
Artificial Intelligence Review manuscript No.
(will be inserted by the editor)

Particle Swarm Optimization with Crossover: A Review
and Empirical Analysis

A. P. Engelbrecht

Abstract Since its inception in 1995, many improvements to the original particle
swarm optimization (PSO) algorithm have been developed. This paper reviews
one class of such PSO variations, i.e. PSO algorithms that make use of crossover
operators. The review is supplemented with a more extensive sensitivity analysis
of the crossover PSO algorithms than provided in the original publications. Two
adaptations of a parent-centric crossover PSO algorithm are provided, resulting in
improvements with respect to solution accuracy compared to the original parent-
centric PSO algorithms. The paper then provides an extensive empirical analysis
on a large benchmark of minimization problems, with the objective to identify
those crossover PSO algorithms that perform best with respect to accuracy, success
rate, and efficiency.

Keywords Swarm Intelligence · Particle Swarm Optimization · Crossover ·
Boundary Constrained Optimization

1 Introduction

This paper focuses on one class of PSO variations, i.e. those PSO algorithms that
make use of some form of crossover. While a number of crossover PSO algorithms
exist, no comprehensive review of these algorithms exist. Furthermore, the papers
that introduced these crossover PSO algorithms neglected to conduct a sensitiv-
ity analysis of the control parameters introduced due to the hybirdization with
the respective crosover operators, and evaluated performance of these algorithms
on a very small number of benchmark functions. Comparisons with other PSO
algorithms were also not fairly done, due to the control parameters not being op-
timized for each of the algorithms on the used benchmark functions, and due to
differences in swarm sizes and other experimental conditions. This paper addresses
these issues by

A. P. Engelbrecht
E-mail: engel@cs.up.ac.za Department of Computer Science,
University of Pretoria,
Pretoria, South Africa

2 A. P. Engelbrecht

– providing an extensive review of existing crossover PSO algorithms,
– conducting a sensitivity analysis of the control parameters introduced by the

crossover process, and
– an elaborate empirical comparison of these crossover PSO algorithms in order

to determine which crossover PSO algorithm(s) performs best with respect to
accuracy, success rate, and efficiency.

In addition, two adaptations of a parent-centric crossover (PCX) PSO algorithm
are proposed and shown to improve on the performance of the original PCX PSO
algorithm.

The remainder of the paper is organized as follows: Section 2 provides a short
review of PSO. Section 3 follows with the review of crossover PSO algorithms.
The two adaptations of the PCX PSO are given in Section 3.4. Section 4 presents
and discusses the results of the control parameter sensitivity analysis and the
comparison of the crossover PSO algorithms.

2 Particle Swarm Optimization

PSO is a stochastic, population-based optimization algorithm developed by Kennedy
and Eberhart (1995). This section provides a short review of the standard PSO,
mainly to introduce the basic elements of PSO and the notation used throughout
the remainder of this review.

PSO algorithms maintain a swarm of particles, where each particle represents a
candidate solution to the optimization problem. Each particle position is adapted
based on two attractors: the best position found by the particle and the best po-
sition found by the particle’s neighborhood. The standard PSO as introduced by
Kennedy and Eberhart (1995) implemented one of two neighborhood topologies:
either a star topology where a particle’s neigborhood is the entire swarm, or a ring
neighborhood topology where a particle’s neighborhood is defined by its immediate
neighbors. While a number of different neighborhood topologies have been devel-
oped (Kennedy, 1999; Kennedy and Mendes, 2002; Abdelbar and Abdelshahid,
2003), this study uses the star neighborhood and the resulting global best PSO
(gbest PSO), due to the finding in Engelbrecht (2013a) that there is no statistically
significant difference in the performance between the two neighborhood topologies,
considering a large benchmark set of 60 functions.

For the gbest PSO, particle positions xi are updated using

xi(t+ 1) = xi(t) + vi(t+ 1) (1)

and the velocities are updated using the inertia weight model (Shi and Eberhart,
1998) as follows

vij(t+ 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (2)

where w is the inertia weight, vij(t) is the velocity of particle i in dimension
j = 1, . . . , nx at time step t, xij(t) is the position of particle i in dimension j at
time step t, yij(t) is particle i’s personal best position in dimension j, ŷj(t) is the
global best position in dimension j, c1 and c2 are positive acceleration constants
used to scale the contribution of the cognitive and social components respectively,

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 3

nx is the dimension of the search space, and r1j(t), r2j(t) ∼ U(0, 1) are uniform
random values in the range [0, 1], sampled from a uniform distribution.

For the purposes of this study, the global best position is selected as the per-
sonal best position with the best solution quality, and a personal best position is
only updated if the new particle position is better than the previous particle po-
sition. In addition, all PSO algorithms used in this study implements a boundary
constraint on personal best positions where a personal best position is only up-
dated if no boundary constraints are violated. This ensures that all personal best
positions, and therefore also the global best position, remain within the bound-
aries of the search space (Engelbrecht, 2013c). Particle positions are initialized
within the domain of the optimization problem and velocities are initialized to
zero (Engelbrecht, 2012).

3 Particle Swarm Optimization with Crossover

Many improvements have been made to the standard PSO (Engelbrecht, 2005;
Poli et al, 2007; Sedighizadeh and Masehian, 2009). Hybrid PSO algorithms have
been developed that incorporate operators from evolutionary algorithms into PSO.
Many PSO hybrids with evolutionary algorithms make use of some form of muta-
tion, applied to either velocity vectors or position vectors (Miranda and Fonseca,
2002; van den Bergh and Engelbrecht, 2002; Wei et al, 2002; Higashi and Iba, 2003;
Stacey et al, 2003). Only a few studies can be found where crossover operators
were used within PSO algorithms. This section reviews these PSO hybrids with
crossover operators.

3.1 Arithmetic Crossover

The very first application of arithmetic crossover within PSO was by Løvberg et al
(2001). A breeding process is done for each iteration after the velocity and position
updates have been done. Two particles are randomly selected for breeding through
application of a crossover operator at a user-specified breeding probability. Assume
that particles a and b are selected for crossover. The corresponding positions, xa(t)
and xb(t) are then replaced by the offspring,

xi1(t+ 1) = r(t)xi1(t) + (1− r(t))xi2(t)

xi2(t+ 1) = r(t)xi2(t) + (1− r(t))xi1(t)

with the corresponding velocities,

vi1(t+ 1) =
vi1(t) + vi2(t)

||vi1(t) + vi2(t)||
||vi1(t)||

vi2(t+ 1) =
vi1(t) + vi2(t)

||vi1(t) + vi2(t)||
||vi2(t)||

where r1(t) ∼ U(0, 1)nx . The personal best position of an offspring is initialized to
its current position. The resulting algorithm is referred to in this paper as PSO
with arithmetic crossover (PSO-AX).

4 A. P. Engelbrecht

3.2 Novel Multi-Parent Crossover

Wang et al (2008) proposed the novel multi-parent crossover operator (NMPCO),
where an offspring is produced by recombining three randomly selected particles
at a user-specified crossover probability. For each particle i, if indices a, b and c

with a 6= b 6= c represent the selected particles, then the offspring is calculated as

x̃i(t) = k1xi(t) + k2xa(t) + k3xb(t) + k4xc(t)

where k1, k2, k3, k4 ∼ U(0, 1), and further calculated as kl = 5(kl/
∑4
c=1 kc) − 1

for l = 1, 2, 3, 4. If the quality of the offspring x̃i(t) is better than that of parent
particle xi(t), then the offspring replaces the parent particle. Personal best and
global best positions are updated after application of the NMPCO. As an optional
last step, the global best position is mutated as follows:

ŷj(t+ 1) = ŷj(t) + vj(t)Cj(xj,min, xj,max)

for each dimension j = 1, . . . , nx, where C is a Cauchy distributed function with
scale of one, Cj(xj,min, xj,max) is a random number within [xmin,xmax], and

vj(t) =

∑nx
i=1 vij(t)

ns

is the average velocity of the swarm, with ns the number of particles in the swarm.
The average velocity is restricted to be within [−Vmax, Vmax].

3.3 Blend Crossover

Duong et al (2010) developed the hybrid evolutionary algorithm as a hybrid be-
tween PSO and the blend crossover (BLX-α) operator (Eshelman and Schaffer,
1993). Using BLX-α, offspring is generated as

x̃ij(t) = (1− γj)x1j(t) + γjx2j(t)

with γj = (1 + 2α)U(0, 1) − α. The BLX-α operator randomly picks, for each
dimension, a random value in the range

[x1j(t)− α(x2j(t)− x1j(t)), x2j(t) + α(x2j(t)− x1j(t))]

BLX-α assumes that x1j(t) < x2j(t). Parents are selected based on solution quality
using roulette wheel selection, and an offspring is generated at a user-specified
crossover probability. The personal best position of the offspring particle is set to
the offspring’s position. This process is performed after all particle positions and
velocities have been updated. Once all offspring have been generated, particles
and offspring are ranked based on solution quality, and only the ns best positions
survive to the next iteration. The resulting algorithm is referred to as the PSO-
BLX-α.

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 5

3.4 Parent-Centric Crossover

Deb et al (2002) developed the parent-centric crossover (PCX) operator as a vari-
ation of the unimodal distributed (UNDX) operator (Ono and Kobayashi, 1997).
The PCX operator implements a multi-parent crossover which blends the candi-
date solutions represented by the selected parents to produce a single offspring.
Where the UNDX operator samples offspring around the center of mass of the se-
lected parents, PCX samples offspring around the selected parents as illustrated in
Figure 1. PCX has a higher probability of creating an offspring closer to a parent
than UNDX.

x2(t)

x3(t)

x(t)

x1(t)

Fig. 1 Illustration of parent-centric crossover

PCX selects nµ ≥ 3 parents and computes their center of mass, x(t). For each
offspring to be generated, one parent, xi, is selected from the nµ parents; usually,
the best parent is selected. This parent is then mutated to produce an offspring
as follows: A direction vector is calculated as

di(t) = xi(t)− x(t)

where x(t) is the center of mass,

x(t) =

nµ∑
l=1

xl(t)

of the selected parents. From the other nµ − 1 parents perpendicular distances,
δl, for i 6= l = 1, . . . , nµ, are calculated to the line di(t). The average over these
distances is calculated, i.e.,

δ =

∑nµ−1

l=1,l 6=i δl

nµ − 1

6 A. P. Engelbrecht

An offspring is then generated using

x̃i(t) = xi(t) +N(0, σ21)|di(t)|+
nµ−1∑
l=1,i6=l

N(0, σ22)δel(t) (3)

where el(t) are the nµ−1 orthonormal bases that span the subspace perpendicular
to di(t), and σ1 and σ2 are the deviations of the two Gaussian distributions. Using
Equation (3), offspring are generated by mutating a randomly selected parent, xi,
with a stochastic weighted distance that the parent is from the center of mass of all
selected parents and a stochastic weighted distance that each non-mutated parent
is from the direction vector, di(t). If σ1 is small, then the offspring is generated
closer to the parent being mutated. For larger values of σ2, offspring generation is
biased towards the non-mutated parents.

Deb and Padhye (2010) and Padhye (2010) proposed two PCX velocity update
strategies, both replacing the standard PSO velocity update with a PCX oper-
ator applied to the particle’s position, its personal best position, and the global
best position. For the first strategy, referred to in this work as PSO-PCXŷ, the
parent to be mutated in Equation (3), xi(t), is always the global best position.
Padhye (2010) reported that the PSO-PCXŷ did not perform well, and showed
that the bad performance is due to the personal best position of a particle always
being similar to the particle’s position for unimodal problems, and frequently for
multimodal problems. When this happens the PCX operator produces an offspring
along the line joining the particle’s position and the global best position, effectively
performing a line search. This finding was, however, based on limited results on
only three benchmark functions and without optimizing the parameters σ1 and
σ2.

As a remedy to this problem, a strategy was proposed to ensure that the parents
used in the PCX operator are distinct (Deb and Padhye, 2010; Padhye, 2010). The
second strategy, referred to in this study as PSO-PCX∗ŷ, therefore first checks if the
parents are distinct. If so, the PCX operator is applied as for PSO-PCXŷ; if not,
three distinct parents are selected from the particle’s previous position, its current
position, its personal best position, and the global best position. If three distinct
parents could be found, the PCX operator is applied on these three solutions.
If only two distinct solutions could be found, the PCX operator is applied with
δ = 0 in Equation (3). If all of the solutions are identical, the PCX operator is not
applied, but the standard velocity update as in Equation (2) is applied instead.

The effect of the PCX velocity update strategies as proposed by Deb and
Padhye is an exploitation of the global best position due to use of the global best
position as the parent to be mutated. In order to improve exploration, a mutation
operator was included (Deb and Padhye, 2010; Padhye, 2010). Also note that the
implementation in Deb and Padhye (2010) and Padhye (2010) used a steady state
implementation of the PSO, that is, asynchronous updates of particle positions
and best positions.

Worasucheep et al (2012) proposed an alternative application of the PCX op-
erator in the PSO, using asynchronous updates of particle positions and best
positions. Before each particle position update, the PCX operator is applied at a
crossover probability, pc. If a random number sampled from a uniform distribu-
tion between 0 and 1 is greater than pc, then the particle position is updated using

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 7

the constriction PSO (Clerc and Kennedy, 2002); otherwise three parents are se-
lected, two randomly from the current particle positions and one as the global best
particle, and the PCX operator is used to generate two offspring. The randomly se-
lected parents are then replaced by the best two positions from the subset created
as the union of these two parents and the two offspring. The resulting algorithm
is referred to as the PSO-PSPG.

