this realistic condition. In all figures
At = 2, alarge value that is not acceptable for classical numerical methods.

5 Conclusion

We designed for the first time a NSFD scheme for the SIS-Volterra integral equation. The
scheme replicates the positivity and boundedness of the solution as well as the complex
stability properties of equilibria, including the backward bifurcation phenomenon. This was
achieved by using Mickens’s rules [4].

Fitting contact rates that depend on infective individuals with real data is our interest for
future research. We are also extending this study to more general distribution functions P (¢)
of infective individuals and focussing on NSFD schemes for such cases, including delay
differential equations in epidemiology.
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