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Abstract

The Schrödinger equation is a model for many physical processes in quantum physics. It is

a singularly perturbed differential equation where the presence of the small reduced Planck’s

constant makes the classical numerical methods very costly and inefficient. We design two

new schemes. The first scheme is the nonstandard finite volume method, whereby the pertur-

bation term is approximated by nonstandard technique, the potential is approximated by its

mean value on the cell and the complex dependent boundary conditions are handled by exact

schemes. In the second scheme, the deficiency of classical schemes is corrected by the inner

expansion in the boundary layer region. Numerical simulations supporting the performance of

the schemes are presented.
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1 Introduction

The Schrödinger differential model







−ε2u′′(x)− q(x)u(x) = 0, x ∈ (a, b),
εu′(a) + ıp(a)u(a) = 2ıp(a),
εu′(b)− ıp(b)u(b) = 0,

(1.1)

where ı =
√
−1, q(x) = E − V (x) > 0 is the potential with p(x) =

√

q(x) and ε ≪ 1, falls into

the class of equations known as singularly perturbed equations and is characterized by strongly

oscillatory solutions. This behaviour requires that, for any difference scheme to accurately ap-

proximate its solution, the wavelength, λ = min
x

(

2πε/
√

q(x)
)

, must always be greater than the

∗Corresponding author. m.chapwanya@up.ac.za; Tel.: +27 12 420 2837; Fax.: +27 12 420 3893

1



discrete space width, where the minimum is taken over space. This makes its numerical approxi-

mation computationally costly. In particular, in [3] it was pointed out that most numerical schemes

require at least 10 grid points per oscillation.

Physical processes modeled by the Schrödinger equation find applications in both industrial

and domestic purposes such as design of semiconductor appliances in quantum and plasma physics,

resonant tunneling diodes, microwaves, etc. Therefore, a lot of research on the solution of equa-

tion (1.1) has been done based on standard finite difference (both classical, adaptive mesh and

finite volume), finite element and WKB methods, see for example [3] and the literature therein.

The authors in [9] solved the Schrödinger equation on a non-uniform mesh using a finite differ-

ence method. They observed that the method had better convergence properties compared to the

classical finite difference or finite element methods. A recent investigation on designing faster

convergent schemes is found in [10] where the Schrödinger-Poisson equation arising from models

in resonant tunneling diode was investigated. The author employed the Gummel method to achieve

faster convergence. The challenge of high computational cost was addressed by employing adap-

tive mesh size in which case the mesh will only be refined at the resonance regions. With the same

focus on reducing the computational cost, the authors in [11] discussed a method which was later

rigorously analyzed in [12]. They employed the finite element method with the basis elements

coming from the WKB approximation. Most recently on this trend, the authors in [3] claimed that

the high computational cost of classical methods is due to the requirement that the space width be

smaller compared to the wavelength of the solution. This idea forms the basis of our current work.

In this paper, we design two robust finite volume based schemes that are capable of reducing the

computational cost associated with most classical schemes. The first scheme is based on the non-

standard finite difference (NSFD) method which originated from the work of Mickens, [13, 14].

We highlight that NSFD schemes have been efficient in tackling the deficiency of classical finite

difference schemes for the approximation of solutions of several differential equation models, see

for example [16, 17, 18, 19, 20] and the literature therein. Here we also highlight the work [1, 6],

which differs from the approach adopted here in the sense that their NSFD schemes are derived by

adopting a Green’s function approach which offers a good platform to develop nontrivial schemes

for a range of reaction diffusion equations. For more on the application and earlier developments

on the NSFD the reader can consult [14, 15]. The second non classical finite volume (NCFV)

scheme, motivated by asymptotic approximations, is derived following the work [21, 22].

The remaining part of this article is as follows. We begin by formulating the asymptotic ap-

proximate solutions in Section 2. Section 3 is devoted to the discussion of the classical finite

volume methods followed by Section 4 where we develop the idea of NSFD schemes. Derivation

of the NCFV scheme is the focus of Section 5. In Section 6 we design a non-standard finite volume

(NSFV) scheme followed by Section 7 where some numerical experiments on the performance of

the schemes are presented. We finish with Section 8 where we summarize our observations.