3.5 Discrete Crossover

Park et al (2010) proposed that a discrete crossover operator be used to update

personal best positions. A trial position, x
′
(t+ 1) is computed using

x
′

ij =

{
xij(t+ 1) if rij < pc
yij(t) otherwise

(4)

where rij ∼ U(0, 1) and pc is the probability of crossover. The current personal
best position is replaced with this trial position if the latter represents a better
solution.

Dong and Yang (2010) proposed to update particle positions using a crossover
between a particle’s new position and the global best position:

x
′

ij =

{
xij(t+ 1) if rij < pc
ŷj(t) otherwise

(5)

The trial position replaces the particle position if the trial position represents a
better solution. The resulting algorithm is referred to as PSO-DXŷ.

Engelbrecht (2013b) proposed six discrete crossover operators for PSO, assum-
ing synchronous updates, and in Engelbrecht (2014) using asynchronous position
updates. After each particle position update, the crossover operator is applied at
a specified crossover probability. The first parent is the new particle position and
the second parent is selected using one of the following strategies:

– Borrowing from the proposal of Park et al (2010), the second parent is selected
as the personal best position of the particle. The resulting PSO algorithm is
referred to as PSO-DXy.

– Borrowing from the proposal of Dong and Yang (2010), the second parent is the
global best position. The resulting PSO algorithm is referred to as PSO-DXŷ.

– The second parent is calculated as a weighted average of the personal and
global best positions, i.e.

ryi(t) + (1− r)ŷ(t) (6)

with r ∼ U(0, 1). The resulting algorithm is referred to as PSO-DXyŷ.

If the generated offspring is better than the new particle position, then the offspring
replaces the new particle position. If the new particle position is replaced with
the offspring, the personal best position is set to the position represented by the
offspring and the velocity is set to zero.

For each of the three strategies above, recombination of the two parents is
either one-point recombination where one crossover point is randomly selected,
or uniform where each dimension has an equal probability of being selected as a
crossover point. If one-point recombination is used, the superscript 1 is added to
the algorithm name, while the superscript u is added for uniform recombination.

8 A. P. Engelbrecht

3.6 Parent-Centric Crossover Adaptations

The two PSO-PCX algorithms discussed in Section 3.4 selects the global best
particle to be mutated in Section 3. Offspring are then generated as an exploitation
of the global best particle, where the level of exploitation depends on the values of
σ1 and σ2. As an alternative, this paper proposes that a random particle position
be selected to be mutated, in an effort to increase the exploration abilities of the
swarm. The two resulting algorithms are referred to in this paper as PSO-PCXr

and PSO-PCX∗r .

4 Empirical Analysis

This section conducts an in-depth empirical analysis of the crossover PSO algo-
rithms. As the very first step, sensitivity analysis of the crossover specific control
parameters is done in Section 4.2, followed by a test to see if each of the PSO
crossover algorithms actually does improve the performance of the baseline PSO
algorithm in Section 4.3. The new PCX adaptations are compared with the origi-
nal ones to see if any gain can be obtained by selecting the particle position to be
mutated randomly. The empirical analysis ends in a comparison of all of the PSO
crossover algorithms in Section 4.3. The empirical procedure followed is described
next in Section 4.1.

4.1 Empirical Procedure

Detail of the experimental procedure followed is provided in this section. The
algorithms used in the comparisons are listed in Section 4.1.1. Setting of the control
parameters of the baseline PSO algorithm is also discussed. The benchmark set
used is described in Section 4.1.2. The performace measures used are described in
Section 4.1.3 and the statistical analysis procedure is summarized in Section 4.1.4.

4.1.1 Algorithms

Section 3 described a number of PSO algorithms that use crossover operators in
some form. In addition to the crossover operators and how they are used within
the PSO, these algorithms also differ in the baseline algorithm used. Furthermore,
algorithms such as the NMPCO and PSO-PCX∗ŷ use an additional mutation op-
erator, while PSO-PCXŷ, PSO-PCX∗ŷ, and PSO-PSPG use asynhronous updates.
Since the objective of this study is to determine the contribution that the specific
crossover operators make to possible performance improvements, the same baseline
algorithm was used for all of the different crossover PSO algorithms. The baseline
PSO algorithm is a global best PSO (gbest PSO), with synchronous updates. Ve-
locities, vi(0), were initialized to zero for all particles i = 1, . . . , ns, and velocity
clamping was not used. To ensure that found solutions do not violate boundary
constraints, personal best positions were only updated if the resulting position is
better and satisfies the boundary constraints. The gbest PSO control parameters
were set as follows: Swarm sizes, ns, were set to 30 particles, the inertia weight,
w, was set to 0.729844, while the values of the acceleration coefficients, c1 and c2,

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 9

were both set to 1.49618. This choice is based on Eberhart and Shi (2000), and
results in convergent particle trajectories (van den Bergh and Engelbrecht, 2006;
Trelea, 2003; Cleghorn and Engelbrecht, 2014). All algorithms were run for 5000
iterations.

The algorithms used in the sensitivity analysis and comparison, and their con-
trol parameters are summarized in Table 1. All algorithms are implemented in CIlib
version 1.0, an opensource library of Computational Intelligence algorithms1.

Table 1 Control Parameters of Algorithms Used in the Empirical Study

Algorithm Control Parameters

PSO-AX pc, probability of crossover
PSO-BLX pc, probability of crossover

α, scale parameter
PSO-NMPCO pc, probability of crossover
PSO-PSPG σ1, σ2, width of Gaussians’s deviations

pc, probability of crossover
PSO-PCX σ1, σ2, width of Gaussians’s deviations
PSO-DX pc, probability of crossover

4.1.2 Benchmark Functions

A total of 61 benchmark functions, as described in Engelbrecht (2013a), have been
used. These functions represent a wide range of problem characteristics, includ-
ing unimodal, multimodal, separable, non-separable, rotated, shifted, noisy, and
composition functions. A summary of the functions and their characteristics is pro-
vided in Appendix A. Furthermore, as shown in Garden and Engelbrecht (2014),
these functions cover a representative range of different landscape characteristics,
including rugged landscapes, smooth landscapes, and landscapes with different
gradients (from steep to shallow) and large deviations among gradients. Also note
that functions f26 to f37, listed in the appendix, are functions used in real-valued
optimization competitions (Suganthan et al, 2005). Due to the large coverage of
problem and landscape characteristics, this benchmark set is comprehensive and
represents from easy to very difficult optimization problems. All of the functions
were used in 30 dimensions, and in the domains as specified in the appendix.

4.1.3 Performance Measures

The PSO algorithms are compared with respect to three performance measures:

– Accuracy, which is the quality of the global best particle after completion of
the 5000 iterations.

– Success rate, which is the percentage of the total number of independent runs
that reached specified error levels. For the purpose of this study, a total of
1000 accuracy levels have been considered, with the accuracy levels starting at
the best accuracy obtained by the two algorithms, logarithmically increasing
towards the worst accuracy.

1 http://www.cilib.net

10 A. P. Engelbrecht

– Efficiency, computed as the number of iterations to reach the different accu-
racy levels.

– Consistency, computed as the deviation from the average best function value
obtained over the 50 independent runs.

4.1.4 Statistical Procedure

Fifty independent runs were executed for each PSO algorithm on each of the
benchmark functions. For each function, the Mann-Whitney U test was used to
indicate difference in performance with respect to a specific performance measure
at a significance level of 0.05. For each function class, the total number of wins
for each algorithm was calculated as well as the number of functions for which
there was no statistically significant difference in performance. These scores are
reported in the tables to follow. With reference to the success rate, the samples
to which the Mann-Whitney U test was applied consisted of the success rates for
each of the accuracy levels. Therefore, success rate scores indicate how successful
each algorithm was over the entire range of accuracy levels. With reference to the
efficiency performance measure, the samples consisted of the average number of
iterations over the 50 independent runs for each of the accuracy levels. A win based
on the Mann-Whitney U test therefore indicates that the corresponding algorithm
converged faster to most of the accuracy levels.

4.2 Control Parameter Sensitivity Analysis

The studies that have introduced the existing crossover PSO algorithms have not
provided an analysis of the sensitivity of the algorithms to the crossover related
control parameters. Furthermore, most of these studies did not even attempt to
find the best parameter values to use. The purpose of this section is to investigate
the effect that different parameter value combinations have on performance (with
reference to accuracy), and to determine the best parameter values to use for each
of the benchmark functions. The empirical anlyses in subsequent sections use these
best parameter values in the comparisons done.

For the parameter sensitivity analysis, the statistical procedures described in
Section 4.1.4 was used to compute the sum of wins and losses for each parameter
value combination with respect to the fitness of the best found solution for each
of the 50 independent runs. For each of the benchmark functions, the parameter
value combinations were then ranked based on the sum of wins and losses. The
average rank for each parameter value combination was computed over all of the
functions, as well as the standard deviation and the number of times that each
parameter combination resulted in the best rank. Note that a lower rank value
indicates a better rank.

For the PSO-AX’s crossover probability, values of 0.2, 0.4, 0.6 and 0.8 were
investigated. Table 2 summarizes the ranks for these parameter values, showing
clearly that a small crossover probability of 0.2 is preferred. For 75.41% of the
functions, a 0.2 crossover probability resulted in the best rank. Also note that the
performance of PSO-AX is very sensitive to the crossover probability: For only
three of the functions were there no statistically significant difference in fitness of
the best solutions for the different crossover probability values. For the rest of the

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 11

functions, a significant difference in performance was found between at least two
control parameter values.

Table 2 PSO-AX Parameter Sensitivity Analysis

Crossover Probability
0.2 0.4 0.6 0.8

Average Rank 1.229 1.803 2.754 3.279
Rank Deviation 0.643 0.542 0.869 1.142
Best Rank Frequency 46 3 4 8

For the NMPCO, as illustrated in Table 3, larger values for pc are preferred,
with 62.3% of the functions resulting in the best performance when pc = 0.8. Note
that the NMPCO is insensitive to the crossover probability control parameter for
29 of the 61 functions, showing no significant difference in performance for different
crossover probabilities.

Table 3 PSO-NMPCO Parameter Sensitivity Analysis

Crossover Probability
0.2 0.4 0.6 0.8

Average Rank 2.279 1.820 1.410 1.279
Rank Deviation 1.362 0.958 0.528 0.777
Best Rank Frequency 8 6 9 38

The PSO-BLX has two crossover related control parameters. For the crossover
probability, values of 0.2, 0.4, 0.6 and 0.8 were tried, and for the scale parameter,
α, values from 0.2 up to 2 were tried in increments of 0.2. The results summarized
in Table 4 show a preference for a large crossover probability and small scale
parameters, α. The best rank and best rank frequency was obtained with pc = 0.8
and α = 0.2. For pc = 0.8, irrespective of the value of α, 39 of the 61 functions
provided the best performance. For α = 0.2, irrespecitve of the value of pc, 47 of
the functions provided the best performance. No wins were obtained for α ≥ 0.8,
and none for pc < 0.4. For none of the functions was a significant difference in
performance over the different parameter combinations obtained, indicating that
though the preference for large pc and small α exist, PSO-BLX is very sensitive
to its control parameters.

Due to the three parameters of PSO-PSPG and space limitations, Table 5 sum-
marizes only the average ranks for all parameter combinations. The performance
of PSO-PSPG is shown to be very sensitive to the values of σ2 and the crossover
probability pc. For specific values of σ2 and pc, PSO-PSPG is relatively insensitive
to the value of σ1. The best performances were obtained using a low crossover
probability (pc ≤ 0.3) and a σ2 = 0.9 .

The PSO algorithms with discrete crossover each have only the crossover prob-
ability as control parameter. For this parameter, values of 0.2, 0.4, 0.6 and 0.8 were
investigated. Table 6 summarizes the results for the three PSO-DX algorithms. For
the PSO-DXu

ŷ , a preference for low crossover probabilities is seen. For both the

PSO-DX1
y and PSO-DXu

y , a preference for a high crossover porbability is indicated.

