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BACKGROUND

Demands by engineering faculties of mathematics departments have traditionally been for teach-
ing computational skills while also expecting analytic and creative knowledge-based skills. We
report on a project between two institutions, one in South Africa and one in Sweden, that investi-
gated whether the emphasis in undergraduate mathematics courses for engineering students would
benefit from being more conceptually oriented than the traditional more procedurally oriented way
of teaching.

PURPOSE (HYPOTHESIS)

We focus on how second-year engineering students respond to the conceptual-procedural distinction,
comparing performance and confidence between Swedish and South African groups of students in answer-
ing conceptual and procedural mathematics problems. We also compare these students’ conceptions on the
role of conceptual and procedural mathematics problems within and outside their mathematics studies.

DESIGN/METHOD

An instrument consisting of procedural and conceptual items as well as items on student opinions on the
roles of the different types of knowledge in their studies was conducted with groups of second-year engi-
neering students at two universities, one in each country.

RESULTS

Although differences between the two countries are small, Swedish students see procedural items to be
more common in their mathematics studies while the South African students find both conceptual and
procedural items common; the latter group see the conceptually oriented items as more common in their
studies outside the mathematics courses.

CONCLUSIONS

Students view mathematics as procedural. Conceptual mathematics is seen as relevant outside mathemat-
ics. The use of mathematics in other subjects within engineering education can be experienced differently
by students from different institutions, indicating that the same type of education can handle the applica-
tion of mathematics in different ways in different institutions.
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INTRODUCTION

As is the case in many countries in the world, in both South Africa and Sweden, mathe-
matics teaching at the upper secondary level often has an emphasis on procedural skills



rather than conceptual understanding. Despite formulations about the importance of rea-
soning and problem solving in the national curriculum, this tradition is still prevalent in
Swedish classrooms (Skolverket, 2003). Even if more conceptually oriented tasks are pro-
moted in national tests, tasks produced by teachers for local assessment are mainly of a rou-
tine and procedural nature (Boesen, 2006). As a consequence, students beginning their
university studies have often experienced mathematics as a subject with a focus on compu-
tational skills and have less training in deeper conceptual thinking. University teachers
often complain that first-year students have little understanding of basic concepts of pre-
calculus and even the high achieving students are only better in a procedural way of think-
ing (Engelbrecht, Harding, & Potgieter, 2005).

In an environment where most tasks and exams in undergraduate mathematics courses
for engineering students are procedural in nature (e.g., the study by Bergqvist, 2007, shows
how success on exams in calculus courses in Sweden only requires the memorization of
rules and examples) and concepts become formal and conceptually more demanding, it is
to be expected that students put their efforts toward mastering the mathematical tech-
niques more than aiming for a deeper understanding. Traditionally, demands from engi-
neering faculties have also been for computational skills. However, there are at the same
time high expectations in terms of analytic and creative knowledge-based skills on engi-
neers in the work force, which speaks to a need of conceptual mathematical knowledge.
The issue of conceptual versus procedural understanding understanding is also relevant in
other fields, such as thermodynamics (Taraban, Definis, Brown, Anderson, & Sharma,
2007), where research suggests that engineering students strive to develop conceptual
knowledge but at low cognitive levels.

This paper reports the results of a project between two institutions, one in South Africa
and one in Sweden, that investigated whether the emphasis in undergraduate mathematics
courses for engineering students would benefit from being more conceptually oriented
than the traditional more procedurally oriented way of teaching. In this project we com-
pare the views of engineering students, lecturers, and practicing engineers of two countries
on the role of mathematics in engineering education with a focus on the issue of conceptual
and procedural knowledge. Reasons for this comparative design include the fact that dif-
ferences in culture and organizations may provide insights about each situation, which
might otherwise not be apparent. Furthermore, similarities and differences can be dis-
cerned which can provide a theoretical basis as well as practical implications for mathemat-
ics instruction generally and at each institution in particular.

One of the groups in the research design consists of second-year engineer students. We
report on findings from second-year engineering students from both countries. We com-
pare performances between these groups of students as well as their confidence in answer-
ing conceptual and procedural mathematics problems. Furthermore we compare these stu-
dents’ conceptions on the role of conceptual and procedural mathematics problems within
and outside their mathematics studies as well as about the relevance of these ideas in their
engineering studies. The results in this article form only a small part of the entire project in
which we address other groups including senior engineering students, practicing engi-
neers, and other colleagues in engineering faculties.

The Conceptual-Procedural Distinction in Mathematics Education
In this section, the key terms for conceptual and procedural knowledge in mathematics
are analyzed with reference to previous research, including work on the effect of employing



different approaches in teaching with respect to these constructs. Implications for the de-
sign of the study are also discussed. In the final two sections we elaborate on framing the
empirical investigation within a wider engineering education perspective.

