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ABSTRACT 

An assessment of probabilistic prediction skill of seasonal temperature extremes over southern African is 

presented. Verification results are presented for six run-on seasons; September to November, October to 

December, November to January, December to February, January to March and February to April over a 15-

year retroactive period. Comparisons are drawn between downscaled seasonal 850 hPa geopotential height 

field forecasts of a two-tiered system versus downscaled height forecasts from a coupled ocean-atmosphere 

system. The ECHAM4.5 atmospheric general circulation model is used for both systems; in the one-tiered 

system the ECHAM4.5 is directly coupled to the ocean model MOM3, and the two-tiered system the ECHAM4.5 

is forced with Van den Dool SST hindcasts. Model output statistic equations are developed using canonical 

correlation analysis to reduce system deficiencies. Probabilistic verification is conducted using the relative 

operating characteristic (ROC) and reliability diagram. The coupled model performs best in capturing seasonal 

maximum temperature extremes. Seasons demonstrating the highest ROC scores coincide with the period of 

highest seasonal temperatures found over southern Africa. The above-normal category of the one-tiered system 

indicates the highest skill in predicting maximum temperature extremes, implying the coupled model skilfully 

predicts when there is a high likelihood of experiencing extremely high seasonal maximum temperatures during 

mid to late summer. The downscaled coupled maximum temperature hindcasts are additionally evaluated in 

terms of their monetary value and quality to the general public. The seasonal forecast system presented here 

should be able to reduce risks in decision making by the health industry in southern Africa. 

 
 

1. Introduction 

The dramatic improvement in supercomputer power as well as an increase in the understanding of 

atmospheric processes have resulted in the progression of seasonal forecasts experiencing a vast 

improvement over the past decade (Cane et al., 1994; Hastenrath et al., 1995; Barnston and Smith 

1996; Hunt 1997; Mason et al., 1996, 1999; Jury 1996; Mason 1998; Mattes and Mason 1998; 

Makarau and Jury 1997; Jury et al., 1999; Landman and Mason 1999b; Landman and Tennant 2000; 

Landman et al., 2001a; Landman and Goddard, 2002). A forecastat any time-scale can never be 100% 

accurate due to the atmosphere having inherent internal variability as a key characteristic, (Doblas-

Reyes et al., 2000) therefore requiring seasonal climate simulations to be probabilistically represented 

(e.g. Mason et al., 1999; Goddard et al., 2001; Goddard and Mason, 2002). General circulation model 

(GCM) ensembles, if correctly configured, allow for such probabilistic forecasts, due to ensemble 

forecasting providing a viable way to approximate the probability spread of atmospheric states 

(Brankovic and Palmer, 2000; Landman and Beraki, 2012). Improving the skill of these forecasts is 

also made possible by expanding the understanding of local climate systems and their respective 

processes, in this case over southern Africa (Klopper et al., 1998).  

Dynamic numerical models that include the interactions between the atmosphere, ocean, and land 

should theoretically provide superior seasonal forecasts than purely statistical approaches, asthey have 
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the capability of handling a vast range of both linear and nonlinear interactions and their probable 

flexibility against a changing climate (Barnston et al., 1999).Therefore the choice of using dynamical 

models in seasonal forecasting has become a significantly popular one (Stockdale et al., 1998; 

Landman et al., 2009b). However, even with such improvements, model errors are still a substantial 

source of problems (Latif et al., 2001; Palmer et al., 2004), and it is still unclear as to what degree the 

current generation of numerical forecast models still in use are able to challenge and improve upon 

existing empirical methods in seasonal forecasting (Van Oldenborgh et al., 2004). Barnston et al. 

(1999) concluded that dynamical models were not able to capture the 1997/1998 El Niño event and 

following La Niña event better than statistical models (Van Oldenborgh et al., 2004). 

 

Skill has been established by GCMs for a variety of scales with resolutions of approximately 100–300 

km (Landman and Goddard, 2002; Landman et al., 2012; Landman and Beraki, 2012). However, 

GCMs do not have the ability to accurately capture local smaller-scale features, and a common 

consequence is overestimating certain variables such as rainfall over southern Africa (Joubert and 

Hewitson, 1997; Mason and Joubert, 1997; Landman et al., 2009b). The representation of rainfall at 

mid-to-high latitudes is highly complex and more often than not poorly predicted (Graham et al., 2000; 

Goddard and Mason, 2002). Such systematic biases have resulted in statistical recalibration and 

downscaling of GCM simulations becoming a necessity, particularly over places such as southern 

Africa (Landman and Beraki, 2012). A viable method to make the necessary corrections for these 

biases is to employ a model output statistics (MOS) approach (e.g., Landman and Goddard, 2002; 

Landman and Beraki, 2012). Previous research has been conducted on forecasting seasonal rainfall 

over southern Africa using global models that have been downscaled using a MOS approach and was 

found to perform better during El Niño and La Niña seasons than during neutral years (neither an El 

Niño nor a La Niña event) or years when there was no strong El Niño or La Niña influence (Landman 

and Beraki, 2012).  

 

Seasonal temperature forecasts over southern Africa however, have been neglected since the seminal 

paper completed by Klopper et al in 1998, where a deterministic assessment of forecast skill was 

investigated. A more recent study of temperature variation over Africa shows that a significant 

increase in temperatures has been seen over Africa and that it is not exclusively due to variations in 

the El Niño-Southern Oscillation but rather due to other natural variability of the climate and/or 

human activity (Collins, 2011). This current paper presents a probabilistic assessment of forecast skill 

of temperature, including both minimum and maximum seasonal temperatures by using state-of-the-

art GCM configurations. 