12 A. P. Engelbrecht

Table 4 PSO-BLX Parameter Sensitivity Analysis

Crossover Probability
Average Rank Rank Deviation Best Rank Frequency

α 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
0.2 5.672 3.246 1.705 1.836 2.731 1.567 0.823 1.319 0 5 17 25
0.4 12.902 7.754 4.049 2.426 4.400 1.206 1.596 1.310 0 0 0 12
0.6 25.148 13.754 8.361 6.328 4.362 2.838 1.484 1.710 0 0 0 2
0.8 32.492 23.197 13.262 9.230 2.761 4.218 1.949 1.116 0 0 0 0
1.0 37.607 31.000 19.459 12.754 2.478 3.683 2.742 1.650 0 0 0 0
1.2 39.131 35.213 23.475 15.377 2.247 3.061 2.599 1.507 0 0 0 0
1.4 39.508 37.836 27.213 16.902 2.481 3.067 2.599 1.507 0 0 0 0
1.6 40.574 40.344 30.180 18.934 2.493 2.421 3.314 2.366 0 0 0 0
1.8 40.639 40.754 32.066 20.230 2.288 2.102 3.669 2.479 0 0 0 0
2.0 41.705 41.639 32.082 21.066 2.116 1.674 3.730 2.414 0 0 0 0

Table 5 PSO-PSPG Parameter Sensitivity Analysis

σ2
σ1 pc 0.1 0.3 0.5 0.7 0.9
0.1 0.1 38.164 24.902 16.754 12.525 6.803

0.3 64.820 42.934 27.148 15.279 9.197
0.5 80.672 57.066 37.803 24.311 15.738
0.7 100.770 74.311 54.689 36.557 27.836
0.9 120.623 99.377 73.885 51.410 46.836

0.3 0.1 37.541 30.623 21.311 14.049 6.918
0.3 53.443 39.639 27.115 16.066 8.361
0.5 75.689 52.148 39.246 23.246 12.443
0.7 97.410 70.984 50.508 32.984 25.672
0.9 120.721 87.639 65.459 47.770 46.033

0.5 0.1 33.492 29.574 18.902 15.393 6.131
0.3 51.525 36.377 24.885 16.541 9.049
0.5 69.754 55.180 35.475 23.361 15.344
0.7 91.852 70.836 49.574 34.508 23.787
0.9 109.607 87.066 63.148 45.689 41.148

0.7 0.1 36.705 31.623 19.869 13.328 8.213
0.3 50.131 34.541 23.787 16.164 8.689
0.5 71.820 52.967 37.131 21.623 12.328
0.7 92.066 66.557 47.803 33.115 25.721
0.9 107.672 83.984 62.967 44.197 38.016

0.9 0.1 41.721 28.754 22.131 15.656 8.230
0.3 48.541 31.426 26.213 17.508 9.902
0.5 69.311 49.787 33.672 23.049 17.541
0.7 82.820 67.115 47.557 30.918 22.967
0.9 98.426 80.262 57.705 42.361 36.213

Because all the pc values have a number of functions for which best performance
was obtained, the PSO-DX algorithms are sensitive to the value of pc.

The PSO-PCX algorithms all have two control parameters, σ1 and σ2, which
controls the widths of the Gaussians used to create offspring. Both parameters were
evaluated for values of 0.1, 0.3, 0.5, 0.7 and 1.0. Table 7 shows a definite preference
for large σ1 and σ2 values for the PSO-PCXŷ. For σ2 = 1.0, irrespective of the
value of σ2, the best ranks were obtained. For no σ2 < 1.0 was best performance
for any of the functions obtained. For σ2 = 1.0, all of the σ1 values have a number
of functions for which the best performance was obtained, but most for large σ1
values. What is seen from these results is that the best value for σ1 for the PSO-
PCXŷ is problem dependent, but not for σ2.

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 13

Table 6 PSO-DX Parameter Sensitivity Analysis

Crossover Probability
0.2 0.4 0.6 0.8

PSO-DXu
ŷ

Average Rank 2.082 2.049 2.328 2.607
Rank Deviation 1.242 0.990 1.221 1.406
Best Rank Frequency 26 13 12 10

PSO-DX1
y

Average Rank 3.098 2.246 1.885 1.869
Rank Deviation 1.287 0.994 0.933 1.284
Best Rank Frequency 10 9 12 30

PSO-DXu
y

Average Rank 3.295 2.459 1.705 1.623
Rank Deviation 1.243 1.026 0.919 0.952
Best Rank Frequency 7 5 20 29

Table 8 shows that PSO-PCX∗ŷ also has a preference for larger σ1 and σ2.
However, this preference is not as strong as for the PSO-PCXŷ. Only parameter
combination σ1 = σ2 = 0.1 had no functions for which the best performance was
obtained. This stands in contrast to the value of 0.17 used by Deb and Padhye
(2010); Padhye (2010) for both deviations. The results show that PSO-PCX∗ŷ is
very sensitive to its control parameters, and that the best values are problem
dependent.

As shown in Table 9, PSO-PCXr showed a strong preference for large σ1 and
σ2, and more specifically so for σ2. This trend is the same as observed for PSO-
PCXŷ, but to a lesser extent. No value of σ2 < 0.5 resulted in any function with best
performance, and very few for σ2 = 0.5 and σ2 = 0.7. When the mutated individual
is randomly selected, instead of selected as the global best, high sensitivity was
shown for the choice of σ1 ∈ {0.5, 0.7, 1.0} when σ2 = 1.0, with these all having
a rank less than 3.0. What is thus noted, is that the best values for the control
parameters are problem dependent.

For PSO-PCX∗r , Table 10 shows again a prefernece for larger values for σ1
and σ2. However, the preference is not as strong as for PSO-PCX∗ŷ. For only one
function did σ2 = 0.1 provide the best results, and a few functions for σ2 =
0.3. Random selection of the individual to be mutated confirms again that the
preference is for σ2 = 1.0 and σ1 ≥ 0.3. Note that, again, the best values for the
control parameters are problem dependent.

4.3 Comparison of Results

The goal of this section is to analyze the performance of the different crossover
PSO algorithms, using the best control parameter values per function as obtained
as a result of the sensitivity analysis discussed in Section 4.2. This was done in
three steps:

– The first step is to show if random selection of the mutated parent for the
PCX-based PSO algorithms improves on the performance of the PSO-PCXŷ

algorithms where the mutated parent is selected as the global best particle.
– Secondly, the hypothesis that each crossover approach resulted in performance

better than the base gbest PSO algorithms is evaluated.

14 A. P. Engelbrecht

T
a
b

le
7

P
S

O
-P

C
X
ŷ

P
a
ra

m
eter

S
en

sitiv
ity

A
n

a
ly

sis

σ
1

A
v
e
r
a
g
e

R
a
n

k
R

a
n

k
D

e
v
ia

tio
n

B
e
st

R
a
n

k
F
r
e
q
u
e
n
c
y

σ
2

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

2
1
.7

8
7

2
1
.8

8
5

2
1
.8

2
0

2
1
.7

3
8

2
0
.9

1
8

0
.8

9
7

1
.0

8
2

1
.0

2
5

0
.9

8
2

0
.6

6
6

0
0

0
0

0
0
.3

1
8
.7

8
7

1
8
.5

0
8

1
7
.3

6
1

1
6
.4

7
5

1
5
.6

5
6

1
.4

0
4

1
.2

0
6

1
.0

4
9

1
.1

9
2

1
.7

7
8

0
0

0
0

0
0
.5

1
2
.1

3
1

1
1
.6

5
6

1
1
.1

3
1

1
0
.0

4
9

8
.6

8
9

2
.6

2
3

2
.5

7
5

2
.6

1
1

2
.3

9
0

2
.4

8
7

0
0

0
0

0
0
.7

1
1
.1

8
0

1
0
.2

1
3

8
.8

2
0

7
.7

0
5

6
.3

7
7

2
.9

4
7

2
.4

9
7

2
.1

4
9

1
.8

2
9

1
.3

1
9

0
0

0
0

0
1
.0

4
.2

9
5

3
.0

3
3

2
.6

0
7

1
.7

0
5

1
.3

6
1

1
.6

2
6

1
.4

2
6

1
.2

2
9

0
.7

1
5

2
.1

0
6

7
1
5

1
7

2
4

5
7

T
a
b

le
8

P
S

O
-P

C
X
r

P
a
ra

m
eter

S
en

sitiv
ity

A
n

a
ly

sis

σ
1

A
v
e
r
a
g
e

R
a
n

k
R

a
n

k
D

e
v
ia

tio
n

B
e
st

R
a
n

k
F
r
e
q
u
e
n
c
y

σ
2

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

2
2
.8

0
3

2
2
.9

1
8

2
1
.1

9
7

2
1
.1

4
8

2
0
.9

0
2

1
.6

4
1

1
.7

5
4

1
.5

2
6

1
.1

6
7

1
.7

3
9

0
0

0
0

0
0
.3

1
7
.8

8
5

1
7
,2

9
5

1
6
.8

5
2

1
6
.5

9
0

1
5
.8

5
2

2
.6

0
2

1
.9

4
4

2
.1

5
9

1
.1

3
1

1
.0

6
2

0
0

0
0

0
0
.5

1
3
.6

0
7

1
2
.9

8
4

1
2
.3

7
7

1
1
.3

7
7

1
0
.3

7
7

2
.2

1
6

2
.1

0
9

2
.0

1
0

2
.1

9
2

2
.3

4
6

1
0

0
2

1
0
.7

8
.5

7
4

7
.7

2
1

6
.9

3
4

6
.2

7
9

5
.4

7
5

2
.6

8
6

2
.5

1
7

2
.4

2
8

2
.4

6
4

2
.7

6
7

5
5

4
4

5
1
.0

4
.4

9
2

3
.3

7
7

2
.8

5
2

2
.7

2
1

2
.7

5
4

3
.0

8
0

2
.7

8
8

2
.7

4
4

3
.5

4
1

4
.1

7
0

1
4

1
6

1
7

1
7

4
7

T
a
b

le
9

P
S

O
-P

C
X

∗ŷ
P

a
ra

m
eter

S
en

sitiv
ity

A
n

a
ly

sis

σ
1

A
v
e
r
a
g
e

R
a
n

k
R

a
n

k
D

e
v
ia

tio
n

B
e
st

R
a
n

k
F
r
e
q
u
e
n
c
y

σ
2

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

2
3
.9

5
1

2
2
.3

1
1

2
0
.9

0
2

1
8
.5

9
0

1
4
.0

8
2

1
.5

7
5

4
.8

8
0

5
.0

0
2

5
.8

7
8

7
.2

5
1

0
2

2
3

5
0
.3

2
0
.2

1
3

1
7
.7

5
4

1
5
.4

7
5

1
2
.8

5
2
.0

1
6

4
.8

7
5

4
.7

3
9

4
.9

3
8

5
.2

5
0

5
.2

1
1

3
3

4
5

9
0
.5

1
7
.3

1
1

1
3
.6

7
2

1
0
.7

5
4

8
.8

6
9

6
.3

2
8

4
.7

8
7

4
.2

8
5

4
.3

6
1

4
.5

6
2

3
.3

2
5

3
3

6
8

7
0
.7

1
2
.8

8
5

9
.1

9
7

7
.7

2
1

5
.6

3
9

4
.6

3
9

5
.2

4
1

4
.0

4
1

3
.1

5
8

2
.8

2
3

2
.6

9
0

3
6

6
9

6
1
.0

7
.6

7
2

5
.5

9
0

4
.6

3
9

2
.9

0
2

3
.2

7
9

5
.5

4
9

3
.6

6
2

3
.4

3
0

2
.6

3
8

4
.6

8
0

7
7

6
1
3

4
2

T
a
b

le
1
0

P
S

O
-P

C
X

∗r
P

a
ra

m
eter

S
en

sitiv
ity

A
n

a
ly

sis

σ
1

A
v
e
r
a
g
e

R
a
n

k
R

a
n

k
D

e
v
ia

tio
n

B
e
st

R
a
n

k
F
r
e
q
u
e
n
c
y

σ
2

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

2
2
.0

4
9

2
1
.6

7
2

2
3
.0

3
3

2
2
.3

4
4

2
0
.5

7
4

2
.8

7
8

2
.8

7
4

1
.8

7
9

1
.6

3
2

2
.2

6
2

0
1

0
0

0
0
.3

1
8
.2

4
6

1
8
.5

5
7

1
6
.7

8
7

1
5
.5

7
4

1
3
.5

7
4

2
.5

2
8

2
.2

0
2

4
.3

2
5

4
.2

9
1

4
.6

9
6

0
0

3
4

4
0
.5

1
3
.7

2
1

1
2
.7

3
8

1
1
.8

3
6

1
0
.0

4
9

7
.2

1
3

4
.0

1
3

3
.8

1
2

3
.9

7
6

3
.5

8
0

3
.3

7
2

4
4

4
7

9
0
.7

1
0
.0

3
3

8
.9

0
2

7
.0

0
0

5
.3

6
1

4
.4

4
3

3
.1

7
3

2
.8

0
3

2
.5

4
3

2
.5

8
9

3
.5

0
5

4
5

5
8

1
5

1
.0

5
.6

8
9

3
.8

8
5

3
.0

8
2

2
.8

0
3

3
.7

6
2

4
.0

4
4

3
.2

9
7

2
.3

2
6

3
.2

0
3

4
.2

1
0

1
0

1
8

1
6

1
9

3
5

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 15

– Thirdly, all of the crossover PSO algorithms are compared to try and find those
that performed best.

The first two studies were done only with regards to the accuracy of the solutions
found. The third study considered performance with respect to solution accuracy,
success rate, and efficiency.

Table 11 shows that random selection of the parent to be mutated in the
parent-centrix crossover significantly improved the performance of the PSO-PCXŷ

for all of the 61 functions. For the PSO-PCX∗ŷ, random selection provided sig-
nificantly better results for 29 (47.5%) of the functions and similar performance
for 19 (31.1%) of the functions. For only 16 (21.4%) of the functions did random
selection performed significantly worse.

Table 11 Comparison of Wins and Losses for Adapted PSO-PCX Strategies

PCX Adaptation Wins Draws Losses Sum
PSO-PCXr 61 0 0 61
PSO-PCX∗

r 29 19 13 16

Table 12 summarizes the wins, draws and losses when each of the crossover
PSO algorithms is compared with the base gbest PSO algorithm. Also indicated
are the sum of the wins and losses, and a ranking of the algorithms based on
wins, losses and the sum of wins and losses. The first thing to note is the very
bad performance of PSO-BLX and PSO-PCXŷ. The former did not improve the
performance of gbest PSO for any of the functions, while the latter provided better
performance for only one of the functions. In addition to these two algorithms,
PSO-PCXr, PSO-PCX∗ŷ, PSO-AX, and PSO-DXu

ŷ had more losses than wins.
The best performance improvement over gbest PSO was achieved with the

PSO-DXu
y , with 38 wins and only 6 losses. While PSO-NMPCO had the second

most wins, it also had the fewest losses against gbest PSO. Other algorithms that
showed more wins than losses are, in order from best to worst, PSO-DX1

y, PSO-
PCX∗r , and PSO-PSG.