2 Approximate analytical solution

In this section, we carry out the perturbation analysis on problem (1.1). This approach enables us

to show that the Schrödinger equation is a singularly perturbed equation and hence identify the

stiffness which make the classical schemes less efficient. The regular perturbation is based on the
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ansatz

u =

∞
∑

k=0

εkuk, (2.1)

where the perturbation parameter is ε. This leads to the outer expansion of equation (1.1)1. Sub-

stituting equation (2.1) into (1.1) and equating the powers of ε leads to

{

u0(x) = u1(x) = 0,
−u′′

k−2(x)− q(x)uk(x) = 0, k > 0.
(2.2)

At x = a we have that
{

u0(a) = 2,
u′

k−1(a) + ıp(a)uk(a) = 0, k > 0,
(2.3)

and at x = b we have
{

u0(b) = 0,
u′

k−1(b)− ıp(b)uk(b) = 0, k > 0.
(2.4)

From equations (2.2), (2.3) and (2.4) it is observed that at leading order, u0 does not agree with

the boundary condition u0(a) = 2 though it satisfies u0(b) = 0. This suggests there is a boundary

layer at x = a. In order to resolve this, and following [21], we carry out an inner expansion at

x = a and this motivates the development of the NCFV scheme in Section 5. However, for better

accuracy here we seek for the solution to equation (1.1)1 using the WKB method to get an explicit

solution [7],

θ(x) ∼ −q(x)−
1

4

[

α0 exp

(

−ı
1

ε

∫ x
√

q(s)ds

)

+ β0 exp

(

ı
1

ε

∫ x
√

q(s)ds

)]

, (2.5)

where the values of α0 and β0 are found via the boundary conditions. Looking ahead, this solution

will only be used as a corrector at the boundary layer in the development of the NCFV scheme.

Remark 2.1 The above derivation differs from the literature since the authors in [21] obtained

the correctors by expanding the solution and the coefficients in terms of the auxiliary variable

x̄ = x/ε. We believe that our approach is less computationally extensive, and yet produce reliable

results, see the numerical section.

3 Classical finite volume scheme

In this work we will employ the finite volume discretization on a uniform mesh: xj = jh, where

j = 0, 1, 2, · · ·m, are the nodal points and h = (b−a)/m is the grid size and m is the total number

of cells. Thus uj are the nodal values and obviously, x−1 and xm+1 are ghost points whose values

are approximated using the boundary conditions. In the finite volume context, the values of the

unknowns are computed not at the nodal points but at the interfaces xj± 1

2

= xj ± h/2.
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We develop the idea of finite volume method for (1.1)1 by multiplying the equation with the

step function χ(x
j− 1

2

,x
j+1

2

) and integrate over the entire space Ω to get

−ε2u′(x)
∣

∣

∣

x
j+1

2

x
j− 1

2

−
∫ x

j+1
2

x
j− 1

2

q(x)udx = 0. (3.1)

The solution u and its derivative u′ are interpolated as in [22], i.e.,

u(x) ≈ uh(x) =
m
∑

j=1

ujχ(x
j− 1

2

,x
j+1

2

)(x),

and

u′(x) ≈ ∇huh =
m
∑

j=0

uj+1 − uj

h
χ(xj ,xj+1)(x), (3.2)

=
u1 − u0

h
χ[x0,x1)(x) +

um+1 − um

h
χ(xm,xm+1](x) +

m−1
∑

j=1

uj+1 − uj

h
χ(xj ,xj+1)(x).