 

Due to the seasonal progression of accurate sea surface temperature (SST) anomaly predictions, it has 

been made possible to produce seasonal-average weather forecasts by incorporating them in 

atmospheric GCMs (Graham et al., 2000; Goddard and Mason, 2002). Using such a modelling system 

(two-tiered) to predict a particular regions seasonal characteristics has been operational in South 

Africa for numerous years (e.g., Landman et al., 2001). The one-tiered system, which followed that of 

the two-tiered system, is known as fully coupled ocean-atmosphere model (e.g., Stockdale et al., 1998; 

Saha et al., 2006; Weisheimer et al., 2009). Coupled models fundamental feature is their ability to 

describe interactions between the atmosphere and the ocean, and therefore aim to yield more reliable 
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seasonal forecasts, whereas two-tiered systems exclude this interaction, however do include the 

atmospheres response to SSTs (Copsey et al., 2006; Troccoli et al., 2008). Coupled ocean-atmosphere 

models are at the top of the modelling ladder in terms of complexity and computational expense 

(DeWitt, 2005). Theoretically fully coupled models should outperform the two-tiered forecasting 

system, as they should capture reality more accurately and therefore produce more accurate forecasts 

(DeWitt, 2005).  

 

Global models are employed in this study to predict seasonal minimum and maximum temperature 

extremes over southern Africa during the austral summer period from September through April. 

Winter has been omitted due to minimal forecast skill found in the austral winter forecasts (Mason et 

al., 1996; Landman et al., 2012). Moreover, extremes in minimum and maximum temperatures have a 

direct impact on human health (particularly maximum temperatures); therefore an application of this 

study may include the potential of health hazards associated with extremely hot summer seasons over 

the region. 

 

Exposure to high temperatures can impact human health in many different ways. Such exposure to 

high temperatures can lead to symptoms such as fatigue, dizziness and cramps, as well as heat 

illnesses such as heat exhaustion and heatstroke. High ambient temperatures, including those 

experienced during a heat wave, have been associated with increases in mortality. These increases in 

mortality are not just from heatstroke, but also from cardiovascular, cerebrovascular and respiratory 

diseases and have also been seen in all-cause mortality (Smoyer-Tomic et al., 2001; Vaneckova et al., 

2011; Baccini et al., 2008; Rocklöv et al., 2011; Ballester et al., 2011; Medina-Ramón and Schwartz 

2007; Diaz et al., 2002). The heat-health relationship varies for different locations and for different 

population, and thus it is critical to develop these relationships based on local health and 

meteorological data. Those most vulnerable to heat have generally been found to be the elderly, 

people living in urban areas, people with pre-existing cardiovascular and respiratory disease and those 

with compromised coping capacities (Basu and Samet, 2002; Kovats and Hajat, 2008; Naughton et al., 

2002; Semenza et al., 1996). In addition to increased mortality with increased ambient temperatures, 

there is some evidence of increases in hospital and emergency admissions for specific heat related 

illnesses (such as respiratory diseases), particularly amongst vulnerable groups (Wichmann, et al., 

2011; Michelozzi et al., 2009, Green et al., 2010). However, there are far fewer studies on non-fatal 

illnesses and their relationship to high ambient temperature, and thus less of a consensus on the 

impact.  

 

In a study in London, the increases in admissions during high ambient temperatures were not at the 

same magnitude as increases in mortality, which led the authors to suggest that many heat related 

deaths may occur before they receive medical attention (Kovats et al., 2004). Analyses from the 1995 

and the 1999 Chicago heat wave determined factors that isolated people such as living alone, not 

leaving home every day and being confined to bed were the strongest risk factors for heat-related 

death (Naughton et al., 2002; Semenza et al., 1996).  Thus, in order to protect public health from high 

temperatures, it is critical to both empower the public, through education and alerts, to be able to 

effectively protect their own health as well as increase assistance and prevention measures, 

particularly focused on those who are vulnerable and isolated.  
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Planning measures, such as heat warnings and heat-health plans, have been implemented in many 

countries to aid in the prevention of increases in morbidity and mortality from high temperatures 

events (e.g., Kalkstein et al., 1996; Tan et al., 2003; Sheridan and Kalkstein, 2004; Smoyer-Tomic 

and Rainham, 2001; Pascal et al., 2006). Some weather bureaus call for a heat warning when 

temperatures are forecasted to reach above a certain threshold.  Some cities have more elaborate 

intervention plans that are activated by such warnings. For example, in Philadelphia, Pennsylvania, 

USA, there are 10 activities that are enacted once a warning has been issued by the U.S. National 

Weather Service ranging from media announcements, to halting suspensions of utility services, to 

increases in emergency medical service staffing (Sheridan and Kalkstein, 2004; Kalkstein et al., 1996). 

An evaluation of Philadelphia heat watch/warning system concluded that for 1995-1998, issuing a 

warning saved 2.6 lives on average with high benefits and low costs (Ebi et al., 2004).   

 

After the August 2003 heat wave in France where the excess mortalities during the heat wave was 

14,800, the French government developed a Heat Health Watch Warning System (Pascal et al., 2006). 

In July 2006, France experienced another severe heat wave, though not as intense as the 2003 heat 

wave, and the system was utilized. While there still were 2100 excess deaths recorded for that period, 

it was ~1/3 the predicted excess deaths from a health model for the same period (Fouillet et al., 2008). 