What should be noted from these results, compared to results already published
for these algorithms, is that a number of the crossover PSO algorithms do not,
in fact, perform as good as indicated in the literature despite being used with
optimized control parameters. This is mainly due to the fact that these results
were based on a very small benchmark suites.

As a last step, all of the algorithms were compared with one another and
ranked based on the three performance measures. Table 16 summarizes the wins
and losses, as well as the ranks per problem class with respect to solution accuracy.
Based on the ranks over all of the functions, and considering the sum of wins and
losses, the algorithms are ranked from best to worse in the order: PSO-DXu

y ,

PSO-NMPCO, PSO-DX1
u, PSO-PSPG, PSO-PCX∗r , PSO-DXu

ŷ , PSO-PCXr,
PSO-AX, gbest PSO, PSO-PCX∗ŷ, PSO-PCXŷ, PSO-BLX; the bolded algorithms
are the only ones that obtained more wins than losses. The best performaing
algorithm is the PSO that uses discrete crossover with a uniform recombindation
with the personal best position. The worst performer is the PSO with blending
crossover, achieving only 12 wins against the other 11 algorithms over the 61
problems.

16 A. P. Engelbrecht

Table 12 Comparison of Wins and Losses of Crossover PSO Algorithms against gbest PSO

Ranks for
Algorithm Wins Draws Losses Sum Wins Losses Sum
PSO-AX 19 16 26 -7 8 5 6
PSO-BLX 0 0 61 -61 11 1 10
PSO-PSPG 32 18 11 21 4 8 4
PSO-NMPCO 36 20 5 31 2 11 2
PSO-PCXŷ 1 0 60 -59 10 2 9
PSO-PCX∗

ŷ 20 13 28 -8 7 4 7

PSO-PCX∗
r 29 15 17 27 5 7 3

PSO-PCXr 10 15 36 -26 9 3 8
PSO-DXuŷ 23 14 24 -1 6 6 5

PSO-DX1
y 34 20 7 27 3 9 3

PSO-DXuy 38 17 6 32 1 10 1

Though PSO-DXu
y ranked best over all of the functions, when considering the

problem classes separately, the choice of best algorithm is very problem class de-
pendent, as indicated in Table 13. PSO-DXu

y performed best over all of the multi-
modal problems, over all of the separable problems, the noisy unimodal problems,
and the separable multimodal problems. It performed second best over all of the
non-separable problems and third best over all of the unimodal problems. The
best performer over all of the unimodal problems was the PSO-PCX∗r , and the
best over all of the non-separable problems, the PSO-NMPCO. PSO-NMPCO also
performed best in terms of the rank over the sum of wins and losses for the shifted
unimodal, shifted multimodal, noisy multimodal and composition problems.The
PSO-PCXr performed best for the separable unimodal problems, PSO-DXu

y per-
formed best for the non-separable unimodal and the separable multimodal prob-
lems, while PSO-PSPG performed best for the rotated unimodal, non-separable
multimodal and rotated multimodal problems. Note that for both the shifted uni-
modal and the shifted multimodal problems all of the algorithms produced more
losses than wins, indicating that the choice of best algorithms for these problem
classes are much more problem dependent, and not just problem class dependent.

Considering success rate, Table 17 shows that PSO-DX1
y ranks the best over

all of the functions, and the over all of the unimodal, multimodal, separable and
non-separable problem classes. This means that PSO-DX1

y had most of its runs
converging to the specified accuracy levels. The PSO-DXu

y also ranked best over
all of the separable problems, and ranked second best over all of the problems.
Both these algorithms therefore provided the most accurate solutions and were
the most stable. While the PSO-NMPCO performed well in terms of solution
accuracy, it did not rank well in terms of success rate, which is an indication of
large deviations on the mean solution accuracy. PSO-PSPG ranked third best over
all of the problems, and as indicated above, was one of the only four algorithms
with more wins than losses with respect to the accuracy measure.

Note that the PSO-PCXŷ and PSO-PCX∗ŷ ranked as the worst with respect
to success rate. Since these two algorithms had the most runs not converging to
within the specified accuracy levels, they are the most unstable of the crossover
PSO algorithms, exhibiting large deviations over the final obtained accuracy.

With reference to the different problem classes, PSO-DX1
y ranked best with

respect to success rate for most of the problem classes, followed by PSO-NMPCO.

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 17

Table 13 Best Performing Algorithms per Problem Class based on Sum of Wins and Losses

Solution Success
Problem Class Accuracy Rate Efficiency

Unimodal Separable PCXr NMPCO PCX∗
r

Non-Separable DXuŷ DX1
y BLX

Noisy DXuy NMPCO PSPG
Shifted NMPCO DX1

y DX1
y

Rotated PSPG DX1
y DX1

y

Multimodal Separable DXuy DX1
y BLX

Non-Separable PSPG DXuy DXuy
Shifted NMPCO DXuy DXuy
Rotated PSPG PSPG NMPCO
Noisy NMPCO NMPCO DX1

y

Composition NMPCO NMPCO BLX
Total Unimodal PCX∗

r DX1
y DX1

y

Multimodal DXuy DX1
y BLX

Separable DXuy DX1
y , DXuy DXuy

Non-Separable NMPCO DX1
y BLX

Overall DXuy DXuy DXuy

The wins, losses and ranks with respect to the efficiency measure are summa-
rized in Table 18. Overall, and with respect to the sum of wins and losses, PSO-
DXu

y converged the fastest (i.e. on average the fewest iterations) to the specified
accuracy levels. Despite the faster convergence compared to the other algorithms,
PSO-DXu

y also ranked best with respect to solution accuracy and second best with
resepect to success rate. While PSO-PSPG, which ranked third best with respect
to solution accuracy, obtained the most wins over all of the functions, it ranked
eighth based on the sum of wins and losses due to a large number of losses. The
algorithms that were slowest to converge are the PSO-AX and the gbest PSO.
For both, the slower convergence did not provide any benefit in terms of solution
accuracy as indicated in Table 16.

With respect to the different problem classes, PSO-DXu
y converged the fastest

over all of the separable problems, and the multimodal non-separable and mul-
timodal shifted problems. The PSO-DX1

y was fastest over all of the unimodal
problems, and the unimodal shifted, unimodal rotated, and the multimodal noisy
problems. PSO-BLX was fastest for all of the non-seprable and all the multimodal
problems, as well as the unimodal non-separable, multimodal separable, and com-
position problems. The PSO-PSPG was fastest for the unimodal noisy problems,
PSO-NMPCO for the multimodal rotated problems, and PSO-PCX∗r for the uni-
modal separable problems.

What is clear from Tables 16, 18 and 13, is that slower convergence, i.e. more
exploration time, does not necessarily mean that better solutions will be found.
With reference to the algorithms studied in this paper, it is very clearly illustrated
that the algorithms that converged faster, also resulted in the most accurate so-
lutions.

The preceeding discussions considered each of the performance measures sep-
arately. Table 14 provides for each of the algorithms a rank over all three of the
performance measures as the average of the ranks obtained per performance mea-
sure. Average performance ranks are given over all of the benchmark functions
and per the four main problem classes. PSO-DXu

y is indicated as the best per-

18 A. P. Engelbrecht

T
a
b

le
1
4

R
a
n

k
s

C
o
m

p
a
riso

n
o
v
er

a
ll

P
erfo

rm
a
n

ce
M

ea
su

res
w

ith
resp

ect
to

S
u

m
o
f

W
in

s
a
n

d
L

o
sses

P
r
o
b
le

m
P

e
r
fo

r
m

a
n
c
e

C
r
o
sso

v
e
r

O
p

e
r
a
to

r
U

se
d

C
la

ss
M

e
a
su

r
e

g
b

e
st

A
X

B
L

X
-α

P
S
P

G
N

M
P

C
O

P
C

X
ŷ

P
C

X
r

P
C

X
∗ŷ

P
C

X
∗r

D
X
uŷ

D
X

1y
D

X
uy

U
n

im
o
d

a
l

A
ccu

ra
cy

8
1
0

1
2

6
5

1
1

4
9

1
2

7
3

S
u

ccess
R

a
te

1
0

7
8

5
2

1
2

9
1
1

6
4

1
3

E
ffi

cien
cy

1
1

1
2

1
0

8
6

3
9

7
5

2
1

4
A

v
era

g
e

R
a
n

k
9
.6

6
7

9
.6

6
7

1
0
.0

0
0

6
.3

3
3

4
.3

3
3

8
.6

6
7

7
.3

3
3

9
.0

0
0

4
.0

0
0

2
.6

6
7

3
.0

0
0

3
.3

3
3

M
u

ltim
o
d

a
l

A
ccu

ra
cy

7
7

1
2

4
2

1
1

9
1
0

6
8

3
1

S
u

ccess
R

a
te

9
5

4
3

7
1
0

1
1

1
2

8
6

2
1

E
ffi

cien
cy

9
8

1
1
0

3
5

1
2

1
1

7
6

4
2

A
v
era

g
e

R
a
n

k
8
.3

3
3

6
.6

6
7

5
.6

6
7

5
.6

6
7

4
.0

0
0

8
.6

6
7

1
0
.6

6
7

1
1
.0

0
0

7
.0

0
0

6
.6

6
7

3
.0

0
0

1
.3

3
3

S
ep

a
ra

b
le

A
ccu

ra
cy

8
9

1
2

7
6

1
1

4
1
0

3
5

2
1

S
u

ccess
R

a
te

7
7

1
1

5
6

1
2

1
0

9
4

3
2

1
E

ffi
cien

cy
9

1
2

8
7

5
1
0

1
1

6
4

2
2

1
A

v
era

g
e

R
a
n

k
8
.0

0
0

9
.3

3
3

1
0
.3

3
3

6
.3

3
3

5
.6

6
7

1
1
.0

0
0

8
.3

3
3

8
.3

3
3

3
.6

6
7

3
.3

3
3

2
.0

0
0

1
.0

0
0

N
o
n

-sep
a
ra

b
le

A
ccu

ra
cy

9
6

1
2

3
1

1
1

8
1
0

5
7

4
2

S
u

ccess
R

a
te

1
0

5
4

2
6

9
1
1

1
2

8
7

1
3

E
ffi

cien
cy

1
2

1
1

1
9

2
3

8
1
0

7
6

5
4

A
v
era

g
e

R
a
n

k
1
0
.3

3
3

7
.3

3
3

5
.6

6
7

4
.6

6
7

3
.0

0
0

7
.6

6
7

9
.0

0
0

1
0
.6

6
7

6
.6

6
7

6
.6

6
7

3
.3

3
3

3
.0

0
0

O
v
era

ll
A

ccu
ra

cy
9

8
1
2

4
2

1
1

7
1
0

5
6

2
1

S
u

ccess
R

a
te

9
5

4
3

6
1
1

1
0

1
2

8
7

1
2

E
ffi

cien
cy

1
1

1
2

2
8

4
5

1
0

9
7

6
3

1
A

v
era

g
e

R
a
n

k
9
.6

6
7

8
.3

3
3

6
.0

0
0

5
.0

0
0

4
.0

0
0

9
.0

0
0

9
.0

0
0

1
0
.3

3
3

6
.6

6
7

6
.3

3
3

2
.0

0
0

1
.3

3
3

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 19

former ranked over all three performance measures, followed by PSO-DX1
y. Only

the PSO-PCX∗ŷ ranked worst than gbest PSO over all three performance measures,
with PSO-PCX∗ŷ and PSO-PCXr ranking very close to that of gbest PSO.

Considering the different problem classes, PSO-DXu
y ranked best for the mul-

timodal functions, the separable functions, and the non-separable functions. PSO-
NMPCO obtained the same rank as PSO-DXu

y on the non-separable problems. For
the unimodal problems, PSO-DXu

ŷ ranked the best, with PSO-DXu
y ranking third

(though the difference in rank is only 0.667).

5 Conclusions

The main objectives of this paper were to provide an extensive review of PSO
algorithms that make use of some form of crossover operator and to provide an
empirical analysis of the performance of these algorithms. As a consequence of
these objectives, it was found that current publications where these crossover PSO
algorithms have been introduced lacked in a number of aspects:

– Their empirical performance have been analyzed on a very small set of bench-
mark functions.

– A sensitivity analysis of the control parameters introduced by the crossover
operators were not done.

– Comparisons with other algorithms were not done using optimized control
parameters.

– Comparisons did not include other crossover PSO algorithms.

This paper addressed all of these issues by using a large benchmark suite of 61
benchmark functions of different characteristics and complexity, a sensitivity anal-
ysis of all of the algorithms have been done and the best control parameter values
per function were determined, all of the algorithms were compared with a base
PSO algorithm to determine if the crossover PSO algorithms do in fact improve
on the performance of the base PSO algorithm, and all of the crossover PSO
algorithms were compared to determine which perform best.