Research on conceptual and procedural knowledge. Proficiency in computation has
traditionally been one of the main goals of mathematics education. However, the increas-
ing availability and efficiency of computational tools, such as calculators and computers,
seem to imply that at least part of what is commonly included in the notion of procedural
knowledge can be achieved without deeper conceptual understanding. It has also been ob-
served that students who, for example, solve an equation correctly, sometimes do not know
what to do if the task is to decide if a given number is a solution to the same equation, indi-
cating a poor conceptual understanding of equations. Using the terminology of the anthro-
pological theory of didactics (see Bosch & Gascon, 2006), mathematical techniques to
solve certain types of problems can thus be learned without referring to a discursive level of
justification why the techniques work or how the mathematical notions used are to be un-
derstood and can be related to other concepts (see Lithner, 2008). Curriculum goals of
mathematical education often include both the technical and discursive levels but seldomly
show how to design teaching to achieve those learning goals. The terms themselves, proce-
dural and conceptual knowledge, are indeed complex and have been the focus of mathe-
matics education research at least since the 1970s.

The distinction between conceptual (or declarative) and procedural knowledge is com-
monly used within cognitive psychology (Anderson, 1995) for descriptions of individual
knowledge structures. In mathematics education, however, the related terminology is
rather confusing where the word &nowledge is sometimes changed to understanding, think-
ing, ot fluency, and related terms such as relational and instrumental (Skemp, 1987) refer to
different constructs than conceptual and procedural as defined by Hiebert and Lefevre
(1986), linked to different rationales for learning. Hiebert and Lefevre describe conceptual
knowledge as:

[K]nowledge that is rich in relationships. It can be thought of as a connected web
of knowledge, a network in which the linking relationships are as prominent as the
discrete pieces of information. (p. 3-4)

The same authors characterize procedural knowledge as constituted by two com-
ponents: one consisting of step by step procedures for solving mathematical tasks,
and one related to the symbolic representations used in such procedures. They see
knowledge not only of concepts and procedures but also of the relations between
these two dimensions of mathematics as a key to being competent in mathematics.
This is also emphasized by Silver (1986) who adds that conceptual and procedural
knowledge seldom are present in “pure” form as distinct entities. Research has shown
that this interdependence of conceptual and procedural knowledge is highly complex
(Byrnes & Wasik, 1991; Carpenter, 1986; Peled & Zaslavski, 2008; Skemp, 1978).
According to Silver (1986) conceptual knowledge is neither necessary nor sufficient
for procedural knowledge, and procedural knowledge may underpin conceptual
knowledge (Artigue, 2007). While the study by Rittle-Johnson and Alibali (1999)
suggested that conceptual knowledge may influence procedural knowledge more
than the reverse, Baker and Czarnocha (2002) found that conceptual thinking is in-
dependent of an individual’s ability to use procedural knowledge.



In mathematics, the complexity described may partly be due to a connection between
conceptual and procedural knowledge, on one hand, and the relation between form and
content in mathematics, on the other. Bergsten (1990) describes the dynamic of mathe-
matical work by superimposing mathematical content and representation (form) with
structure and operation in a theoretically and empirically based model of what he calls
mathematical operativity:

The model in Figure 1 is based on the assumption that while one performs mathemati-
cal operations on and within mathematical structures, conceptual knowledge may be
placed in the lower part of the diagram with procedural knowledge in its upper part. By the
vertical dynamics in the model, conceptual and procedural knowledge are strongly linked
in mathematical work. Both of these levels draw on the form (such as mathematical sym-
bols) and content of mathematical entities, and the relationships between these two as-
pects. Depending on the individual student’s knowledge about and the connections be-
tween the four different dimensions of the diagram, the strength of the mathematical
operativity of the student will vary.

With a focus on symbol use in mathematics, Tall et al. (2001) employ the notion of
procept (Gray & Tall, 1994) to analyze the conceptual-procedural gap. From the potential
interpretation of many mathematical symbols as pointing to either a process or a concept, a
procept is:

[A] cognitive construct, in which the symbol can act as a pivot, switching from a
focus on process to compute or manipulate, to a concept that may be thought

about as a manipulable entity. (Tall et al., 2001, p. 86)

A procept can thus be seen as a kind of mental bridge between the conceptual and the
procedural during mathematical work. In their conception, knowledge development in
mathematics is characterized as a progression from the “procedural,” where the learner is
limited to a specific sequence of steps via more general processes producing “the same ef-
fect,” to “the proceptual,” opening up for flexible thinking.
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FIGURE 1. Dynamic relationships in mathematical work (from Bergsten, 1990, p. 177).



Star (2005) points to the problematic issue that definitions of conceptual knowledge
commonly state that it is knowledge rich in connections, as in the definition by Hiebert
and Lefevre (1986), and argues that both conceptual and procedural knowledge may be
deep or superﬁc1al Instead, knowledge development can be described as a dynamic learn-
ing process in which disconnected procedural knowledge and weak conceptual knowledge
develop by supporting each other, thus growing in parallel (Baroody, Feil, & Johnson,
2007). This resonates with the conception of different levels of mathematical operativity
(Bergsten, 1990) and with the reification process model by Sfard (1991), where progres-
sion of knowledge is described in terms of a dynamic process between operational and
structural thinking.