While it is difficult to elucidate the exact reason for these decreases, it may be due to increased public 

awareness, preventative measures and the heat warning system developed by the government (Fouillet 

et al., 2008). In general, evaluations of heat warning systems are difficult, as there are many factors 

that might influence the changes in mortality. However, as the impact of high temperature on 

mortality is well-documented, and temperatures and heat waves are expected to increase in the future 

due to climate change, the need for effective heat-health warnings and plans are increasing in order to 

prevent large public health impacts from increasing temperatures. 

 

Most of the research on increases in mortality with high temperatures has been in temperate regions. 

Thus, there is a lack of knowledge in general of how populations living in more tropical environments 

might be impacted by increasing temperatures, though the limited research does suggest that increases 

in temperature do impact mortality rates (Vaneckova et al., 2011; Kynast-Wolf et al., 2010). In 

southern Africa little is known on how public health is impacted by high ambient temperatures, with 

only one study in Cape Town that investigated the heat-mortality relationship (McMichael et al., 

2008). Previous work has focused on occupational health and heat stress, with a focus on the mining 

industry (e.g. Wyndham, 1965, Mathee et al., 2010).  And, as the interior regions of southern Africa 

are projected to experience increases in temperature as great as 4-6˚C under the A2 emission scenario 

by the end of the century, the occurrence of heat events is also projected to increase (Engelbrecht et 

al., 2011).  

 

Increased temperatures will not only directly impact health through increased heat-related illnesses, as 

many health impacts are also impacted by climate factors (e.g., malaria, cholera, dengue fever and 

malnutrition.). There is a need for accurate seasonal forecasts of climate variables in order to 

effectively plan for health impacts in advance. For heat impacts on health, much of the focus 

internationally has been on short-term forecasting, however longer term forecasting will aid in 

planning (McGregor et al., 2004; McGregor et al., 2006). Little research has been performed on 
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applying seasonal forecasting of extreme events to health impacts, though seasonal forecasts have 

been utilized in developing early warning systems for infectious diseases (e.g., Kuhn et al., 2004; 

Thompson et al., 2006; Kelly-Hope and Thomson, 2008; Connor et al., 2008). Seasonal forecasts can 

provide information with long lead times that will allow the health community with enough time for 

planning.  Myers et al. (2000) suggests that for epidemic forecasting, when it is critical to give health 

workers enough time to plan for unexpectedly high (or low) number of cases, a lead time of 2-6 

months is the most useful. A longer lead time is also needed for decisions such as increasing the 

health care sector budget (Myers et al., 2000). Such seasonal forecasts can then be followed-up by 

shorter range forecasts, which can provide more precise spatial and temporal information for more 

focused response measures. Such a combination provides information across decision timescales in 

order to effectively prepare to mitigate negative health impacts. 

 

In order to develop effective plans on both the seasonal and shorter timescales, adequate skill in 

forecasting is critical. Coelho and Costa (2010) describe the challenges in integrating seasonal 

forecasts into application in areas such as agriculture and health.  The first two challenges that they 

identify are adequate skill in seasonal forecasts of information that is useful to application models, 

and downscaling this modelling spatially and temporally. This paper highlights the skill in forecasting 

extremely high temperatures over southern Africa on a seasonal timescale. 

 

2. Methodology 

 

2.1 Data 

2.1.1 Temperature data 

The temperature data have been obtained in three-month datasets of 2 m minimum and maximum 

temperatures from the Climatic Research Unit (CRU) TS3.1 (Mitchell and Jones, 2005; Harris et al., 

2013). These are on high-resolution 0.5˚ X 0.5˚ grids and allow for the comparison of variations in 

climate with variations in other phenomena (Harris et al., 2013). The seasons of interest for which 

data have been obtained were the six run-on seasons September-October-November (SON), October-

November-December (OND), November-December-January (NDJ), December-January-February 

(DJF), January-February-March (JFM) and February-March-April (FMA), which includes the period 

when southern Africa is mainly controlled by influences from the tropics therefore being a reasonably 

high predictability time and hence ideal for seasonal predictability studies over the region (Landman 

and Beraki, 2012; Landman et al., 2012). The data were extracted in a format which is compatible 

with the Climate Predictability Tool (CPT). CRU TS3.1 minimum and maximum temperature data are 

available from January 1901 to June 2009, however were only extracted from 1982/1983-2008/2009 

due to the global models data availability restrictions.  

 

2.1.2 Atmospheric general circulation model data 

Comparisons are drawn between the statistically downscaled seasonal forecasts of an atmospheric 

general circulation model (AGCM) versus the statistically downscaled forecasts from a fully coupled 

system. The ECHAM4.5 (Roeckner et al., 1996) AGCM is used for both the coupled and two-tiered 
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systems. The AGCM hindcast set is available from January 1957 to November 2012 and is obtained 

by forcing the model with SST anomalies that are produced using constructed analogue SST’s (Van 

den Dool, 2007) and consists of 24 ensemble members. Three-month data of 2 m temperatures and the 

850 hPa geopotential height fields have been extracted for the same six run-on seasons SON, OND, 

NDJ, DJF, JFM and FMA with three-month lead-times for each season for the time period from 

1982/1983 until 2008/2009 supplying 27 years of available hindcast data. The largest number of years 

possible were extracted, as longer records of archived data improve the chance of creating more 

robust empirical downscaling equations as opposed to shorter ones (Landman and Beraki, 2012). 