With this in mind, equation (3.1) can be written as

−ε2∇huh

∣

∣

∣

x
j+1

2

x
j− 1

2

− uj

∫ x
j+1

2

x
j− 1

2

q(x)dx = 0. (3.3)

This implies that for j = 1, 2, 3, · · · , m − 1, the classical finite volume discretization of the

Schrödinger equation (1.1) is given by

−ε2
uj−1 − 2uj + uj+1

h2
− uj

h

∫ x
j+1

2

x
j− 1

2

q(x)dx = 0. (3.4)

Notice that equation (3.4) can simply be written as

ρj−1uj−1 + ρjuj + ρj+1uj+1 = bj , (3.5)

where the right hand side coefficients bj are all zero except for b1 which will be determined through

the ghost values. The coefficients are

ρj−1 = − ε2

h2
, ρj =

2ε2

h2
− q̄j , ρj+1 = − ε2

h2
, (3.6)

where

q̄j =
1

h

∫ x
j+1

2

x
j− 1

2

q(x)dx,

are values of a tri-diagonal matrix ρ, for j = 1, 2, · · · , m − 1. Using (1.1)2−3, the discrete ghost

values are obtained via the following finite volume approximations at the boundaries

ε
u0+ 1

2

− u0− 1

2

h
+ ıp(a)u0 = 2ıp(a), (3.7)

ε
um+ 1

2

− um−
1

2

h
− ıp(b)um = 0, (3.8)
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where um±
1

2

= (um + um±1)/2. We note that equation (3.5) is a tri-diagonal linear system which

can be solved by classical iterative or direct methods.

4 Non-standard finite difference scheme

In this section, we follow [14, 18] and outline the main steps in designing the NSFD scheme for a

linear second order equation

−ε2u′′ − q(x)u = 0, (4.1)

where ε ≪ 1. We begin by assuming that the function q(x) is a constant and given by q̃. In this

case of constant q̃, the exact scheme of (4.1) is given in [14] by

∣

∣

∣

∣

∣

∣

uj eıλhj e−ıλhj

uj+1 eıλh(j+1) e−ıλh(j+1)

uj+2 eıλh(j+2) e−ıλh(j+2)

∣

∣

∣

∣

∣

∣

= 0, (4.2)

which is equivalent to

−ε2
uj+1 − 2uj + uj−1

φ2
− q̃uj = 0, (4.3)

where

φ =
2ε√
q̃
sin

(√
q̃

2ε
h

)

.

A possible generalization for the variable coefficient differential equation is

−ε2
uj+1 − 2uj + uj−1

φ2
j

− qjuj = 0, (4.4)

where qj = q(xj) and

φj =
2ε
√
qj

sin

(√
qj

2ε
h

)

.

For better qualitative properties, [18] introduced

q(xj) ≈ q̄j =
qj−1 + qj + qj+1

3
, (4.5)

so that

φj =
2ε
√
q̄j

sin

(√
q̄j
2ε

h

)

. (4.6)

It has been shown that the equation (1.1) when solved subject to Dirichlet boundary condition such

that u(0), u(1) ≥ 0 satisfies the maximum principle and that the schemes (4.3) and (4.4) with (4.6)

are qualitatively stable with respect to this property, [18]. For the rest of the paper, scheme (4.4)

together with (4.5) and (4.6) will be referred to as the NSFD scheme for the Schrödinger equation

(1.1)1.
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5 Non classical finite volume scheme

The solution θ in equation (2.5) is enough to correct any shortcomings x = a when combined with

the outer expansion without affecting the behavior of the solution at x = b. Here, the proposed

scheme will follow a perturbation in the solution of the form

ũ = uh + λθ, (5.1)

where λ ∈ R is unknown and will be determined along with the variable of interest. Now, the

boundary condition will be such that
{

εu′(a) + λθx(a) + ıp(a)u(a) + ıp(a)λθ(a) = 2ıp(a),
εu′(b) + λθx(b) = ıp(b)u(b) + ıp(b)λθ(b).

(5.2)

The introduction of λ increases the number of unknowns without increasing the number of equa-

tions. Therefore, we need one more equation for uniqueness. First we will multiply the Schrödinger

equation by the function θχ[0, x1+ 1

2

] and integrate over (a, b). The idea here is to correct the stiff-

ness at the boundary x = a, see the discussion in Section 2 and the reference [21]. We have

−ε2∇huhθ
∣

∣

∣

x
1+ 1

2

0
+ ε2

∫ x
1+ 1

2

0

∇huhθxdx−
∫ x

1+ 1
2

0

θq(x)dx = 0, (5.3)

which we write in the form

σ0λ+ σ1u1 + σ2u2 = 0, (5.4)

where, on employing interpolation functions in Section 3, we have

σ0 =
ε2

h
θ(x1)