There are also studies that point to the need to include other dimensions to model the
complex relationship between conceptual and procedural knowledge in an educational set-
ting. The study by Simpson and Zakaria (2004) found a strong correlation between success
on conceptual tasks and the use of "linking words" (such as then or because), indicating
that "the conceptual students are thinking about the problems in quite different ways from
the procedural” (p. 207). Bergsten (2006) used a qualitative interview to study the role of
algebra when undergraduate students worked on tasks about limits of functions in a calcu-
lus course. The lectures in the course were using the traditional format of introducing the-
ory before applying it to problem solving. In the interviews, students with a strong proce-
dural approach and a high reliance on algebraic manipulations referred to an external
authority to confirm their result, while students with a more conceptual approach, using
diagrams and numerical reasoning, were more confident with their own internal authority,
though often struggling to also base their results algebraically.

Teaching for conceptual or procedural knowledge. The previous discussion raises the
issue of whether to teach concepts or procedures first, or in an integrated manner. Accord-
ing to one view, with arguments based on the meanings of mathematical ideas, it is neces-
sary to learn procedures first in order to develop conceptual understanding (e.g., Wu,
1999). This view can be found in traditional curricula, “In the traditional curriculum, con-
cept development is viewed as arising from computational proficiency with relevant proce-
dures” (Baker, Czarnocha, & Prabhu, 2004, p. 1). In line with this view, it is common that
calculus courses start from definitions and theorems, sometimes called the DTP-format,
(definition-theorem-proof) (Weber, 2004) to quickly move on to algebraic computations
in a procedural manner (Aspinwell & Miller, 1997).

Such views have been criticized with reference to interpretations of research such as
those expressed in the NCTM Standards (Brown, Seidelmann, & Zimmermann, 2002).
Teaching for procedural knowledge would mean presenting, for the students, ready-made
definitions, notations and procedures without first providing the deeper meanings to the
concepts involved. Teaching for conceptual understanding, on the other hand, would start
with problems that require an initial reasoning from the students, to make connections to
their prior knowledge (Brown et al., 2002). There is a fundamental difference between
these modes of teaching, reflected in the structure of textbooks.

According to recent empirical research, there is strong interference prior to subsequent
learning of conceptual and procedural knowledge. Pesek and Kirshner (2000) conducted
an experimental study of two groups (approximately 50 grade 5 students in each group),
where one group was taught instrumental knowledge before relational knowledge (formu-
las were given and trained, without providing explanations of why they worked), while the



other group was taught only relational knowledge (together with the “instrumental”
group). The results from pre-, post-, and retention tests, along with student interviews,
showed that the “relation” group performed better than the “instrumental” group on items
involving both conceptual and procedural tasks. Three different aspects of such interfer-
ence were observed, L., cognitive, attitudinal and metacognitive interference (Pesek &
Kirshner, 2000, pp. 526-527).

Chappell and Killpatrick (2003) found a similar result at the undergraduate mathe-
matics level with a group of 305 calculus students. In one learning environment a proce-
dural teaching approach was used and in another conceptual approach. The students
using the conceptual approach scored significantly higher on both conceptual and proce-
dural tasks than the “procedural” group. This was also observed in a replicate study in-
volving 303 students. In undergraduate mathematics education, concept-based instruc-
tion can develop conceptual understanding without losing out on the procedural skills.
These results were confirmed in Chappell (2006), where a qualitative analysis suggested
that knowledge acquired within a concept-based learning environment can be better ex-
tended to new situations.

However, using a more detailed qualitative analysis and considering other aspects than
achievement levels, the complexity of the relationship between the teaching approach and
learning can be more deeply analyzed. Sierpinska (2007) performed a small teaching exper-
iment where the same topic (absolute value) was presented in a lecture in two ways to dif-
ferent groups using a conceptually oriented and a procedurally oriented approach in order
to test the hypothesis:

If students in the prerequisite courses were lectured not only on rules, formulas
and techniques of solving standard questions but also on some of the theoretical
underpinnings of these, then they would have more control over the validity of
their solutions and would be more interested in the correctness of their solutions.

(p-51)

In interviews with students no clear cut differences could be found between the groups
regarding how certain the students were about the validity of their answers without asking
the teacher. Sierpinska suggests a variety of possible explanations for the fact that the
teaching approach did not matter much: epistemological, cognitive, aftective, didactic, and
institutional reasons.

Summary and Implications for the Present Study

The quote by Sierpinska shows that the distinction between conceptual and procedural
knowledge in mathematics is highly complex, with regard to both the meaning of these
constructs and the relationships between them when teaching and learning mathematics.
The fact that traditional teaching in undergraduate mathematics, including its assessment,
tends to put the main emphasis on procedural skills, while at the same time the epistemic
value of mastered techniques is still poorly understood, is indeed problematic and points to
the need of further research.