These data are acquired from the archive data library of the IRI in a format compatible with the CPT 

and seasonal means of the model data are used in this study. For this two-tiered system, forecasts are 

produced near the beginning of the month, therefore for a one month lead-time there are roughly three 

weeks from dissemination of the forecast, to the start of the forecasting season. For example a one 

month lead-time forecast for DJF is produced in the first week of November and for a two month 

lead-time forecasts are produced beginning October and so forth.   

 

2.1.3 Coupled ocean-atmosphere model data 

The ocean model, which is the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean 

Model version three (MOM3) (Pacanowski and Griffies, 1998), is directly coupled to the ECHAM4.5 

(DeWitt, 2005) using the Ocean Atmosphere Sea Ice Soil (OASIS) coupling software (Terray et al. 

1999) provided by the European Center for Research and Advanced Training in Scientific 

Computation (CERFACS). The model consists of 12 ensemble members. Further explanation of the 

coupled models configuration can be found in DeWitt (2005). The ocean-atmosphere model used in 

this research is therefore the ECHAM4.5-MOM3 and data for this fully coupled forecasting system 

are only available from 1982 until July 2012. The model data obtained are the 2 m temperatures and 

the 850 hPa geopotential height field data. Three-month seasonal averages have been extracted for the 

six run-on seasons SON, OND, NDJ, DJF, JFM and FMA with three-month lead-times for each 

season from 1982/1983 to 2008/2009. These data were acquired from the archive data library of the 

IRI and were also extracted in a format compatible with the CPT. Seasonal means are extracted for 

this one-tiered system with forecasts also being produced near the beginning of the month; therefore 

the same process applies as for the two-tiered forecasting system.   

 

2.2 Methodology 

The hindcasts from both the one-tiered and two-tiered forecasting systems are statistically downscaled 

to southern Africa seasonal minimum and maximum temperatures for the six run-on seasons SON, 

OND, NDJ, DJF, JFM and FMA. The forecasts are downscaled from an approximate 2.5˚ X 2.5˚ 

resolution to a 0.5˚ X 0.5˚ resolution. Due to the coarse spatial resolution of coupled models (Palmer 

et al., 2004) downscaling global model output to a higher resolution is essential to fulfil the needs of 

end-users and to also further improve upon the forecasts where possible (Landman and Goddard, 2002) 

by fixing systematic deficiencies found in the global models. To address this requirement, MOS 

equations (Wilks, 2006) are employed to adjust for any deficiencies found within the global models 

directly in the regression equations (Wilks, 2006; Landman and Beraki, 2012; Landman and Goddard, 

2002). The technique used to overcome these model errors is by the MOS algorithm using predictor 

values from the global models in both the development and forecast stages (Landman et al., 2012). 
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Choosing the appropriate predictor variable or model field is very important and requires much 

attention (Landman et al., 2012). Raw model forecast of temperatures that are influenced by 

topography and other external factors such as soil moisture are poorly resolved and therefore may not 

be a good predictor of seasonal temperatures at ground level. Temperature fields may be complex and 

contain structures on spatial scales well below those resolved by models. However, variables such as 

large-scale circulation may be better simulated by models than temperature, and should therefore be 

considered instead in a MOS system to predict seasonal temperatures. In this study 2 m temperatures 

were initially used as the predictor fields, however it was found that using the large-scale circulation 

pattern in the form of 850 hPa geopotential height fields, proved a better predictor and produced more 

skill in capturing these seasonal minimum and maximum temperatures. 

 

Canonical correlation analysis (CCA) is an option of the CPT whereby the MOS equations are 

established (Barnston and Smith, 1996). This tool was developed at the International Research 

Institute for Climate and Society (IRI: http://iri.columbia.edu). The forecast fields (predictors) for 

each of the global models that were used in the MOS are confined over a domain that covers the area 

between the equator and 40˚S, and 15˚W to 60˚E. The minimum and maximum temperature data 

(predictand fields) cover a smaller domain of 12˚S to 35˚S and 11˚W to 41˚E. The predictor fields 

cover a larger area than the predictand fields so that any surrounding large-scale circulation patterns 

that could potentially influence the smaller domain are included. The MOS process begins by 

performing empirical orthogonal function (EOF) analysis on both the predictor and predictand fields; 

in this case the model forecast fields (850 hPa geopotential height fields) and the CRU temperature 

data respectively, followed by the CCA (Landman and Beraki, 2012). A choice is made as to how 

many EOF and CCA modes are retained by cross-validation skill sensitivity tests using the CPT’s 

CCA tool (Landman and Beraki, 2012). In this study four CCA modes were chosen to be retained.  

 

Verification is the final stage of analysis and is executed over a test period that is completely distinct 

from the training period. Forecast skill that may be artificially overstated is kept to a minimum via 

this method and includes evaluations of the predictions against their observations that exclude any 

information following the forecast year (Landman et al., 2012). A true operational forecasting 

environment is emulated where there is no information available of the approaching season (Landman 

et al., 2012). This process is known as retroactive forecasting (e.g. Landman and Beraki, 2012). The 

process utilized is similar to the one explained in the Landman et al (2012) paper, however, instead of 

predicting rainfall, temperatures (minimum and maximum) are used. Using the DJF maximum 

temperatures as an example here, the models are first trained with information from 1982/83 up to 

1994/95, providing 12 years of trained data. The maximum DJF temperatures for the following year, 

1995/96, are predicted using these trained models. Then the MOS equations are re-trained using 

information up to and including 1995/96 in order to predict the 1996/97 maximum temperatures. This 

process is repeated up until 2008/09, therefore resulting in 15 years of independent forecast data.  