In addition, adaptations of existing parent-centric crossover PSO algorithms
have been proposed and shown to improve on the performance of the existing
parent-centric PSO algorithms.

With reference to solution accuracy as performance measure, it was found that
the performance of most of the algorithms is very sensitive to the crossover control
parameter values. Using the best found control parameter values, only the PSO-
PSPG, PSO-NMPCO, PSO-PCX∗r , PSO-DX1

y and PSO-DXu
y obtained more wins

than losses when compared to the gbest PSO.

The crossover PSO algorithms were compared with respect to solution accu-
racy, success rate and efficiency. It was found that the best crossover PSO algorithm
to use is very problem dependent, but that over all of the functions, PSO-DXu

y was
shown to perform best with reference to average rank over all three performance
measures.

20 A. P. Engelbrecht

References

Abdelbar, A., Abdelshahid, S. (2003). Swarm optimization with instinct-driven
particles. In: Proceedings of the IEEE Congress on Evolutionary Computation (pp.
777–782), IEEE, Piscataway, USA.

Cleghorn, C., Engelbrecht, A. (2014). A Generalized Theoretical Deterministic
Particle Swarm Model. Swarm Intelligence, 8 (1), 35–59.

Clerc, M., Kennedy, J. (2002). The particle swarm-explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6 (1), 58–73.
Deb, K., Padhye, N. (2010). Development of efficient particle swarm optimizers by

using concepts from evolutionary algorithms. In: Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation (pp. 55–62), ACM, New
York, USA.

Deb, K., Joshi, D., Anand, A. (2002). Real-coded evolutionary algorithms with
parent-centric recombination. In: Proceedings of the IEEE Congress on Evolution-

ary Computation (pp. 61–66), IEEE, Piscataway, USA.
Dong, Y., Yang, H. (2010). A New Approach for Reactive Powe/Voltage Opti-

mization Control of Regional Grid. Power System Protection and Control, 14.
Duong, S., Konjo, H., Uezato, E., Yamamoto, T. (2010). Particle swarm optimiza-

tion with genetic recombination: A hybrid evolutionary algorithm. Artificial Life

and Robotics, 15 (4), 444–449.
Eberhart, R. C., Shi, Y. (2000). Comparing inertia weights and constriction fac-

tors in particle swarm optimization. In: Proceedings of the IEEE Congress on

Evolutionary Computation (pp. 84–88), IEEE, Piscataway, USA, vol 1.
Engelbrecht, A. (2005). Fundamentals of Computational Swarm Intelligence. Wiley,

Chichester, UK.
Engelbrecht, A. (2012). Particle Swarm Optimization: Velocity Initialization. (In:

Proceedings of the IEEE Congress on Evolutionary Computation).
Engelbrecht, A. (2013a). Particle Swarm Optimization: Global Best or Local Best?

(In: Proceedings of the First BRICS Countries Congress on Computational Intelli-

gence).
Engelbrecht, A. (2013b). Particle Swarm Optimization with Discrete Crossover.

(In: Proceedings of the IEEE Congress on Evolutionary Computation).
Engelbrecht, A. (2013c). Roaming Behavior of Unconstrained Particles. (In: Pro-

ceedings of the First BRICS Countries Congress on Computational Intelligence).
Engelbrecht, A. (2014). Asynchronous Particle Swarm Optimization with Discrete

Crossover. (In: Proceedings of the IEEE Swarm Intelligence Symposium).
Eshelman, L., Schaffer, J. (1993). Real-coded genetic algorithms and interval

schemata. In: Whitley, D. (ed) Foundations of Genetic Algorithms (pp. 187–202),
Morgan Kaufmann, San Mateo, USA, vol 2.

Garden, R., Engelbrecht, A. (2014). Analysis and Classification of Function Op-
timisation Benchmark Function and Benchmark Suites. (In: Proceedings of the

IEEE Congress on Evolutionary Computation)IEEE.
Higashi, H., Iba, H. (2003). Particle Swarm Optimization with Gaussian Mutation.

In: Proceedings of the IEEE Swarm Intelligence Symposium (pp. 72–79), IEEE,
Piscataway, USA.

Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topol-
ogy on particle swarm performance. In: Proceedings of the IEEE Congress on

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 21

Evolutionary Computation (pp. 1931–1938), IEEE, Piscataway, USA, vol 3.
Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In: Proceedings

of the IEEE International Joint Conference on Neural Networks (pp. 1942–1948),
IEEE, Piscataway, USA.

Kennedy, J., Mendes, R. (2002). Population structure and particle performance. In:
Proceedings of the IEEE Congress on Evolutionary Computation (pp. 1671–1676),
IEEE, Piscataway, USA.

Løvberg, M., Rasmussen, T., Krink, T. (2001). Hybrid particle swarm optimiser
with breeding and subpopulations. In: Proceedings of the Genetic and Evolutionary

Computation Conference (pp. 469–476), Morgan Kaufmann, San Fransisco, USA.
Miranda, V., Fonseca, N. (2002). EPSO – best-of-two-worlds meta-heuristic ap-

plied to power system problems. In: Proceedings of the IEEE Congress on Evolu-

tionary Computation (pp. 1080–1085), IEEE, Piscataway, USA, vol 2.
Ono, I., Kobayashi, S. (1997). A real-coded genetic algorithm for function opti-

mization using unimodal normal distribution crossover. In: Proceedings of the

Seventh International Conference on Genetic Algorithms (pp. 246–253), Morgan
Kaufmann, San Fransisco, USA.

Padhye, N. (2010). Development of efficient particle swarm optimizers and bound
handling methods. Master’s thesis, Indian Institute of Technology.

Park, J. B., Jeong, Y. W., Shin, J. R., Lee, K. (2010). An Improved Particle Swarm
Optimization for Nonconvex Economic Dispatch Problems. IEEE Transactions

on Power Systems, 25 (1), 156–166.
Poli, R., Kennedy, J., Blackwell, T. (2007). Particle swarm optimization. Swarm

Intelligence, 1 (1), 33–57.
Salomon, R. (1996). Reevaluating genetic algorithm performance under coordinate

rotation of benchmark functions. BioSystems, 39, 263–278.
Sedighizadeh, D., Masehian, E. (2009). Particle swarm optimization methods, tax-

onomy and applications. International Journal of Computer Theory and Engineer-

ing, 1 (5), 486–502.
Shi, Y., Eberhart, R. (1998). A modified particle swarm optimizer. In: Proceedings

of the IEEE Congress on Evolutionary Computation (pp. 69–73), IEEE.
Stacey, A., Jancic, M., Grundy, I. (2003). Particle swarm optimization with mu-

tation. In: Proceedings of the IEEE Congress on Evolutionary Computation (pp.
1425–1430), IEEE, Piscataway, USA, vol 2.

Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y. P., Auger, A., Tiwari,
S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization. Technical report.

Trelea, I. (2003). The Particle Swarm Optimization Algorithm: Convergence Anal-
ysis and Parameter Selection. Information Processing Letters, 85 (6), 317–325.

van den Bergh, F., Engelbrecht, A. (2002). A new locally convergent particle swarm
optimizer. In: Proceedings of the IEEE International Conference on Systems, Man,

and Cybernetics (pp. 96–101), IEEE, Piscataway, USA.
van den Bergh, F., Engelbrecht, A. (2006). A Study of Particle Swarm Optimiza-

tion Particle Trajectories. Information Sciences, 176 (8), 937–971.
Wang, W., Wu, Z., Liu, Y., Zeng, S. (2008). Particle swarm optimization with a

novel multi-parent crossover operator. In: Proceedings of the Fourth International

Conference on Natural Computation (pp. 664–668), IEEE, Piscataway, USA.
Wei, C., He, Z., Zheng, Y., Pi, W. (2002). Swarm directions embedded in fast

evolutionary programming. In: Proceedings of the IEEE Congress on Evolutionary

22 A. P. Engelbrecht

Computation (pp. 1278–1283), IEEE, Piscataway, USA, vol 2.
Worasucheep, C., Pipopwatthana, C., Srimontha, S., Phanmak, W. (2012). En-

hanced Performance of Particle Swarm Optimization with Generalized Genera-
tion Gap Model with Parent-Centric Recombination Operator. ECTI Transac-

tions on Electrical Engineering, Electronics, and Communications, 6.

A Benchmark Functions and Performance Tables

This appendix provides detail on the functions included in the benchmark set and provides
the detailed performance tables.

Table 15 summarizes the characteristics of these functions. A function, fl, that is shifted,
rotated, or shifted and rotated, is respectively referred to as fShl , fRl and fShRl , where l is the
index of the function.

A function, fl, was shifted using

fShl (x) = fl(z) + β

where z = x − γ; γ and β are constants. Table 15 lists the values by which each function
was shifted. Two approaches to rotation were implemented: Where an entry in the rotation
column of Table 15 indicates “ortho”, the function fl was rotated by a randomly generated
orthonormal rotation matrix. The second approach, indicated by “linear” rotates the function
using a linear transformation matrix. For both approaches the condition number is given in
the table in parentheses, and rotation was done using Salomon’s method Salomon (1996). A
new rotation matrix was computed for each of the 50 independent runs of the algorithm. The
rotated function, referred to as fRl , was computed by multiplying the decision vector x with
the transpose of the rotation matrix.

Some functions were both shifted and rotated, with the resulting function referred to as
fShRl . Noisy functions were generated by multiplying each decision variable, xj , by zero-mean
noise sampled from a Gaussian distribution with deviation of one. These functions are referred
to as fNl . Functions that are shifted and noisy are referred to as fShNl .

Note that f27 is indicated as a non-separable function, even though it is separable near
the optimum.

Rotations for functions f26 to f37 and function fShRE15 were by linear transformation
matrix, with condition numbers that differ for each component function. Also the severity of
shifts differ for the different component functions. For the detail of these parameters, the reader
is referred to Suganthan et al (2005). For these functions, the entry “yes” simply indicates if
a transformation of the expanded or composition function was done. An entry of “CEC05”
refers the reader to the definition of the function as in Suganthan et al (2005).

The definitions of the benchmark functions used in this study is provided below together
with detail on the domain of each function. Many of the functions below are equivalent to
functions defined in the IEEE Congress on Evolutionary Computation (CEC) 2005 competition
benchmark set Suganthan et al (2005). Such equivalencies are indicated by giving the CEC
2005 benchmark number with the superscript CEC.

f1, the absolute value function, defined as

f1(x) =

nx∑
j=1

|xi| (7)

with each xj ∈ [−100, 100].
f2, the ackley function, defined as

f2(x) = −20e
−0.2

√
1
n

∑nx

j=1
x2
j
− e

1
n

∑nx

j=1
cos(2πxj)

+ 20 + e (8)

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 23

with each xj ∈ [−32.768, 32.768]. Shifted, rotated, and rotated and shifted verions of the

ackley function were used, respectively referred to as fSh2 , fR2 and fShR2 . Function fShR2

is equivalent to function fCEC8 .
f3, the alpine function, defined as

f3(x) =

(
nx∏
j=1

sin(xj)

)√√√√ nx∏
j=1

xj (9)

with each xj ∈ [−10, 10].
f4, the egg holder function, defined as

f4(x) =

nx−1∑
j=1

(
−(xj+1 + 47) sin(

√
|xj+1 + xj/2 + 47|)

+ sin(
√
|xj − (xj+1 + 47)|)(−xj)

)
(10)

with each xj ∈ [−512, 512].
f5, the elliptic function, defined as

f5(x) =

nx∑
j=1

(106)
j−1
nx−1 (11)

with each xj ∈ [−100, 100]. Shifted, rotated, and rotated and shifted verions of the ellip-

tic function were used, respectively referred to as fSh5 , fR5 and fShR5 . Function fShR5 is

equivalent to function fCEC3 .
f6, the griewank function, defined as

f6(x) = 1 +
1

4000

nx∑
j=1

x2j −
nx∏
j=1

cos

(
xj√
j

)
(12)

with each xj ∈ [−600, 600]. Shifted, rotated, and rotated and shifted verions of the elliptic

function were used, respectively referred to as fSh6 , fR6 and fShR6 . For function fShR6 , each
xj ∈ [0, 600], which means that the global minimum is outside of the bounds. Function

fShR6 is equivalent to function fCEC7 . with bounds as given above.
f7, the hyperellipsoid function, defined as

f7(x) =

nx∑
j=1

jx2j (13)

with each xj ∈ [−5.12, 5.12].
f8, the michalewicz function, defined as

f8(x) = −
nx∑
j=1

sin(xj)

(
sin

(
jx2j

π

))2m

(14)

with each xj ∈ [0, π] and m = 10.
f9, the norwegian function, defined as

f9(x) =

nx∏
j=1

(
cos(πx3j)

(
99 + xj

100

))
(15)

with each xj ∈ [−1.1, 1.1].