The importance of knowing the ways in which conceptual and procedural knowledge
interact and contribute to the development of expertise and skills in pedagogical practice
has also been widely acknowledged in engineering disciplines (Chi, 2005; Litzinger, Van
Meter, Wright, & Kulikowich, 2006; Taraban, et al., 2007).

For the overall purpose of the present study, we developed tasks that engineering
students (in the target populations) generally approached in either a conceptually or a



procedurally oriented way. The descriptions and analyses of conceptual and procedural
knowledge (or understanding or thinking) in mathematics commonly employed in the
literature (as discussed earlier), must therefore be operationalized into criteria for what
characterizes a solution to a task as mainly conceptually or procedurally oriented. This
requires an external language of description to allow an unambiguous reading of the em-
pirical instances linked to an interpretation of the theoretical descriptions provided
(Bernstein, 2000). Conceptual knowledge is described as primarily concerned with rela-
tions between conceptual entities and their meanings. That is, seeing a structure through
a network of relations among these entities and their representations. As it is also linked
to prior knowledge including extra-mathematical interpretations and the use of concep-
tual entities, a conceptual approach to solving mathematical tasks needs to include, among
other things, translations between verbal, visual (graphical), numerical, and formal/alge-
braic mathematical expressions (representations); linking relationships; interpretations
and applications of concepts (for example by way of diagrams) to mathematical situa-
tions. With an emphasis on how to operate on the mathematical representations to carry
out a solution to a task, a procedural approach is characterized by (symbolic and numeri-

cal) calculations employing (given) rules, algorithms, formulae, and symbols.

Confidence of Response

We observed in some studies that students’ confidence about the results of their own
mathematical work may affect their approach to being more conceptual or procedural. In
our study, we therefore wanted to include the students’ confidence of their answers to the
test items. The idea of investigating confidence of response originated in the social sciences
where it is used in surveys. A respondent is asked to provide the degree of certainty he or
she has in his or her own ability to select and utilize well-established knowledge, concepts,
and laws to arrive at an answer (Webb, 1994). In an academic examination environment a
student would be asked to indicate his or her confidence of response along with each an-
swer set. Confidence is usually measured on some scale, in our case 1 - 4, where 1 implies a
total guess and 4 implies complete confidence. Irrespective of whether the answer is correct
or not, low confidence indicates a guess which, in turn, implies a lack of knowledge. If the
confidence is high, however, and the answer is wrong, it points to a misplaced confidence
in the student’s knowledge on the subject matter, either misjudging her or his own ability
or a sign of the existence of misconceptions. A confidence measure, in conjunction with
the correctness or not of a response, can thus be used to distinguish between a lack of
knowledge and either over-confidence or the existence of a misconception (Hasan,

Bagayoko, & Kelley, 1999).

Purpose, Focus, and Design of the Research

As pointed out previously, this paper forms part of a more extensive investigation
whose main objective was to investigate the current mathematical needs of engineers. One
question related to the conceptual-procedural issue discussed earlier: should we carry on
with equipping students with fluent manipulation skills or should the emphasis move to-
wards a more conceptual presentation of the mathematical concepts and ideas to develop
deeper understanding of these concepts? In this study we focus on how second-year engi-
neering students respond to the conceptual-procedural distinction. We compare perfor-
mances between Swedish and South African groups of students as well as their confidence
in answering conceptual and procedural mathematics problems. Furthermore, we compare
these students’ conceptions of the role of conceptual and procedural mathematics problems



within and outside their mathematics studies as well as about the relevance of these ideas
in their engineering studies.

Research Design

Development of the instrument. Developing an instrument that can be used with un-
dergraduate engineering students to address the questions mentioned proved a time con-
suming task. We first developed a draft measuring instrument consisting of 32 items. Of
these items, 16 were expected to be solved by a mainly conceptual approach by the target
group and 16 by a procedural approach. The construction of the items and the decision
about which items were to be classified as mainly conceptual or as mainly procedural were
initially made by ourselves and colleagues in the mathematics departments of the two
universities.

In constructing the items we used the following working definitions of what we classify
as a conceptual or a procedural approach to solving a mathematical task:

Conceptual approach: This includes translations between verbal, visual (graphical),
numerical, and formal/algebraic mathematical expressions (representations);
linking relationships; and interpretations and applications of concepts (for
example by way of diagrams) to mathematical situations.

Procedural approach: This includes symbolic and numerical calculations,

employing (given) rules, algorithms, formulae, and symbols.

To ensure construct validity, the test was thoroughly and independently scrutinized by
other colleagues to get an unbiased view of the levels of procedural or conceptual knowl-
edge needed to complete each item successfully according to working definitions of the
constructs provided (Engelbrecht et al., 2005). Since most items involve some procedural
as well as conceptual thinking, we asked colleagues to give us their opinions on the portion
of procedural and conceptual thinking that would be required for each item. We used the
averages of the colleagues’ input after a discussion to confirm or dispute disparities in indi-
vidual opinions. In the agreement with Anderson (1995) and the earlier discussion, we re-
alized that the procedural and conceptual concepts were not absolute; however, we experi-
enced an impressive cohesion of opinions.