The skill of the six run-on seasons of minimum and maximum temperature forecasts are evaluated by 

placing the observed and predicted fields into three categories being defined as above-normal, near-

normal and below-normal (e.g., Landman et al., 2012). These three categories are not equally divided 

due to the above- and below-normal threshold values, representing the 75th and 25th percentile values 

of the climatological record assessed in this study (i.e., 27 years climatology) respectively (Landman 
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et al., 2012). This tests the models ability to predict extremes in seasonal minimum and maximum 

temperatures.  

 

Due to seasonal climate having an inherently probabilistic nature, it therefore needs to be judged 

probabilistically. The key attributes of probabilistic forecasts include the reliability: defined by the 

confidence level communicated and if appropriate and if there are systematic biases (Landman et al., 

2012), the resolution: showing if any information is useful, discrimination: indicates if events are 

distinguished from non-events, and lastly sharpness: accounts for the confidence level of the forecasts 

(Troccoli et al., 2008; Wilks 2006). Forecast verification in this study is evaluated by using the 

relative operating characteristic (ROC) (Mason and Graham, 2002) and the reliability diagram 

(Hamill, 1997, Wilks, 2006). When a high seasonal minimum or maximum temperature event 

occurred opposed to when it did not occur the ROC scores will indicate a higher probability by means 

of a higher score. Therefore ROC detects whether a set of forecasts has the attribute of discrimination 

(Mason and Graham, 2002). If there is consistency between predicted probabilities and observed 

frequencies of an event, the forecasts would be accepted as reliable (Hamill, 1997; Wilks, 2006). 

 

3. Results  

 

3.1 Retro-active forecast verification 

ROC is the ability of a forecasting system to discriminate events from non-events, and ROC graphs 

are created by plotting the forecast hit rates against the forecast false alarm rates (Wilks, 2006). The 

ROC score is represented by the area beneath the ROC curve and is used as a gauge of discrimination 

between the events versus the non-events. If the area beneath the ROC curve (i.e., ROC score) is ≤ 0.5 

the forecasts would be classified as having no skill but above 0.5 there would be increasing skill to the 

perfect discrimination of a ROC score of 1.0 (Landman et al., 2012). The ROC score here can be 

interpreted as the probability of the forecasting system successfully discriminating above- or below-

normal seasons from other seasons. 

 

Figures 1a and 1b are graphical representations of the ROC scores for the above- and below-normal 

categories for the five run-on seasons OND, NDJ, DJF, JFM and FMA of the maximum and minimum 

temperatures for both forecasting systems as calculated for the 15-year retroactive test period 

respectively. Only five out of the six seasons investigated were taken into consideration due to the fact 

that the spring season (SON) indicated very little to no skill in capturing both minimum and 

maximum temperatures and therefore was omitted.  

 

Figure 1a shows encouraging results in terms of the skill captured when predicting seasonal maximum 

temperature extremes. The coupled model or one-tiered forecasting system produces the highest 

overall skill in predicting seasonal maximum temperature extremes shown by the highest amount of  
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Figure 1: (a) ROC scores of maximum temperatures of above (75th) and below (25th) normal percentiles for both the one- 

and two-tiered systems for the seasons OND, NDJ, DJF, JFM and FMA with lead-times up to three months. 1 (b) Same as (a) 

but for the minimum temperatures.  

 

dark grey and black in the second and fourth images in Figure 1a. Moreover, the seasons that showed 

the highest ROC values are DJF, JFM and FMA, which coincide with the period of highest seasonal 

temperatures normally found over southern Africa. The above-normal category of the one-tiered 

system indicates the highest overall skill, which implies that the coupled model is able to skilfully 

predict when there is a high likelihood of experiencing extremely high seasonal maximum 

temperatures during mid-summer. The coupled system is also useful in predicting the likelihood of 

experiencing extremely high maximum temperatures during the second half of the summer season, i.e., 

January to March. It was also interesting to note that even though skill was the highest at a lead-time 

of one month, even up to three-month lead-times skill was found to be high particularly for late 

summer when using the coupled model.      
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Figure 1b shows that skill in discriminating seasonal minimum temperature extremes from non-

extremes is only found from mid-summer onwards where the ROC scores reached above the 0.5 ROC 

score threshold. Neither the one- or two-tiered forecasting system definitively outperformed the other 

in capturing these minimum temperature extremes, with both above- and below-normal categories 

performing equally poorly. 

 

Both the one- and two-tiered forecasting systems have been considered in predicting seasonal 

minimum and maximum temperature extremes, however it has been shown that the coupled model 

performs best at predicting seasonal maximum temperature extremes for mid and late summer, and 

therefore has the most potential to support decisions to be made by the health sector. It is for these 

reasons above that this paper will focus on only the coupled model forecasts, as well as only the 

prediction of seasonal maximum temperature extremes from hereon in.  

 

The ROC score is sometimes criticized as a measure of forecasting performance due to its 

insensitivity to reliability (Troccoli et al., 2008), hence the inclusion of reliability diagrams here. 

Reliability diagrams are created by plotting the observed relative frequencies against the forecast 

probabilities and therefore provide the attribute of consistency between the two (Troccoli et al., 2008). 

The diagonal lines in Figure 2 indicate perfect reliability between the observations and forecast 

probabilities. These reliability diagrams also indicate whether over-forecasting or under-forecasting 

occurs. When the reliability graph (solid black line: above-normal or dotted black line: below-normal) 

lies above the diagonal, under-forecasting occurs due to observations of the specific event occurring 

more frequently than the event being forecast. When the reliability graph lies below the diagonal, 

over-forecasting occurs due to the forecast probability exceeding the observations. 