24 A. P. Engelbrecht

f10, the quadric function, defined as

f10(x) =

nx∑
i=1

(
i∑

j=1

xj

)2

(16)

with each xj ∈ [−100, 100].
f11, the quartic function, defined as

f11(x) =

nx∑
j=1

jx4j (17)

with each xj ∈ [−1.28, 1.28]. A noisy version of the quartic function, referred to as de
jong’s f4 function, was generated as follows:

fN11(x) =

nx∑
j=1

(jx4j +N(0, 1)) (18)

The domain was the same as that of the quartic function.
f12, the rastrigin function, defined as

f12(x) = 10nx +

nx∑
j=1

(
x2j − 10 cos(2πxj)

)
(19)

with xj ∈ [−5.12, 5.12]. Shifted, rotated, and rotated and shifted verions of the rastri-

gin function were used, respectively referred to as fSh12 , f
R
12 and fShR12 . Function fShR12 is

equivalent to function fCEC10 .
f13, the rosenbrock function, defined as

f13(x) =

nx−1∑
j=1

(
100(xj+1 − x2j)

2 + (xj − 1)2
)

(20)

with xj ∈ [−30, 30]. Shifted, rotated, and rotated and shifted verions of the rosenbrock

function were used, respectively referred to as fSh13 , f
R
13 and fShR13 . Function fSh13 ’s do-

main was [−100, 100] to be equivalent to fCEC6 . Function fR13’s domain was also set to

[−100, 100]. fCEC10 .
f14, the salomon function, defined as

f14(x) = − cos(2π

nx∑
j=1

x2j) + 0.1

√√√√ nx∑
j=1

x2j + 1 (21)

with xj ∈ [−100, 100].
f15, the schaffer 6 function, defined as

f15(x) =

nx−1∑
j=1

(
0.5 +

sin2(x2j + x2j+1)− 0.5

(1 + 0.001(x2j + x2j+1))2

)
(22)

with each xj ∈ [−100, 100]. A shifted and rotated, expanded version of the schaffer 6

function was used, referred to as fShRE15 , which is equivalent to fCEC14 .
f16, the schwefel 1.2 function, defined as

f16(x) =

nx∑
j=1

(
j∑

k=1

xk

)2

(23)

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 25

with xj ∈ [−100, 100]. Shifted, rotated, and noisy shifted verions of the schwefel 1.2 func-

tion were used, respectively referred to as fSh16 , f
R
16 and fShN16 . Function fSh16 is equivalent

to fCEC2 , and fShN16 is equivalent to fCEC4 , defined as

f16(x) =

nx∑
j=1

(
j∑

k=1

xk

)2

(1 + 0.4|N(0, 1)|) (24)

f17, the schwefel 2.6 function, defined as

f17(x) = max
j
{|Ajx−Bj |} (25)

with xj ∈ [−100, 100], aji ∈ A is uniformly sampled from U(−500, 500) such that det(A) 6=
0, and each Bj = Ajx. Function f17 is equivalent to fCEC5 . A shifted version of schwefel

2.6 was also implemented, referred to as fSh17 .
f18, the schwefel 2.13 function, defined as

f18(x) =

nx∑
j=1

(Aj −Bj(x))2 (26)

with each xj ∈ [−π, π], and

Aj =

nx∑
i=1

(aji sinαi + bji cosαi)

Bj(x) =

nx∑
i=1

(aji sinxi + bji cosxi

where aji ∈ A and bji ∈ B with aji, bji ∼ U(−100, 100), and αi ∼ U(−π, π). This function

is equivalent to fCEC12 . A shifted version of schwefel 2.13 was also implemented, referred

to as fSh18 .
f19, the schwefel 2.21 function, defined as

f19(x) = max
j
{|xj |, 1 ≤ j ≤ nx} (27)

with each xj ∈ [−100, 100].
f20, the schwefel 2.22 function, defined as

f20(x) =

nx∑
j=1

|xj |+
nx∏
j=1

|xj | (28)

with each xj ∈ [−10, 10].
f21, the shubert function, defined as

f21(x) =

nx∏
j=1

(
5∑
i=1

(i cos((i+ 1)xj + i)

)
(29)

with each xj ∈ [−10, 10].
f22, the spherical function, defined as

f22(x) =

nx∑
j=1

x2i (30)

with each xj ∈ [−5.12, 5.12]. A shifted version was implemented, referred to as fSh22 and

equivalent to fCEC1 .

26 A. P. Engelbrecht

f23, the step function, defined as

f23(x) =

nx∑
j=1

(bxj + 0.5c)2 (31)

with each xj ∈ [−100, 100].
f24, the vincent function, defined as

f24(x) = −

(
1 +

nx∑
j=1

sin(10
√
xj)

)
(32)

with each xj ∈ [0.25, 10].
f25, the weierstrass function, defined as

f25(x) =

nx∑
j=1

(
20∑
i

(ai cos(2πbi(xj + 0.5)))

)

− nx

20∑
i=1

(ai cos(πbi)) (33)

with each xj ∈ [−0.5, 0.5], a = 0.5 and b = 3. A shifted and rotated version of the

weierstrass function was implemented, referred to as fShR25 , equivalent to fCEC11 .
f26, a shifted expansion of the griewank and rosenbrock functions (f6 and f13 respectively),

equivalent to fCEC13 . Each xj ∈ [−3, 1].

f27 − f37, which are all composition functions, respectively equivalent to fCEC15 to fCEC25 . All func-
tions have xj ∈ [−5, 5], except f37 for which xj ∈ [2, 5].

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 27

Table 15 Characteristics of benchmark functions (F: Function number, Eq: Equation number,
M: Modality, S: Separability, Sh: Shifted, R: Rotated, ShR: Shifted and Rotated, N: Noisy, E:
Expanded function, C: Composition Function).

F Eq M S Sh R ShR N E C

f1 7 Uni Yes

f2 8 Multi No β = −140 ortho (1) β = −140

γ = −32

γ = 10 linear (100)

f3 9 Multi Yes

f4 10 Multi No

f5 11 Uni Yes β = −450 ortho (1) β = −450

γ = 10 γ = 10

ortho (1)

f6 12 Multi No β = −180 ortho (1) β = −180

γ = 10 γ = −60

linear (3)

f7 13 Uni Yes

f8 14 Multi Yes

f9 15 Multi No

f10 16 Uni No

f11 17 Uni Yes N(0,1)

f12 19 Multi Yes β = −330 ortho (1) β = −330

γ = 2 γ = 1

linear (2)

f13 20 Multi No β = 390 ortho (1)

γ = 10

f14 21 Multi No

f15 22 Multi No β = −300 Yes

γ = 20

linear (3)

f16 23 Uni No β = −450 ortho (1) |N(0, 0.4)

γ = 10 β = −450

γ = 10

f17 25 Uni No β = −310

f18 26 Multi No β = −460

f19 27 Uni Yes

f20 28 Uni Yes

f21 29 Multi No

f22 30 Uni Yes β = −450

γ = 10

f23 31 Multi Yes

f24 32 Multi Yes

f25 33 Multi Yes β = 90

γ = 0.1

linear (5)

f26 CEC05 Multi No β = −130 Yes

γ = 1

f27 CEC05 Multi No Yes

f28 CEC05 Multi No Yes Yes

f29 CEC05 Multi No Yes Yes

f30 CEC05 Multi No Yes Yes

f31 CEC05 Multi No Yes Yes

f32 CEC05 Multi No Yes Yes

f33 CEC05 Multi No Yes Yes

f34 CEC05 Multi No Yes Yes

f35 CEC05 Multi No Yes Yes

f36 CEC05 Multi No Yes Yes

f37 CEC05 Multi No Yes Yes

28 A. P. Engelbrecht

T
a
b

le
1
6

C
o
m

p
a
riso

n
o
f

S
o
lu

tio
n

A
ccu

ra
cy

W
in

s
a
n

d
L

o
sses

fo
r

C
ro

sso
v
er

P
S

O
A

lg
o
rith

m
s

(resu
lts

a
re

g
iv

en
a
s

w
in

s/
lo

sses/
su

m
o
f

w
in

s
a
n

d
lo

sses)