We also realized that experts’ opinions on the approach to the solution does not neces-
sarily agree with how students solve problems. To reduce this challenge, the initial draft
test consisting of 16 pairs of conceptual and procedural items was written by groups of stu-
dents at both universities. The format of all items was multiple choice. However, to find
out how students approach the tasks, all items were also changed into an open-ended for-
mat and we studied the solutions of the sample students. At the South African university,
the open-ended test items were solved by groups of third semester (19-20 year old) engi-
neering students ranging between 10 and 30 per group, and at the Swedish university by
groups of third semester students ranging between 3 and 6 students per group.

This procedure enabled us to perform a qualitative analysis in order to find out whether
students agree with our classification in that they approach the items conceptually or pro-
cedurally. We used this analysis in our decision on which items to include in the final ver-
sion of the instrument and we selected items for the instrument in which the solution ap-
proach of students and of experts coincided as conceptual or procedural.



The outcome of this pilot testing showed a good fit between the expected solution
strategy and actual student solutions for many of the items. In fact, in many of the
items, all of the students that produced a solution followed the same approach as was
predicted by the group of experts. However, we also found some solutions from stu-
dents that were interesting in the sense that items that were designed to be conceptual
were “proceduralized” in sometimes unexpected ways (Engelbrecht, Bergsten, &
Kigesten, 2009), pointing to the complexity of the conceptual-procedural distinction
as discussed above.

A second component of the instrument development process included larger compara-
ble groups of students at the South African university doing the instrument in multiple
choice format to enable us to do a proper item analysis including calculating the discrimi-
nation index as well as finding the level of difficulty for each of the 32 items.

The final instrument. The final instrument was then compiled using four pairs of simi-
lar questions. In each pair one question was classified as conceptual by experts and con-
firmed by the nature of the student solutions and the other item as procedural. In this final
decision

*  We only used items in which students and experts agreed on whether the item is

conceptual or procedural.

*  We only used items with a good discrimination index.

*  Weattempted to pair items together with more or less the same level of difficulty.

*  Wedid not use items that were exceptionally difficult or exceptionally easy.

After answering each item the student had to indicate his or her confidence about the
answer he or she provided by indicating whether he or she was positive, almost certain, or
uncertain about the answer or whether it was a guess. In addition, after each pair of ques-
tions, the student had to indicate which of the two questions, the conceptual or the proce-
dural question, in his or her opinion was

*  More common in his or her studies in mathematics.

*  More common in his or her other subjects excluding the subject mathematics (out-

side mathematics).

*  More relevant to his or her engineering studies in general.

No question was explicitly labeled as “conceptual” or “procedural” and the order of
the conceptual and procedural questions in the four pairs also differed. The following
example shows a conceptual item (question A) and a procedural item (question B)
along with the follow up questions. Question A is classified as conceptual because
mathematical concepts and statements (function, slope, rate of change, increasing
function) must be interpreted/applied in relation to a diagram representing a mathe-
matical situation (population size as a function of time). In contrast, Question B is
classified as a procedural item: only rules for differentiation must be employed on a
mathematical formula followed by a numerical calculation for a specific value of a
given variable (symbol).

Example

Question A. The function P = f(#) in the sketch gives the population after # years.
The slope of the line is approximately 300. Choose from statements A - D which
of the statements is NOT true or choose E.



P =f{f)

4 10 12

A. The average rate of change of population over the interval 4 < # <12 is 300 people
per year.

B. The rate of change of the population at # = 4 is more than 300 people per year.

C. The rate of change of the population at # = 10 is more than 300 people per year.

D. The function is increasing.

E. They are all true.

QlestlonB Find /°(2) if f{xx) = 3xsin /32 —3
3sin1-12cosl

—3sin1+ 12 cosl

3sinl + 6 cosl

3sin1 + 12 cosl

None of these

HoOO®E >

Each of these questions was immediately followed by a question about the student’s
confidence with the answer:

Indicate how certain you are about your answer:

A. Positive B. Almost certain  C. Uncertain D. Total guess

After each pair of questions, three additional questions were asked:

Regarding the types of questions represented by questions A and B:

1. Which one of the two questions is more common in your studies within your math-
ematics courses?

2. Which one of the questions is more common in your studies outside your mathe-
matics courses?

3. Which one of the two questions is more relevant for your studies as engineer?

A. Question A B. Question B C.Both D. Uncertain

The four pairs of questions that were used in the final instrument were on four different
mathematical topics, the first pair (as in the example) of differentiation of a single variable
function, the second pair on applications (interpretation) of the derivative, and the third
pair on differential equations and the last pair on integration.

Target Groups

All students used in the research are second-year students who have completed initial
courses in calculus, differential equations, and linear algebra.
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The two universities are both comprehensive universities and considered to be among
the top universities in their respective countries. Both universities have strong engineering
faculties and have been training engineers for many years.