 

Figure 2 shows three reliability diagrams with their accompanying frequency histograms of the 

coupled model for the seasons DJF, JFM and FMA at a lead-time of two months. The DJF maximum 

temperature reliability diagram shows good reliability for the above-normal category, as the solid 

black line follows the diagonal fairly consistently but does drop below the diagonal at around the 60% 

forecast probability threshold and there tends to be a lot of over forecasting occurring for the higher 

forecast probabilities. The JFM and FMA reliability diagrams both indicate very strong reliability for 

the above-normal categories as the solid black lines almost follow the diagonal exactly but do tend to 

over-forecast towards the very high forecast probabilities. There is less consistency in capturing the 

below-normal seasonal maximum temperature extremes for all three images, with over-forecasting 

dominating as the dotted reliability graph lies below the diagonal more often than not. 

 

The JFM season shows the highest reliability overall, indicating that there is a high level of 

consistency in capturing seasonal maximum temperature extremes for this late summer season. These 

results correspond well to the high ROC scores found in this season over southern Africa. These 

results have shown that the coupled model has skill for certain configurations and certain seasons i.e. 

JFM, but how can one tell how economically feasible these forecasts are and if it is possible for a 

policymaker or health practitioner to understand and measure their value? Such questions can be 

10



 

Figure 2: Reliability diagrams and frequency histograms of seasonal maximum temperature extremes for above (75th percentile) and below (25th percentile) categories for the one-tiered system 

for DJF, JFM and FMA with two month lead-times i.e. DJF maximum temperatures are forecasting using initial conditions (ICs) from the beginning of October. The thick (dotted) black curve 

and the black (white) bars represent the above (below) category. The thin black lines represent the least squares regression line in the reliability diagrams. 
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addressed through the following two skill scores; the cumulative profits score and the two-alternative 

forced choice (2AFC) score.  

 

3.2 Forecast performance for decision makers 

The cumulative profit analysis of the coupled model hindcasts presented here may be used to 

communicate the monetary value of forecasts. This analysis is described in detail in Hagedorn and 

Smith (2008) and can be summarised as follows. A cumulative profit scoring parameter is used to 

ensure that the focus is not solely on the general skill of the forecast, but also represents various 

aspects of the potential economic value of such a forecasting system. The cumulative profits 

parameter provides an intuitive way to communicate the skill of probabilistic forecasts to both experts 

and more particularly to non-experts. It is of upmost importance that research completed by scientists 

is presented in such a way that end users including the general public may make use of the findings 

effectively. This parameter evaluates probabilistic forecasts by means of quantifying the skill of the 

forecast using an effective daily interest rate. How it works is that one invests capital into a specific 

probabilistic forecast or forecasting system and depending on the outcome of how well the forecast 

performs one will obtain a return on the investment. Therefore the higher the amount of capital placed 

on a forecast that is correct, the higher the profit or return will be due to the influence of the effective 

daily interest rate, indicating to customers, such as a forecast user, that the forecast is worth the 

money spent on it. 

 

Figure 3: Cumulative Profits Graph of maximum temperatures for the one-tiered system showing the mid to late summer 

seasons DJF, JFM and FMA from 1995 to 2009. 

Figure 3 represents a graph showing the three run-on summer seasons cumulative profits from 1995 to 

2009. From the image above one can clearly note that JFM is the season with the highest cumulative 

profit percentage for a forecast user (around 20%) towards the end of the test period, which means 
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that if one was to invest in the forecast of seasonal maximum temperature extremes in JFM over 

southern Africa, the return on the investment would be the highest, indicating to a non-expert that the 

skill of the forecast is good in JFM. A possible reason for the dramatic increase from 2002 for JFM 

could be due to improved seasonal forecasts that occurred during this period and then in 2007 a slight 

drop in cumulative profits due to an underestimation of an extremely warm season (cf. Figure 5), 

therefore the cumulative profits parameter is directly affected by the accuracy of the seasonal forecast. 

This provides non-experts with more understanding and confidence in the JFM seasonal maximum 

temperature extreme forecasts by representing the monetary value of the forecasting systems skill. 

DJF and FMA however do not have such a high return on investments resulting in profit, but have 

smaller cumulative profit percentages that reach approximately 5% from 2004 and onwards. It should 

be noted that, however, the return is still positive.  

 

The final score analysed for these forecasts is a verification score known as the two-alternative forced 

choice (2AFC; Mason and Weigel, 2009) test. This particular score was chosen due to its usefulness 

in terms of its administrative purpose. The 2AFC score provides an indication of a forecasts quality to 

the general public as well as communicating or transferring changes in forecast quality to officials. 

Therefore this score is a very useful and informative score to a variety of stakeholders and not only 

atmospheric scientists.  

 

To calculate this 2AFC score, one starts off with a set of two forecast-observation pairs and then 

determines if the forecasts can be used to discriminate between the observations. An example would 

be if there were two seasons, one where the temperature was warmer than the other, whether the 

warmer season could be identified through the forecasting result. The main objective of this score is to 

compare all the sets of two forecast-observation pairs available and ask the same question every time, 

and from that information, calculate the proportion of time the question is correctly answered. The 

proportion is known as the probability of a correct decision, and the question asked is the 2AFC test. 

If the observations are assumed to be distinguishable, the chance of choosing the correct forecast 

season, provided unskilful forecasts is 50%; therefore any value above 50% for this score indicates a 

skilful forecast, as it is better than purely guessing. 