C
r
o
sso

v
e
r

O
p

e
r
a
to

r
U

se
d

P
r
o
b

le
m

C
la

ss
g
b

e
st

A
X

B
L

X
-α

P
S

P
G

N
M

P
C

O
P

C
X
ŷ

P
C

X
r

P
C

X
∗ŷ

P
C

X
∗r

D
X
uŷ

D
X

1y
D

X
uy

U
n

im
o
d

a
l

S
ep

a
ra

b
le

2
8
/
4
9
/
-2

1
2
1
/
5
6
/
-3

5
1
1
/
6
6
/
-5

5
3
6
/
4
1
/
-5

4
0
/
3
7
/
3

1
4
/
6
3
/
-4

9
7
3
/
4
/
6
9

2
4
/
5
3
/
-2

9
6
3
/
1
4
/
4
9

5
7
/
2
0
/
3
7

3
8
/
3
9
/
-1

4
9
/
2
8
/
2
1

N
o
n

-S
ep

a
ra

b
le

1
2
/
2
1
/
-9

1
3
/
2
0
/
-7

0
/
3
3
/
-3

3
2
2
/
1
1
/
1
1

2
5
/
8
/
1
7

3
/
3
0
/
-2

7
2
2
/
1
1
/
1
1

6
/
2
7
/
-2

1
2
0
/
1
3
/
7

2
7
/
6
/
2
1

1
8
/
1
5
/
3

1
8
/
1
5
/
3

N
o
isy

1
0
/
1
2
/
-2

6
/
1
6
/
-1

0
0
/
2
2
/
-2

2
1
1
/
1
1
/
0

1
6
/
6
/
1
0

2
/
2
0
/
-1

8
5
/
1
7
/
-1

2
8
/
1
4
/
-6

1
4
/
8
/
6

1
1
/
1
1
/
0

2
0
/
2
/
1
8

2
1
/
1
/
2
0

S
h

ifted
1
7
/
3
8
/
-2

1
1
7
/
3
8
/
-2

1
1
/
5
4
/
-5

3
2
3
/
3
2
/
-9

2
6
/
2
9
/
-3

4
/
5
1
/
-4

7
1
2
/
4
3
/
-3

1
1
9
/
3
6
/
-1

7
2
0
/
3
5
/
-1

5
2
0
/
3
5
/
-1

5
2
3
/
3
2
/
-9

2
5
/
3
0
/
-5

R
o
ta

ted
5
/
1
7
/
-1

2
5
/
1
7
/
-1

2
0
/
2
2
/
-2

2
1
8
/
4
/
1
4

1
6
/
6
/
1
0

2
/
2
0
/
-1

8
1
3
/
9
/
4

1
1
/
1
1
/
0

1
7
/
5
/
1
2

1
5
/
7
/
8

9
/
1
3
/
-4

1
3
/
9
/
4

M
u

ltim
o
d

a
l

S
ep

a
ra

b
le

3
2
/
3
4
/
-2

2
1
/
4
5
/
-2

4
0
/
6
6
/
-6

6
3
6
/
3
0
/
6

3
7
/
2
9
/
8

5
/
6
1
/
-5

6
1
5
/
5
1
/
-3

6
1
4
/
5
2
/
-3

8
2
8
/
3
8
/
-1

0
2
1
/
4
5
/
-2

4
4
2
/
2
4
/
1
8

5
0
/
1
6
/
3
4

N
o
n

-S
ep

a
ra

b
le

4
2
/
5
7
/
-1

5
3
4
/
6
5
/
-3

1
0
/
9
9
/
-9

9
7
2
/
2
7
/
4
5

5
1
/
4
8
/
3

9
/
9
0
/
-8

1
3
8
/
6
1
/
-2

3
2
8
/
7
1
/
-4

3
3
8
/
6
1
/
-2

3
4
1
/
5
8
/
-1

7
6
0
/
3
9
/
2
1

6
8
/
3
1
/
3
7

S
h

ifted
3
6
/
8
5
/
-4

9
5
9
/
6
2
/
-3

0
/
1
2
1
/
-1

2
1

5
9
/
6
2
/
-3

6
0
/
6
1
/
-1

1
6
/
1
0
5
/
-8

9
4
6
/
7
5
/
-2

9
3
7
/
8
4
/
-4

7
5
0
/
7
1
/
-2

1
4
5
/
7
6
/
-3

1
4
5
/
7
6
/
-3

1
5
7
/
6
4
/
-7

R
o
ta

ted
1
1
/
3
3
/
-2

2
2
2
/
2
2
/
0

0
/
4
4
/
-4

4
4
0
/
4
/
3
6

2
6
/
1
8
/
8

2
/
4
2
/
-4

0
1
7
/
2
7
/
-1

0
9
/
3
5
/
-2

6
1
7
/
2
7
/
-1

0
1
7
/
2
7
/
-1

0
1
7
/
2
7
/
-1

0
1
6
/
2
8
/
-1

2
N

o
isy

5
/
6
/
-1

5
/
6
/
-1

0
/
1
1
/
-1

1
3
/
8
/
-5

1
1
/
0
/
1
1

1
/
1
0
/
-9

2
/
9
/
-7

5
/
6
/
-1

5
/
6
/
-1

3
/
8
/
-5

9
/
2
/
7

9
/
2
/
7

C
o
m

p
o
sitio

n
4
4
/
8
8
/
-4

4
5
6
/
7
6
/
-2

0
0
/
1
3
2
/
-1

3
2

3
4
/
9
8
/
-6

4
8
5
/
4
7
/
3
8

1
2
/
1
2
0
/
-1

0
8

2
8
/
1
0
4
/
-7

6
3
3
/
9
9
/
-6

6
5
3
/
7
9
/
-2

6
3
3
/
9
9
/
-6

6
7
4
/
5
8
/
1
6

7
9
/
5
3
/
2
6

T
o
ta

l
U

n
im

o
d

a
l

7
2
/
1
3
7
/
-6

5
6
2
/
1
4
7
/
-8

5
1
2
/
1
9
7
/
-1

8
5

1
1
0
/
9
9
/
1
1

1
2
3
/
8
6
/
3
7

2
5
/
1
8
4
/
-1

5
9

1
2
5
/
8
4
/
4
1

6
8
/
1
4
1
/
-7

3
1
3
4
/
7
5
/
5
9

1
3
0
/
7
9
/
5
1

1
0
8
/
1
0
1
/
7

1
2
6
/
8
3
/
4
3

M
u

ltim
o
d

a
l

1
7
0
/
3
0
3
/
-1

3
3

1
9
7
/
2
7
6
/
-7

9
0
/
4
7
3
/
-4

7
3

2
4
4
/
2
2
9
/
1
5

2
7
0
/
2
0
3
/
6
7

4
5
/
4
2
8
/
-3

8
3

1
4
6
/
3
2
7
/
-1

8
1

1
2
6
/
3
4
7
/
-2

2
1

1
9
1
/
2
8
2
/
-9

1
1
6
0
/
3
1
3
/
-1

5
3

2
4
7
/
2
2
6
/
2
1

2
7
9
/
1
9
4
/
8
5

S
ep

a
ra

b
le

7
4
/
1
1
3
/
-3

9
5
8
/
1
2
9
/
-7

1
1
2
/
1
7
5
/
-1

6
3

8
7
/
1
0
0
/
-1

3
9
4
/
9
3
/
1

2
2
/
1
6
5
/
-1

4
3

9
8
/
8
9
/
9

4
9
/
1
3
8
/
-8

9
1
0
6
/
8
1
/
2
5

9
7
/
9
0
/
7

1
0
7
/
8
0
/
2
7

1
2
5
/
6
2
/
6
3

N
o
n

-S
ep

a
ra

b
le

1
6
3
/
3
2
1
/
-1

5
8

1
9
6
/
2
8
8
/
-9

2
0
/
4
8
4
/
-4

8
4

2
6
4
/
2
2
0
/
4
4

2
8
8
/
1
9
6
/
9
2

4
7
/
4
3
7
/
-3

9
0

1
7
1
/
3
1
3
/
-1

4
2

1
4
0
/
3
4
4
/
-2

0
4

2
1
4
/
2
7
0
/
-5

6
1
9
0
/
2
9
4
/
-1

0
4

2
3
9
/
2
4
5
/
-6

2
7
1
/
2
1
3
/
5
8

O
v
era

ll
2
4
2
/
4
4
0
/
-1

9
8

2
5
9
/
4
2
3
/
-1

6
4

1
2
/
6
7
0
/
-6

5
8

3
5
4
/
3
2
8
/
2
6

3
9
3
/
2
8
9
/
1
0
4

7
0
/
6
1
2
/
-5

4
2

2
7
1
/
4
1
1
/
-1

4
0

1
9
4
/
4
8
8
/
-2

9
4

3
2
5
/
3
5
7
/
-3

2
2
9
0
/
3
9
2
/
-1

0
2

3
5
5
/
3
2
7
/
2
8

4
0
5
/
2
7
7
/
1
2
8

R
a
n

k
U

n
im

o
d

a
l

8
/
5
/
8

1
0
/
3
/
1
0

1
2
/
1
/
1
2

6
/
7
/
6

5
/
8
/
5

1
1
/
2
/
1
1

4
/
9
/
4

9
/
4
/
9

1
/
1
2
/
1

2
/
1
1
/
2

7
/
6
/
7

3
/
1
0
/
3

M
u

ltim
o
d

a
l

7
/
6
/
7

7
/
6
/
7

1
2
/
1
/
1
2

4
/
9
/
4

2
/
1
1
/
2

1
1
/
2
/
1
1

9
/
4
/
9

1
0
/
3
/
1
0

6
/
7
/
6

8
/
5
/
8

3
/
1
0
/
3

1
/
1
2
/
1

S
ep

a
ra

b
le

8
/
5
/
8

9
/
4
/
9

1
2
/
1
/
1
2

7
/
6
/
7

6
/
7
/
6

1
1
/
2
/
1
1

4
/
9
/
4

1
0
/
3
/
1
0

3
/
1
0
/
3

5
/
8
/
5

2
/
1
1
/
2

1
/
1
2
/
1

N
o
n

-S
ep

a
ra

b
le

9
/
4
/
9

6
/
7
/
6

1
2
/
1
/
1
2

3
/
1
0
/
3

1
/
1
2
/
1

1
1
/
2
/
1
1

8
/
5
/
8

1
0
/
3
/
1
0

5
/
8
/
5

7
/
6
/
7

4
/
9
/
4

2
/
1
1
/
2

O
v
era

ll
9
/
4
/
9

8
/
5
/
8

1
2
/
1
/
1
2

4
/
9
/
4

2
/
1
1
/
2

1
1
/
2
/
1
1

7
/
6
/
7

1
0
/
3
/
1
0

5
/
6
/
5

6
/
7
/
6

3
/
1
0
/
3

1
/
1
2
/
1

Particle Swarm Optimization with Crossover: A Review and Empirical Analysis 29

T
a
b

le
1
7

C
o
m

p
a
ri

so
n

o
f

S
u

cc
es

s
R

a
te

W
in

s
a
n

d
L

o
ss

es
fo

r
C

ro
ss

o
v
er

P
S

O
A

lg
o
ri

th
m

s
(r

es
u

lt
s

a
re

g
iv

en
a
s

w
in

s/
lo

ss
es

/
su

m
o
f

w
in

s
a
n

d
lo

ss
es

)