(

θ′(a)h+ ıp(a)θ(a)h

αε

)

,

σ1 =
ε2

h

(

θ(x1+ 1

2

) + θ(x1)
αε+ 1 + ıp(a)h/(2ε)

αε

)

−
∫ x

1+ 1
2

0

q(x)θdx,

σ2 = −ε2

h

(

θ(x1+ 1

2

)− 2θ(x2) + θ(x1)
)

−
∫ x

2+ 1
2

x
1+1

2

q(x)θdx,

with

α = ıp(a)h/(2ε)− 1.

Substituting equation (5.1) into (1.1) and integrating over each cell, bearing in mind equation (3.3)

and the boundary conditions (5.2), we have

σj−1uj−1 + σjuj + σj+1uj+1 = bj , (5.5)

where b1 =
2ıp(a)hε2

h[ıp(a)h/(2ε)− 1]ε
and bj = 0 for j = 2, · · · , m. On simplifying, the coefficients in

(5.5) remain the same as in the classical scheme except for the following

σ0 = −ε2

h

(

h

ε
θ′(0) +

h

ε
θ(0)

)

,

σ1 =
ε2

h

(

2 +
1 + ıp(a)h/(2ε)

ıp(a)h/(2ε)− 1

)

, (5.6)

σ2 = −ε2

h
.
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Remark 5.1 The Scheme (5.6) gives the classical finite volume scheme when λ = 0 otherwise

NCFV. In addition, our usage of the WKB approximation here is not the same as used, for example,

in [3, 11, 12].

6 Non-standard finite volume scheme

The non-standard finite volume scheme derived here is based on the classical finite volume scheme

in Section 3, and the non-standard finite difference scheme derived in Section 4. Thus merging the

ideas developed in (3.4), (4.4) and (4.6), we have the non-standard finite volume (NSFV) scheme

−ε2
uj−1 − 2uj + uj+1

φ̃2
j

− q̄juj = 0, (6.1)

where the denominator function is given by

φ̃j =
2ε
√
q̄j

sin

(√
q̄j
2ε

h

)

,

and

q̄j =
1

h

∫ x
j+1

2

x
j− 1

2

q(x)dx,

is the mean-value of q(x) on [x
j−

1
2
, x

j+
1
2
]. We note that scheme (6.1), after eliminating ghost

points, will result in a linear system of algebraic equations of the form ρu = b. Here ρ is a

tri-diagonal matrix with entries

ρj−1 =
ε2

φ̃2
j−1

, ρj = −2ε2

φ̃2
j

+ q̃j , ρj+1 =
ε2

φ̃2
j+1

. (6.2)

Remark 6.1 The elements of the coefficient matrix above differ significantly from those given in

equation (3.6). The distinction which arises from the difference in the denominator of equations

(3.4) and (6.1) also accounts for better stability property known with the nonstandard scheme. In

addition, we are able to include less regular coefficients.

We handle the boundary ghost points by designing separate non standard approximation for these

equations, an idea that was also used in [4]. At x = a we have,

u′ +
ıp(a)

ε
u =

2ıp(a)

ε
, (6.3)

which has an exact scheme, [14],

ε
uj − uj−1

φa(h)
+ ıp(a)uj−1 = 2ıp(a), (6.4)

where

φa(h) =
1− exp

(

− ıp(a)
ε

h
)

ıp(a)/ε
.
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Inserting j = 0, we get an approximation for the ghost value u−1. Similarly, at x = b we follow

the same idea to get

ε
um+1 − um

φb(h)
= ıp(b)um, (6.5)

where

φb(h) =
exp

(

ıp(b)h
ε

)

− 1

ıp(b)/ε
.

The ghost values u−1 and um+1 are eliminated using equations (6.4) and (6.5), respectively. We

highlight that using the exact schemes (6.4) and (6.5), where no truncation error arises, should

overcome the difficulty caused by classical numerical methods applied to complex boundary con-

ditions (1.1)2−3.