In Sweden, students enter the university after completing nine years of compulsory and
three years of upper secondary school. The engineering degree program is a five year pro-
gram. The students at this university can choose between 14 directions, including mechan-
ical, electrical, computer, industrial economy, technical design, and communication sys-
tems engineering. In the first two years, the emphasis is mainly on mathematics (30-45%
of course volume) and theoretical subjects such as physics, information technology, and
mechanics of materials. The focus gradually moves to more practical, problem-based pro-
jects and students finish their degrees with a thesis at a private company or within a re-
search team. The mathematical part of the curriculum consists of courses in single variable
calculus (including differential equations, numerical, and power series) and linear algebra
in the first year, while in the second year they do courses in multivariable calculus, linear
analysis (transforms and Fourier series) and vector analysis. In some of the programs, the
students in year 2 through year 4 do courses in optimization, numerical methods, and com-
plex analysis.

Engineering faculties at South African universities follow very much the same structure
and the South African university in the study can be considered as representative. Students
at the South African university enter university after having attended primary and sec-
ondary school for 12 years. These students choose between chemical, civil, mechanical,
electrical, computer, aeronautical, industrial, or metallurgic engineering. The engineering
program can be completed in four years but the majority of students will study for five
years. The program is structured similar to the Swedish program. The first two years are
very similar for all the different fields with mathematics as the main component but also
some physics, computer science, and chemistry. From the third year the program becomes
more specialized and practical. The mathematics part of their curriculum consists of cours-
es in single variable calculus and linear algebra in the first year, while in the second year
they do a course in multivariable calculus, a course in differential equations, a course in nu-
merical methods (mostly solving systems of non-linear equations and differential equa-
tions) and a course in introductory real analysis (number series, power setries and Fourier
series) with applications to differential equations.

The instrument was completed by five groups of students.

SW1: A group of 97 third semester mechanical engineering students from the
one campus of the Swedish university.

SW2: A group of 60 third semester electrical engineering students from the
same campus of the Swedish university.

SW3: A group of 72 third semester mixed engineering students from the other
campus of the Swedish university.

SA1: A group of 118 third semester mixed engineering students from the South
African university. This was done at the end of their third semester.

SA2: A different group of 240 fourth semester mixed engineering students from
the South African university. This was done in the beginning of their
fourth semester.

In Sweden we targeted all students in each of the specific programs described. An-
nounced in advance by e-mail, students were asked to volunteer to complete the test im-
mediately after a lecture which was included in the compulsory part of the program. A
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TABLE 1
Performance and Pearson Correlation Coefficients Between Individual Test Items

and Total Marks for the Test

Item 1A 1B 2A 2B 3A 3B 4A 4B
Conceptual/ C p P C p C C P
Procedural

Performance (%) 60.1 514 8l1.1 56.6 54.9 584 38.0 58.4
Correlation 047 042 034 053 0.51 048 048 049

short introduction about the procedure for completing the forms was provided by the re-
searcher. Of course, not all students turned up on the specific day for the lecture but the
sample covered a major part of the students enrolled in the specific program. In South
Africa a similar procedure was followed. The multiple choice responses were processed by
an optical reader and the data were processed and analyzed by the researchers.

RESULTS

The analysis was threefold:
* ageneral report on the results of the entire group of 587 students;
* acomparison between the five groups mentioned above; and

* a comparison between students of the two countries, 229 from Sweden and 358
from South Africa.

Item Analysis

Since the purpose of the test was to investigate students’ preferences for conceptual or
procedural tasks, it was designed to have items of equal and intermediate levels of difficulty
(for the target group) across a variety of types of tasks of relevance for their studies, an inner
homogeneity of the test was required. The correlations between the results (performance)
of the individual 8 items with the total test results are displayed in Table 1, along with the
performance level of each item.

The level and even distribution of the total marks and the correlation coefficients indi-
cate that there was a sufficient amount of homogeneity present between the different items
in the instrument (all strongly significant). The only item for which the correlation was
somewhat lower (but still significant) is Item 2A which can be explained by the high per-

formance on this item.

General information for the entire group. Figure 2 shows the average performance (as
a percentage), and Figure 3 shows the average confidence of all 587 students in the group.
To measure confidence, students had to indicate if they were “positive” about their answers
(giving a score of 4), “almost certain” would give a score of 3, “uncertain” a score of 2, and
“total guess” a score of 1. We compared the students’ performance and confidence in the
conceptual items with the procedural items.

From these graphs it is clear that in this test, students perform better in the procedural
items (#test p < .01) and they are also more confident about their answers to the proce-
dural questions (#-test p < .01).
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The Pearson correlation coefficient between performance in the conceptual items and
students’ confidence in these items is .17 and between procedural performance and confi-
dence it is .31. On this large sample of 587 students both these correlations are significant
on a 1% level of significance.

After each pair of conceptual and procedural questions, the student had to indicate
which of the two questions was more common in his or her mathematics curriculum,
which was more common in his or her studies outside the mathematics curriculum and
which question was more relevant to his or her engineering studies in general. The per-
centage distribution of all students is given in Figure 4.