 

In Figure 4 one can see that the highest 2AFC scores are found in DJF and JFM over southern Africa. 

This is the mid-late summer season over this region and therefore it corresponds well as to when the 

seasonal maximum temperate extremes will be at their highest. The north-eastern regions are the areas 

with the highest 2AFC scores which means that the highest amount of discrimination can be found 

over these regions. There are a large percentage of the forecasts being correctly discriminated over the 

Gauteng Province and adjacent regions, which is one of the most highly populated areas of southern 

Africa. This essentially means that the general public can have confidence in the forecasts over this 

region for seasonal maximum temperature extremes, specifically in DJF and JFM. The south-western 

parts of southern Africa tend to have less useful forecasts of seasonal maximum temperature extremes 

as produced by the forecast system described here.  
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Figure 4: 2AFC Scores of maximum temperatures of above (75th) and below (25th) normal percentiles for the one-tiered 

system showing the mid to late summer seasons DJF, JFM and FMA from 1995 to 2009. 
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To determine whether the coupled maximum temperature system is a practicable one, it would make 

sense to focus in on a large metropolis such as Pretoria to assess the predictions that have been made 

over a recent 15 year period, which would be a good indication of the actual forecast if it were issued 

operationally. The reason for choosing this particular location is due to the fact that it is a large urban 

centre with a large population of approximately three million people and has the potential to be 

adversely affected by these maximum temperature extremes. Also this area falls within the high 

predictability region and therefore forecasts can be made with more confidence over this region. The 

exact location of Pretoria is 25.7256° S, 28.2439° E.  

 

In Figure 5a, which is a retro-active deterministic forecast of maximum temperatures for Pretoria, the 

observations follow the forecasts relatively closely as well as remaining within the upper and lower 

one standard deviation confidence levels for 12 out of the 15 cases, therefore the majority of the time. 

The most obvious outliers of the forecast compared to the observations in Figure 5a were in 2000 and 

2007 when the observations were much smaller and larger than the forecasts respectively. However if 

one considers figure 5b, the probabilistic maximum temperature hindcasts for Pretoria, one can see 

that in 2000 there was an enhanced probability that extremely low maximum temperatures were likely 

for that year, which means that the probabilistic forecast was able to capture that lower maximum 

temperature possibility better than the deterministic forecast. The same applies for 2007 but just that 

the probabilistic forecast captured the higher probability of an extremely high maximum temperature 

for that JFM season. By having knowledge of the probability of a predicted category occurring, 

additional forecast value is acquired (Mason and Graham, 1999), due to probabilistic forecasts 

exhibiting reliability considerably in excess of that achieved by corresponding deterministic forecasts 

(Murphy, 1998). If one considers the 1999 forecast it was found that a lower JFM maximum 

temperature was predicted than actually occurred. In fact 1999 was the third hottest season over the 

test period, even though it was a La Niña year. During La Niña years, southern Africa tends to be 

cooler and wetter than usual, which was reflected in the temperature forecast presented here as well as 

in a rainfall forecast previously determined (Landman et al., 2012), as most seasonal forecast models 

are significantly swayed by ENSO’s influence (Landman and Beraki, 2012).   

 

Figures 5a and 5b indicate that the deterministic forecast captured the nature of the seasonal 

maximum extreme better than the probabilistic forecast in only a limited number of cases (e.g. 1995, 

2002, 2003, and 2004). If one considers how maximum temperature prediction for a large metropolis 

such as Pretoria would have been produced over a recent 15 year period, one could say from the 

results presented that it would have been a good idea for decision makers to make better use of 

probabilistic forecasts as opposed to deterministic forecasts.  

 

4. Discussion and Conclusions 

When considering the seasonal maximum temperature extremes, a large amount of skill is found in 

capturing these extremes, specifically when using the coupled model. The one-month lead-time 

indicates the highest overall skill, however when using the coupled model, predictions of seasonal 

maximum temperature extremes are possible up to three months lead-time with almost the same 

amount of skill as at a lead-time of one month. Therefore forecasts can be skilfully made 

approximately three months in advance when using the fully coupled model for seasonal maximum 
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Figure 5: (a) Line graph of Pretoria’s observed and forecast maximum temperatures for the one-tiered system for JFM with a two month lead-time. Observations (solid dark black line), 

forecasts (grey lines with large black dots) and upper and lower one standard deviation confidence levels (thin black line with small black dots). 5(b) Bar graph of Pretoria’s cumulative 

probability probabilistic maximum temperature hindcasts using the couple model for JFM with a two month lead-time. Both images are for the time period 1995 to 2009.  
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temperatures. The above-normal category shows the highest overall skill, implying that the forecast 

system is able to capture when there was a high likelihood of experiencing high seasonal maximum 

temperatures for that particular season. The coupled model proves useful in predicting the likelihood 

of experiencing extremely high seasonal maximum temperatures during the second half of summer 

from around January to March with spring and winter indicating very little to no skill. The seasons 

with the highest overall skill are those of DJF, JFM and FMA, which coincide with the period of the 

highest peak of the seasonal temperature annual cycle over southern Africa. The seasonal minimum 

temperatures were found to have very little skill and were therefore excluded for further analysis. 