C
r
o
ss

o
v
e
r

O
p

e
r
a
to

r
U

se
d

P
r
o
b

le
m

C
la

ss
g
b

e
st

A
X

B
L

X
-α

P
S

P
G

N
M

P
C

O
P

C
X
ŷ

P
C

X
r

P
C

X
∗ ŷ

P
C

X
∗ r

D
X
u ŷ

D
X

1 y
D

X
u y

U
n

im
o
d

a
l

S
ep

a
ra

b
le

3
3
/
3
6
/
-3

3
0
/
4
1
/
-1

1
2
5
/
4
5
/
-2

0
3
7
/
3
6
/
1

5
1
/
1
9
/
3
2

1
7
/
5
0
/
-3

3
6
2
/
5
2
/
1
0

4
0
/
2
9
/
1
1

4
2
/
2
6
/
1
6

3
5
/
2
5
/
1
0

3
5
/
2
5
/
1
0

4
4
/
1
7
/
2
7

N
o
n

-S
ep

a
ra

b
le

8
/
2
0
/
-1

2
1
6
/
1
2
/
4

2
0
/
8
/
1
2

1
9
/
1
3
/
6

1
5
/
1
1
/
4

1
2
/
1
6
/
-4

4
/
2
5
/
-2

1
9
/
1
7
/
-8

3
/
2
3
/
-2

0
2
0
/
9
/
1
1

2
5
/
6
/
1
9

1
8
/
9
/
9

N
o
is

y
5
/
9
/
-4

8
/
1
0
/
-2

4
/
1
3
/
-9

1
0
/
6
/
4

2
1
/
0
/
2
1

1
1
/
9
/
2

7
/
1
2
/
-5

7
/
9
/
-2

1
6
/
4
/
1
2

2
/
1
5
/
-1

3
1
5
/
6
/
9

4
/
1
7
/
-1

3
S

h
if

te
d

9
/
2
3
/
-1

4
1
4
/
2
3
/
-9

1
8
/
2
4
/
-6

2
1
/
1
2
/
9

1
6
/
1
4
/
2

1
3
/
3
1
/
-1

8
1
1
/
2
0
/
-9

5
/
2
8
/
-2

3
1
5
/
1
8
/
-3

2
0
/
1
5
/
1
4

4
4
/
1
/
4
3

2
9
/
1
5
/
1
4

R
o
ta

te
d

8
/
9
/
-1

1
4
/
7
/
7

6
/
1
4
/
-8

1
2
/
9
/
3

5
/
1
1
/
-6

1
2
/
6
/
6

6
/
1
4
/
-8

0
/
1
9
/
-1

9
1
3
/
5
/
8

1
2
/
9
/
3

1
5
/
1
/
1
4

1
1
/
9
/
2

M
u

lt
im

o
d

a
l

S
ep

a
ra

b
le

2
7
/
2
8
/
-1

3
0
/
2
1
/
9

2
7
/
2
9
/
-2

3
3
/
2
3
/
1
0

1
5
/
3
6
/
-2

1
9
/
4
2
/
-3

3
2
0
/
3
2
/
-1

2
7
/
4
2
/
-3

5
/

3
8
/
1
9
/
1
9

3
3
/
2
0
/
1
3

4
5
/
1
6
/
2
9

3
9
/
1
5
/
2
4

N
o
n

-S
ep

a
ra

b
le

2
2
/
4
0
/
-1

8
4
7
/
2
6
/
2
1

4
7
/
2
4
/
2
3

5
6
/
2
1
/
3
5

1
8
/
4
2
/
-2

4
3
0
/
3
8
/
-8

8
/
5
2
/
-4

4
1
1
/
4
6
/
-3

5
2
0
/
4
3
/
-2

3
3
4
/
3
1
/
3

4
6
/
2
8
/
1
8

6
6
/
1
4
/
5
2

S
h

if
te

d
4
3
/
3
7
/
6

4
3
/
3
3
/
1
0

3
0
/
4
0
/
-1

0
5
5
/
2
9
/
2
6

1
6
/
5
5
/
-3

9
2
6
/
4
6
/
-2

0
3
2
/
4
1
/
-9

2
0
/
5
2
/
-3

2
3
2
/
4
1
/
-9

4
8
/
4
0
/
8

5
1
/
3
8
/
1
3

7
0
/
2
0
/
5
0

R
o
ta

te
d

2
0
/
1
2
/
8

1
2
/
1
7
/
-5

2
5
/
1
2
/
1
3

3
6
/
7
/
2
9

1
0
/
1
8
/
-8

1
0
/
2
5
/
-1

5
0
/
2
8
/
-2

8
7
/
2
1
/
-1

4
1
1
/
2
2
/
-1

1
1
8
/
1
0
/
8

2
6
/
7
/
1
9

1
5
/
1
1
/
4

N
o
is

y
4
/
2
/
2

4
/
2
/
2

4
/
2
/
2

0
/
8
/
-8

1
1
/
0
/
1
1

4
/
3
/
1

0
/
8
/
-8

5
/
3
/
2

0
/
8
/
-8

0
/
8
/
-8

1
0
/
1
/
9

5
/
2
/
3

C
o
m

p
o
si

ti
o
n

2
3
/
5
4
/
-3

1
4
2
/
3
5
/
7

7
1
/
2
9
/
4
2

2
4
/
4
7
/
-1

3
7
5
/
2
2
/
5
3

3
8
/
5
0
/
-1

2
/

5
2
/
4
0
/
1
2

5
5
/
4
2
/
1
3

4
3
/
4
1
/
2

2
7
/
6
6
/
-3

9
4
8
/
5
2
/
-4

2
7
/
5
7
/
-3

0
T

o
ta

l
U

n
im

o
d

a
l

6
3
/
9
7
/
-3

4
8
2
/
9
3
/
-1

1
7
3
/
1
0
4
/
-3

1
9
9
/
7
6
/
2
3
/

1
0
8
/
5
5
/
5
3

6
5
/
1
1
2
/
-4

7
9
0
/
1
2
3
/
-3

3
6
1
/
1
0
2
/
-4

1
8
9
/
7
6
/
1
3

9
8
/
7
3
/
2
5

1
3
4
/
3
9
/
9
5

1
0
6
/
6
7
/
3
9

M
u

lt
im

o
d

a
l

1
3
9
/
1
7
3
/
-3

4
1
7
8
/
1
3
4
/
4
4

2
0
4
/
1
3
6
/
6
8

2
1
4
/
1
3
5
/
7
9

1
4
5
/
1
7
3
/
-2

8
1
1
7
/
2
0
4
/
-8

7
/

1
1
2
/
2
0
1
/
-8

9
1
0
5
/
2
0
6
/
-1

0
1

1
4
4
/
1
7
4
/
-3

0
1
6
0
/
1
7
5
/
-1

5
2
2
6
/
1
4
2
/
8
4

2
2
2
/
1
1
9
/
1
0
3

S
ep

a
ra

b
le

7
5
/
7
7
/
-2

7
6
/
7
8
/
-2

6
3
/
9
4
/
-3

1
9
0
/
6
9
/
2
1

7
9
/
6
9
/
1
0

3
2
/
1
2
4
/
-9

2
8
2
/
1
1
0
/
-2

8
6
4
/
8
4
/
-2

0
9
1
/
6
4
/
2
7

8
9
/
6
0
/
2
9

1
1
3
/
4
7
/
6
6

1
1
3
/
4
1
/
7
2

N
o
n

-S
ep

a
ra

b
le

1
2
3
/
1
9
1
/
-6

8
1
8
0
/
1
4
7
/
3
3

2
1
0
/
1
4
4
/
6
6

2
2
3
/
1
3
4
/
8
9

1
6
3
/
1
5
9
/
4

1
4
6
/
1
8
9
/
-4

3
1
2
0
/
2
0
6
/
-8

6
9
7
/
2
2
1
/
-1

2
4

1
4
2
/
1
7
8
/
-3

6
1
6
9
/
1
8
0
/
-1

1
2
3
7
/
1
3
3
/
1
0
4

2
1
0
/
1
4
3
/
6
7

O
v
er

a
ll

2
0
2
/
2
7
0
/
-6

8
2
6
0
/
2
2
7
/
3
3

2
7
7
/
2
4
0
/
3
7

3
1
3
/
2
1
1
/
1
0
2

2
5
3
/
2
2
8
/
2
5

1
8
2
/
3
1
6
/
-1

3
4
/

2
0
2
/
3
2
4
/
-1

2
2

1
6
6
/
3
0
8
/
-1

4
2

2
3
3
/
2
5
0
/
-1

7
2
5
8
/
2
4
8
/
1
0

3
6
0
/
1
8
1
/
1
7
9

3
2
8
/
1
8
6
/
1
4
2

R
a
n

k
U

n
im

o
d

a
l

1
1
/
5
/
1
0

8
/
6
/
7

9
/
3
/
8

4
/
7
/
5

2
/
1
1
/
2

1
0
/
2
/
1
2

6
/
1
/
9

1
2
/
4
/
1
1

7
/
7
/
6

5
/
9
/
4

1
/
1
2
/
1

3
/
1
0
/
3

M
u

lt
im

o
d

a
l

9
/
6
/
9

5
/
1
1
/
5

4
/
9
/
4

3
/
1
0
/
3

7
/
6
/
7

1
0
/
2
/
1
0

1
1
/
3
/
1
1

1
2
/
1
/
1
2

8
/
5
/
8

6
/
4
/
6

1
/
8
/
2

2
/
1
2
/
1

S
ep

a
ra

b
le

9
/
6
/
7

8
/
5
/
7

1
1
/
3
/
1
1

4
/
7
/
5

7
/
7
/
6

1
2
/
1
/
1
2

6
/
2
/
1
0

1
0
/
4
/
9

3
/
9
/
4

5
/
1
0
/
3

1
/
1
1
/
2

1
/
1
2
/
1

N
o
n

-S
ep

a
ra

b
le

1
0
/
3
/
1
0

5
/
8
/
5

3
/
9
/
4

2
/
1
1
/
2

7
/
7
/
6

8
/
4
/
9

1
1
/
2
/
1
1

1
2
/
1
/
1
2

9
/
6
/
8

6
/
5
/
7

1
/
1
2
/
1

3
/
1
0
/
3

O
v
er

a
ll

9
/
4
/
9

5
/
9
/
5

4
/
7
/
4

3
/
1
0
/
3

7
/
8
/
6

1
1
/
2
/
1
1

9
/
1
/
1
0

1
2
/
3
/
1
2

8
/
5
/
8

6
/
6
/
7

1
/
1
2
/
1

2
/
1
1
/
2

30 A. P. Engelbrecht

T
a
b

le
1
8

C
o
m

p
a
riso

n
o
f

E
ffi

cien
cy

W
in

s
a
n

d
L

o
sses

fo
r

C
ro

sso
v
er

P
S

O
A

lg
o
rith

m
s

(resu
lts

a
re

g
iv

en
a
s

w
in

s/
lo

sses/
su

m
o
f

w
in

s
a
n

d
lo

sses)

C
r
o
sso

v
e
r

O
p

e
r
a
to

r
U

se
d

P
r
o
b

le
m

C
la

ss
g
b

e
st

A
X

B
L

X
-α

P
S

P
G

N
M

P
C

O
P

C
X
ŷ

P
C

X
r

P
C

X
∗ŷ

P
C

X
∗r

D
X
uŷ

D
X

1y
D

X
uy

U
n

im
o
d

a
l

S
ep

a
ra

b
le

2
2
/
4
5
/
-2

3
1
5
/
5
4
/
-3

9
2
6
/
4
7
/
-2

1
3
9
/
3
4
/
5

3
8
/
3
5
/
3

2
8
/
4
3
/
-1

5
2
8
/
4
3
/
-1

5
5
0
/
2
5
/
2
5

5
2
/
2
4
/
2
8

4
4
/
2
4
/
2
0

3
8
/
2
8
/
1
0

4
3
/
2
1
/
2
2

N
o
n

-S
ep

a
ra

b
le

2
/
2
1
/
-1

9
7
/
2
2
/
-1

5
2
6
/
7
/
1
9

8
/
1
8
/
-1

0
1
3
/
1
3
/
0

2
1
/
1
2
/
9

1
2
/
1
6
/
-4

1
2
/
1
6
/
-4

9
/
1
6
/
-7

2
3
/
8
/
1
5

1
8
/
1
3
/
5

1
9
/
8
/
1
1

N
o
isy

5
/
9
/
-4

6
/
1
1
/
-5

0
/
1
7
/
-1

7
1
9
/
2
/
1
7

9
/
6
/
3

1
6
/
5
/
1
1

1
2
/
1
0
/
2

9
/
7
/
2

1
8
/
4
/
1
4

2
/
1
5
/
-1

3
1
1
/
9
/
2

4
/
1
6
/
-1

2
S

h
ifted

1
0
/
2
5
/
-1

5
0
/
2
8
/
-2

8
1
7
/
2
4
/
-7

5
/
2
6
/
-2

1
2
0
/
1
7
/
3

3
5
/
1
6
/
1
9

2
1
/
1
7
/
4

5
/
2
6
/
-1

2
2
2
/
1
8
/
4

3
6
/
1
3
/
2
3

3
9
/
1
3
/
2
6

3
0
/
1
7
/
1
3

R
o
ta

ted
9
/
1
0
/
-1

6
/
1
3
/
-7

1
/
1
7
/
-1

6
8
/
9
/
-1

1
4
/
5
/
9

1
8
/
4
/
1
4

9
/
1
0
/
-1

5
/
1
1
/
-6

3
/
1
2
/
-9

1
2
/
9
/
3

1
8
/
3
/
1
5

1
0
/
1
0
/
0

M
u

ltim
o
d

a
l

S
ep

a
ra

b
le

2
7
/
2
6
/
1

2
1
/
3
3
/
-1

2
4
5
/
2
0
/
2
5

2
1
/
3
0
/
-9

2
8
/
2
6
/
2

1
8
/
3
6
/
-1

8
1
7
/
3
2
/
-1

5
7
/
3
6
/
-2

9
3
1
/
2
4
/
7

3
5
/
1
9
/
1
6

3
5
/
2
4
/
1
1

3
7
/
1
6
/
2
1

N
o
n

-S
ep

a
ra

b
le

2
6
/
3
6
/
-1

0
3
5
/
3
9
/
-4

6
0
/
2
5
/
3
5

1
9
/
4
0
/
-2

1
5
7
/
2
0
/
3
7

3
9
/
3
3
/
6

1
5
/
4
3
/
-2

8
9
/
4
5
/
-3

6
1
3
/
4
0
/
-2

7
3
1
/
3
3
/
-2

4
2
/
3
1
/
1
1

6
0
/
2
1
/
3
9

S
h

ifted
3
5
/
4
5
/
-1

0
3
0
/
4
7
/
-1

7
3
3
/
4
3
/
-1

0
1
9
/
4
7
/
-2

8
5
9
/
3
3
/
2
6

4
9
/
3
4
/
1
5

3
1
/
4
1
/
-1

0
3
5
/
3
8
/
-3

2
8
/
4
3
/
-1

5
4
4
/
3
9
/
5

4
3
/
3
9
/
4

6
5
/
2
2
/
4
3

R
o
ta

ted
1
4
/
1
6
/
-2

7
/
1
9
/
-1

2
2
7
/
1
0
/
1
7

1
/
2
3
/
-2

2
3
0
/
1
0
/
2
0

1
2
/
1
6
/
-4

5
/
1
9
/
-1

4
6
/
1
9
/
-1

3
1
2
/
1
8
/
-6

1
9
/
8
/
1
1

2
5
/
8
/
1
7

1
7
/
9
/
8

N
o
isy

7
/
4
/
3

8
/
3
/
5

1
0
/
1
/
9

0
/
1
0
/
-1

0
1
/
7
/
-6

6
/
5
/
1

1
/
7
/
-6

5
/
6
/
-1

1
/
7
/
-6

0
/
7
/
-7

1
1
/
0
/
1
1

9
/
2
/
7

C
o
m

p
o
sitio

n
3
4
/
5
7
/
-2

3
5
1
/
4
9
/
2

9
8
/
2
6
/
7
2

6
7
/
3
6
/
3
1

4
0
/
5
7
/
-1

7
5
2
/
5
3
/
-1

4
4
/
5
2
/
-8

6
7
/
5
2
/
1
5

6
0
/
3
9
/
2
1

1
8
/
6
4
/
-4

6
3
8
/
5
9
/
-2

1
3
1
/
5
6
/
-2

5
T

o
ta

l
U

n
im

o
d

a
l

4
8
/
1
1
0
/
-6

2
3
4
/
1
2
8
/
-9

4
7
0
/
1
1
2
/
-4

2
7
9
/
8
9
/
-1

0
9
4
/
7
6
/
1
8

1
1
8
/
8
0
/
3
8

8
2
/
9
6
/
1
4

8
1
/
8
5
/
-4

1
0
4
/
7
4
/
3
0

1
1
7
/
6
9
/
4
8

1
2
4
/
6
6
/
5
8

1
0
6
/
7
2
/
3
4

M
u

ltim
o
d

a
l

1
4
3
/
1
8
4
/
-4

1
1
5
2
/
1
9
0
/
-3

8
2
7
3
/
1
2
5
/
1
4
8

1
2
7
/
1
8
6
/
-5

9
2
1
5
/
1
5
3
/
6
2

1
1
3
/
1
9
4
/
-8

1
1
2
9
/
1
9
6
/
-6

7
1
4
5
/
1
7
1
/
-2

6
1
4
7
/
1
7
0
/
-2

3
1
9
4
/
1
6
1
/
3
3

2
1
9
/
1
2
6
/
9
3

S
ep

a
ra

b
le

6
0
/
8
9
/
-2

9
4
2
/
1
0
5
/
-6

3
7
9
/
9
0
/
-1

1
7
0
/
8
0
/
-1

0
8
3
/
7
4
/
9

6
3
/
9
8
/
-3

5
5
0
/
9
5
/
-4

5
7
3
/
7
6
/
-3

9
8
/
6
1
/
3
7

1
0
3
/
5
9
/
4
4

1
0
5
/
6
1
/
4
4

1
1
0
/
4
8
/
6
2

N
o
n

-S
ep

a
ra

b
le

1
2
4
/
2
0
1
/
-7

7
1
3
6
/
2
1
0
/
-7

4
2
5
4
/
1
4
6
/
1
0
8

1
3
6
/
1
8
5
/
-4

9
2
2
5
/
1
4
8
/
7
7

2
2
5
/
1
5
4
/
7
1

1
4
4
/
1
8
8
/
-4

4
1
3
2
/
1
9
9
/
-6

7
1
5
0
/
1
7
7
/
-2

7
1
6
1
/
1
7
3
/
-1

2
2
0
2
/
1
6
6
/
3
6

2
0
6
/
1
4
8
/
5
8

O
v
era

ll
1
9
1
/
2
9
4
/
-1

0
3

1
8
6
/
3
1
8
/
-1

3
2

3
4
3
/
2
3
7
/
1
0
6

2
0
6
/
2
7
5
/
-6

9
3
0
9
/
2
2
9
/
8
0

2
9
4
/
2
5
7
/
3
7

1
9
5
/
2
9
0
/
-9

5
2
1
0
/
2
8
1
/
-7

1
2
4
9
/
2
4
5
/
4

2
6
4
/
2
3
9
/
2
5

3
1
8
/
2
2
7
/
9
1

3
2
5
/
1
9
8
/
1
2
7

R
a
n

k
U

n
im

o
d

a
l

1
1
/
3
/
1
1

1
2
/
1
/
1
2

1
0
/
2
/
1
0

9
/
5
/
8

6
/
8
/
6

2
/
7
/
3

7
/
4
/
9

8
/
6
/
7

5
/
9
/
5

3
/
1
1
/
2

1
/
1
2
/
1

4
/
1
0
/
4

M
u

ltim
o
d

a
l

9
/
5
/
9

6
/
3
/
8

1
/
1
2
/
1

1
1
/
4
/
1
0

3
/
1
0
/
3

5
/
6
/
5

1
2
/
2
/
1
2

1
0
/
1
/
1
1

8
/
7
/
7

7
/
8
/
6

4
/
9
/
4

2
/
1
1
/
2

S
ep

a
ra

b
le

1
0
/
5
/
9

1
2
/
1
/
1
2

6
/
4
/
8

8
/
6
/
7

5
/
8
/
5

9
/
2
/
1
0

1
1
/
3
/
1
1

7
/
7
/
6

4
/
9
/
4

3
/
1
1
/
2

2
/
9
/
2

1
/
1
2
/
1

N
o
n

-S
ep

a
ra

b
le

1
2
/
2
/
1
2

9
/
1
/
1
1

1
/
1
2
/
1

1
/
5
/
9

2
/
1
0
/
2

2
/
9
/
3

8
/
4
/
8

1
1
/
3
/
1
0

7
/
6
/
7

6
/
7
/
6

5
/
8
/
5

4
/
1
0
/
4

O
v
era

ll
1
1
/
2
/
1
1

1
2
/
1
/
1
2

1
/
9
/
2

1
/
5
/
8

4
/
1
0
/
4

5
/
6
/
5

1
0
/
3
/
1
0

8
/
4
/
9

7
/
7
/
7

6
/
8
/
6

3
/
1
1
/
3

2
/
1
2
/
1