7 Numerical Experiments

In this section we present numerical experiments to compare the performance of the classical

finite volume scheme (CFV) (3.4)–(3.8), the derived non-classical finite volume scheme (5.6) and

the derived non-standard finite volume scheme (6.1). Their efficiency are illustrated via three

examples. In the first example, a simplified differential equation with constant potential q(x) = 1
is solved on x ∈ [0, 1] with Dirichlet boundary conditions. The second and third examples consider

numerical solution of the Schrödinger equation subject to a continuous and discontinuous potential

function q(x), respectively.

Example 1 Consider
{

−ε2u′′(x)− u(x) = 0, x ∈ (0, 1),
u(0) = 1, u(1) = 0.

(7.1)

The exact solution to (1) is

u(x) =
sin((1− x)/ε)

sin(1/ε)
.

The numerical simulations are presented in Fig. 1 with the maximum error calculations given

in Table 1. In the figure, the solid lines represent the exact solution while the dots represent the

computed numerical solution. We note that for q(x) = 1, the non-standard finite volume scheme

(6.1) is exact and this is supported by the solution in Fig. 1(a) and error calculation in Table 1. On

the other hand, the distorted solution using a classical finite volume scheme (3.4) is evident in Fig.

1(b) and the corresponding large error in Table 1.

Example 2 Consider






−ε2u′′(x)− q(x)u(x) = 0, x ∈ (0, 1),
εu′(0) + ip(0)u(0) = 2ip(0),
εu′(1)− ip(1)u(1) = 0,

(7.2)

with the potential function q(x) =

(

x+
1

2

)2

, x ∈ [0, 1].
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(a) ε = 0.2. (b) ε = 0.02.

Figure 1: A comparison of the classical, non-classical and the non-standard finite volume schemes

for m = 40.

Grid points L∞ Norm error

ε = 0.02 ε = 0.002
CFV NSFV ×1012 NCFV×1016 CFV NSFV ×1012 NCFV×1016

16 3.8088 0.2087 2.2204 2.1314 1.3989 4.4409

32 4.7626 0.0773 8.8817 2.1378 6.6613 4.4409

64 4.9046 0.0315 13.322 2.1378 1.4433 4.4409

128 19.6432 0.0822 13.322 2.1378 4.6185 4.4409

256 1.6622 0.7847 13.322 3.2317 37.10 4.4409

Table 1: Error between the solution at different grid points as compared to the exact solution.

We present numerical simulations for Example 2 in Fig. 2 and 3 where we also show the

convergence of the two schemes by performing several computations for different grid points. To

highlight the efficiency of the derived scheme, we also present simulations based on the CFV

scheme, NSFD and NCFV schemes. In Fig. 2(b) and Fig. 3 respectively, one can clearly see the

computational power of the nonstandard finite volume scheme and the non-classical finite volume

scheme, in these two schemes we do not need the requirement of "at least 10 grid nodes per

oscillation" as highlighted in [3]. We also highlight the better performance of NSFV scheme when

exact schemes for the boundary conditions are used, see Figs. 2(c) and 2(d). Though the schemes

converge to the same solution, it requires around 50 grid nodes to get a stable solution with the

classical finite volume scheme, see Fig. 2(a). This is in agreement with the well-known fact that

the good performance of nonstandard schemes occurs irrespective of the value of the step size

h = 1/m, (cf. [2]).

The maximum error calculations are given in Table 2. In the absence of the exact solution, the

errors were calculated by comparing the computed solution on a certain number of grids with a

reference solution computed on 1024 grid nodes. The efficiency of the derived schemes is evident.