From this graph we can conclude that students think that inside mathematics, procedural
questions are more common than conceptual questions and that outside mathematics, con-
ceptual questions are more common than procedural questions. Students also see both con-
ceptual and procedural questions as relevant to their studies in engineering in general.

We should add that these students are third or fourth semester students, and thus fairly
early in their training as engineers. This means that they have not been exposed much to
other engineering courses since the first two years of these programs consist mainly of basic
courses such as mathematics and physics.
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curriculum, outside the mathematics curriculum and relevance in their engineering
studies.

Comparison of performance. Figure 5 compares the conceptual and the procedural
performance of the five groups (left) and the two countries (right). In this graph the vertical
measure is the average mark of students in each group for the conceptual questions, the
procedural questions and all the questions.

The only group who performed better in the conceptual items than the procedural
questions is the group SW2, the group of electrical engineering students from the Swedish
university. All four of the other groups performed better in the procedural questions than
in the conceptual. This group (SW2) of Swedish students outperformed all the other
groups in both the conceptual and procedural questions and this was expected. In the ini-
tial mathematics test for entry to the university they scored significantly higher than the
other Swedish group from the same campus and their program included more mathemat-
ics studies during the first two years.

The overall performance of the Swedish students (average 59.3% for the whole test)
was somewhat better than that of the South African students (average of 56%). With a #-
test p-value of .048 this is significant on a 5% level but not on a 1% level. The South
African students outperformed their Swedish counterparts on the procedural questions
with an average of 62% vs 60%, and the Swedish students performed better in the concep-
tual questions with 58% vs 50%. Swedish students performed very similarly in the concep-
tual and procedural questions - 58% vs 60% (p = .14) - whereas for South African students
the performances differ significantly (p < .01). In Table 2 the actual numbers for the two

countries are given.

Comparison of confidence. In Table 3 we give the average confidence that students re-
flected in answering conceptual and procedural questions as well as the overall averages for the
two countries. Both the Swedish and the South African students showed significantly more
confidence in their responses to the procedural questions than to the conceptual questions.

In Figure 6 we compare the confidence of the five groups (left) and students in the two
countries (right). All groups expose more confidence in answering procedural questions
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FIGURE 5. Performance (percentage) comparison in conceptual, procedural and all items.

than conceptual questions. These differences are all statistically significant with a #-test
p-value < .01 for all cases. The results are very similar for both countries.

Performance and confidence. We also calculated the Pearson correlation coefficients
between the students’ performance on the conceptual and procedural items, respectively,
and the confidence that they have in their responses. This information is reflected in
Figure 7.

All correlation coefficients indicate a statistically significant correlation on a 1% level.
However, the correlation is lower for the conceptual items than for the procedural items for
both groups, and the correlations for the procedural and, even more so, the conceptual
items are higher for the Swedish students than the South African students.

Role in the mathematics curriculum. After each pair of conceptual and procedural
questions, the student had to indicate which of the two questions is more common in his or

TABLE 2
Performance Comparison (Percentage) in Conceptual, Procedural
and All Ttems

Conceptual  Procedural t-test p value Overall
Sweden 58.2 60.5 0.29 59.3
South Africa 50.1 62.1 <0.01 56.0
TABLE 3

Confidence Comparison in Conceptual, Procedural and All Ttems

Conceptual  Procedural r-test p value Overall
Sweden 291 3.34 <.01 3.13
South Africa 2.90 3.30 <.01 3.10
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FIGURE 6. Confidence comparison in conceptual, procedural and all items.

her mathematics curriculum. The percentage distribution of the students in the two coun-
tries is given in Figure 8 (right). In Figure 8 (left) the five groups are compared.

The data clearly show that all students believe that procedural items are much more
common inside mathematics curricula than conceptual items—Swedish students even
more so than South African students. The answer category “Both” is as common as the
“Procedural” category, indicating a possible difference in the mathematics curriculum as
compared to the Swedish institution.

Role outside the mathematics curriculum. After each pair of conceptual and procedur-
al questions the student had to indicate which of the two questions is more common in his
or her studies outside his or her mathematics curriculum. The percentage distribution of
the students in the two countries is given in Figure 9 (right). In Figure 9 (left) the five
groups are compared.

It seems as if South African students to a greater extent see conceptual items as common
in their engineering studies outside mathematics. Two of the three Swedish groups still
consider procedural questions to be more common in their studies outside mathematics.

For all groups, the numbers of students that are uncertain about this question are higher
than for the other questions. This high number of uncertain students on this item makes it
somewhat difficult to compare the numbers of students that committed themselves to a
definite answer.

D Conceptual

0.15 D Procedural

0.10

0.05

0.00 T 1

Sweden South Africa

FIGURE 7. Correlation between performance and confidence.
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Relevance of items to engineering studies. After each pair of conceptual and procedural
questions the student had to indicate which of the two questions is more relevant to his or
her engineering studies in general. The percentage distribution of the students in the two
countries is given in Figure 10 (right). In Figure 10 (left) the five groups are compared.