 

The coupled model also proves to be the most reliable in predicting seasonal maximum temperature 

extremes over southern Africa with the above-normal category producing the largest amount of 

confidence, again implying that when using the coupled model it can be said with a large amount of 

confidence when there will be a high likelihood of experiencing extremely high seasonal maximum 

temperatures for a particular season. The most reliable season was JFM with a close to perfect 

reliability at a two month lead-time. Again JFM coincides with the highest seasonal maximum 

temperatures found over southern Africa. Most of the forecasts did however; tend to over-forecast, 

especially for the high probability forecasts. There was however an apparent discrepancy between the 

ROC and 2AFC scores with the below normal category performing better according to the 2AFC 

score and the above normal category performing better in the ROC scores. The reason for this 

discrepancy may be due to the fact that the ROC and reliability diagrams are calculated over the entire 

southern African region, whereas the 2AFC score indicates a geographical distribution of skill over 

the chosen domain. Therefore making it difficult to directly compare these parameters. However if 

one focuses on the Pretoria area, the above normal category performs best in both the ROC and 2AFC 

scores.  

 

Most forecasts are verified using scientific processes and outcomes, whereas less attention is given to 

scores that may be of use to a non-expert audience such as government officials and the general public 

(Mason and Weigel, 2009). The scientific verification processes used here were the ROC and 

reliability diagrams, which provided insight into which forecasting system and which season were 

most skilful and reliable. In addition to those scores, the cumulative profits and 2AFC scores were 

analysed, which are more intuitive and provide better understanding of the forecasts to end users. 

These two scores both indicated that JFM would be the most profitable season to invest in when 

considering seasonal maximum temperature extremes, which corresponds well to the results found 

when assessing the ROC and reliability verification parameters. 

 

A further analysis over Pretoria established that there was a large amount of predictability of these 

seasonal maximum temperatures when using the probabilistic forecast over this location. The impact 

of this is that Pretoria is part of a large urban centre, where many millions of people reside in houses 

that are not equipped with air-conditioning, thus making it a community potentially vulnerable to 

extreme temperatures. This paper has shown that by using a coupled probabilistic forecasting system, 

these seasonal maximum temperatures which may adversely affect such a city centre, can be predicted 

well in advance with high skill and confidence, as well as rendering profitable and useful information 

to non-experts. 
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The health industry is directly affected by temperature extremes, due to the fact that with increased 

maximum temperatures there are more associated health problems. Therefore with the skilful 

prediction of maximum temperature extremes, the health sector may be better prepared for the health 

risks associated with the increase of maximum temperatures and can therefore be more capable of 

dealing with these problems such as heat stress and respiratory problems. Thus it is critical for South 

Africa, and Africa as a whole, to develop Heat Health Watch Warning Systems; this is highlighted as 

a priority of the South African government in a recently released Climate Change Response White 

Paper (Government of RSA, 2011).   

One key component in developing such a system is the need for forecasting ability of indicators, such 

as maximum temperature, that can be related to health outcomes. This paper describes the ability to 

forecast, on a seasonal timescale, maximum temperatures. This is a critical first step in developing 

and refining the needed forecasting ability. Such forecasts will be useful for alerting the South African 

government and public health stakeholders to summers that are expected to have above normal 

temperatures with a 3-month lead time. This will allow for sufficient preparation to be ready to enact 

heat health alerts and prevention measures.  After this, forecasting of critical indicators on a timescale 

of a few days will be needed in order to activate the alerts and the prevention plans.   

 

In addition to the ability to forecast key indicators, the knowledge of how South Africans respond to 

heat is needed to determine when an alert should be activated, and information on vulnerability of 

populations to heat is needed to know where and for which populations the alert should be focused on.  

The temperature where health is impacted differs across countries and population (McMicheal et al., 

2008; Basu and Samet 2002; Baccini et al., 2008; Medina-Ramón and Schwartz, 2007), as do the best 

meteorological indicators for predicting health outcomes (Vaneckova et al., 2011). For example, in 

the French system, a combination of forecasted minimum and maximum temperatures is used. This 

was chosen both for the suitability for forecasting and for the performance of the indicator to 

determine excess mortality (Pascal et al., 2004). Indices that combine multiple meteorological 

parameters (e.g., temperature, relative humidity and wind speed) have been created in order to 

describe how hot it feels. One such example is apparent temperature (AT) and has been used by 

countries to develop heat alerts and has been found to be related to excess mortalities (Steadman, 

1979; Smoyer-Tomic and Rainham, 2001; Ballester et al., 2011; Watts and Kalkstein, 2004). 

However, a study in Brisbane, Australia found that average temperature measurements performed 

similarly to composite indices (such as apparent temperature) in detecting excess mortality days. 

There is not agreement on what the best meteorological indictor is as it is strongly dependent upon 

forecasting ability and the population’s response to heat.  

 

Thus, before a heat-health plan could be developed in South Africa, research is needed in collecting 

historical health and meteorological data to investigate the relationship between heat and mortality 

and morbidity across South Africa. In addition, the relationship needs to be probed across multiple 

meteorological indicators. The forecasting work in this paper must be continued to investigate, and 

improve upon where needed, the ability for these various meteorological indicators to be forecasted 

seamlessly from seasonal to weather timescales. And then, by forecasters and health researchers 

working collaboratively, health alert and prevention plans can be developed. 
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In conclusion, one-tiered forecasting systems or coupled models outperform two-tiered systems when 

predicting seasonal maximum temperature extremes over southern Africa. This paper shows that 

coupled models, when analysed probabilistically, exhibit skill in capturing maximum temperature 

extremes over southern Africa for the mid-late summer season. Therefore this modelling contribution 

demonstrates that it is definitely feasible to direct some of the available research and modelling funds, 

as well as effort towards the development and implementation of operational seasonal forecasting 

systems that incorporate fully coupled models, as well as health alert and prevention strategies.  
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