The NSFV and the NCFV schemes converge uniformly to the reference solution while there are

problems with the CFV scheme for fewer grid points. In particular, we observed the same accuracy

between CFV and NSFV with the later using less than 12% and 40% of the grid cells for ε = 0.02
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(a) CFV scheme (3.4) with (3.7) and (3.8). (b) NSFD scheme (4.4) with (6.4) and (6.5).
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(c) NSFV scheme (6.1) with (3.7) and (3.8). (d) NSFV scheme (6.1) with (6.4) and (6.5)

Figure 2: Convergence of the different schemes for several grid choices with ε = 0.02.
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Figure 3: Convergence of the NCFV scheme for several grid choices with ε = 0.02.

and ε = 0.002 respectively, see Table 2.
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Grid points L∞ Norm error

ε = 0.02 ε = 0.002
CFV NSFV NSFD NCFV CFV NSFV NSFD NCFV

32 1.6916 0.1454 0.1401 0.0070 1.1439 2.6162 2.9044 0.0057

64 0.3116 0.0206 0.0203 0.0031 1.1437 2.0825 2.2826 0.0030

128 0.1532 0.0047 0.0047 0.0015 1.0914 4.8390 4.7830 0.0015

256 0.0751 0.0009 0.0010 0.0008 2.8827 0.5704 0.5688 0.0007

512 0.0186 0.0002 0.0006 0.0004 0.6379 0.0232 0.0234 0.0004

Table 2: Error between the solution at different grid points compared with a reference solution at

1024 grid points.

Example 3 Consider






−ε2u′′(x)− q(x)u(x) = 0, x ∈ (0, 1),
εu′(0) + ip(0)u(0) = 2ip(0),
εu′(1)− ip(1)u(1) = 0,

(7.3)

with a discontinuous potential

q(x) =

{

2, if 0 ≤ x < 0.5,

1, if 0.5 ≤ x ≤ 1.0.

The discontinuous potential function is of practical interest (see for example [5, 11]) in resonant

tunneling diodes and many other industrial applications.

Example 3 highlights the advantages of the derived NSFV scheme over its NSFD counterpart

(4.4) - (4.6) which does not apply here because of the discontinuity of q(x). In particular, the cell

average q̄j computed using the NSFV scheme is more accurate than the approximation in (4.5)

for the NSFD scheme where it applies. Numerical simulations are presented in Fig. 4. The kink

in Fig. 4(c) is due to the discontinuity in the potential q(x) and the fact that our WKB solution

used as a corrector in the NCFV scheme is only valid for ε ≪ 1. However, we can see the better

performance of the scheme for ε = 0.02.

8 Discussion and conclusion

It has been documented that for the singularly perturbed Schrödinger equation, standard schemes

such as finite difference methods require several grid points to provide an accurate and reliable ap-

proximation [3]. Therefore, such methods consume much CPU memory and also computing time

will be long. This is due to the need to qualitatively resolve the oscillatory solution. In fact, error

estimates for the equation are normally computed only when h ≪ ε, see for example [12]. This

implies that many grid points are employed as ε → 0. In this work, we have designed a coupled

finite volume and nonstandard finite difference scheme in which the features of the Schrödinger

equation that cause difficulties are suitably incorporated. These include the perturbation term, the

potential term and the boundary conditions. We show computationally that the resulting scheme is

capable of preserving the properties of the solution for any number of grid points.
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(a) NSFV scheme (6.1) with ε = 0.2 (b) NSFV scheme (6.1) with ε = 0.02
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(c) NCFV scheme (5.6) with ε = 0.2 NCFV scheme (6.1) with ε = 0.02

Figure 4: Convergence of the NSFV and NCFV scheme for discontinuous potential function and

several grid choices.

The better performance of the designed schemes is evident from the simulations presented in

Figs. 1 – 4. We highlight that, for 16 grids points, (simulations not shown here), the classical

scheme failed to reproduce the expected oscillatory behavior observed with the NSFV and the

NCFV schemes. Tables 1 and 2 support the better performance of the non-standard finite volume

scheme as compared to the classical scheme. Note that the choice of ε used here is for illustration

only. The same behavior can be extended to other choices of ε. An additional advantage of the

proposed schemes is the flexibility to handle cases with discontinuous potential q(x) without the

need to careful isolate the location of discontinuities as in adaptive methods. In addition, the

superiority of the NSFV scheme with exact schemes for the boundary conditions over the classical

ones is evident from the comparison of Fig 2(c) and Fig. 2(d).

This work summarizes our first effort towards designing a robust scheme for the self-consistent

Schrödinger-Poisson equation. We plan to extend the method discussed here to design qualitatively

stable schemes for Schrödinger-Poisson equation.
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