For all groups of students, the majority of the students consider both the conceptual
and procedural questions as relevant to their general engineering studies. Approximately
one third of the students did not respond with the categories “Both” or “Uncertain.” Again,
the Swedish students seemed to think procedural questions are more relevant and the
South African students considered conceptual questions as more relevant to their engi-
neering studies in general.

DiscussioN AND CONCLUSIONS

It has been proposed that design is a defining feature of the discipline of engineering
and that mathematics as it is normally conceived and taught in engineering education does
not support the development of competences critical for design (Winkelman, 2009). In
Alpers (2010, p. 2) two major goals for the mathematical component in engineering edu-
cation are identified: first, the students need to “understand, set up and use the mathemati-
cal concepts, models and procedures that are used in the application subjects,” and second,
“provide students with a sound mathematical basis for their future professional life.” Sever-
al authors have pointed to the key role of mathematical modeling in engineering education

DO Conceptual 25

DOProcedural 20
uBoth 15 4
BUncertain 10 4
5 J
0
SA2

FIGURE 9. Percentage distribution of students' conceptions of items outside the mathe-
matics curriculum.

Sw1 Sw2 Sweden South Africa
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FIGURE 10. Percentage distribution of students’ conceptions of items’ relevance to engi-
neering studies.

as it is an important tool for engineers and central to engineering practice (Cardella, 2010;
Gainsburg, 2006). Consequently, model-eliciting activities in engineering education have
been studied (e.g., Moore, Diefes-Dux, & Imbrie, 2006). In relation to the second goal,
Alpers (2010) adds that the mathematical education of engineers should not be restricted
to mathematical modeling but also develop an attitude of “skeptical reverence” (Gainsburg,
2007) of the role of mathematics in the work of an engineer. In contrast, Winkelman
(2009) found that in engineering education, mathematics is commonly characterized more
in terms of intellectual status, gatekeeper, detachment, lack of creativity, and ease of evalu-
ation than as a direct support for engineering design, to which it serves more formally as a
foundation and is studied only as a pre-requisite. Such conceptions may well be aligned to a
mathematics curriculum in engineering education that puts the main emphasis on proce-
dural fluency rather than on conceptual understanding.

However, learning conceptual knowledge in engineering and science subjects has been
identified as critical for learning engineering (Streveler, Litzinger, Miller, & Steif, 2008).
Streveler et al., referring to Redish and Smith (2008), link this to procedural knowledge
when they write that “Just as we view conceptual knowledge as applying meanings (as rich
as possible) to words such as force, /.../ [mathematical] modeling requires meaning ap-
plied to the symbols” (p. 291). Not only manipulating mathematical symbols but also giv-
ing meaning to them is thus seen as a way to move from conceptual knowledge to problem
solving ability, “because problems generally involve the manipulation of symbols.” These
authors seem to argue for a mathematics curriculum in engineering education that inte-
grates the conceptual and procedural aspects of mathematical activity, both of which were
emphasized as important for engineering studies in the data presented above.

The literature review pointed to a complex relationship between conceptual and pro-
cedural knowledge with regard to how to understand these constructs as well as the im-
plications of considering these analytic categories for the organization and outcomes of
teaching. Therefore, to evaluate the interpretation of the data from the study presented
here, it is important to keep in mind that it is not supported by a critical analysis of the
main features of teaching and examinations of the participating students. Instead, the
focus here is on how the students themselves experience the conceptual and procedural
aspects of mathematics as operationalized through the instrument developed for the
study and how they relate these to their studies to become engineers. By comparing two
groups of students from different countries with comparable education programs, the
observed commonalities and differences may provide viable information of relevance for
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the objective of the overarching project which is concerned with how to design mathe-
matics studies within engineering education.

Although the Swedish students performed slightly better than the South African stu-
dents for the entire test (Figure 5), this difference is not significant on a 1% level, thus sug-
gesting that the two groups of students are not that much different with respect to perfor-
mance. In fact, two of the Swedish groups’ performances were very similar to the two
South African groups (Figure 5). These similarities provide a rationale for comparisons of
the different groups based on the test results. When interpreting the performance results
on our instrument, one should also keep in mind that we used the results of the initial item
analysis to attempt to make the level of difficulty of questions in each pair similar.

From the data obtained, it seems as if students from both countries perform better in
procedural mathematics questions (as indicated in Figures 2 and 5 and Table 1); however,
the main contribution to this difference relates only to item 2A in Table 1 and they also
have more confidence in their abilities to solve procedural questions than in conceptual
questions (Figures 3 and 6). These findings are confirmed by the comparison of perfor-
mance and confidence levels between the groups of students. Only one group (the electri-
cal engineers from Sweden) performed better in the conceptual questions than in the pro-
cedural (Figure 5). Care was taken in the design of the instrument after the first pilot test to
pair questions together with the same level of difficulty. The better performance in the
procedural questions cannot be attributed to the procedural items being “easier.”

In all groups, the majority of students have more confidence in their abilities to solve
procedural than conceptual problems (Figure 6). However, it is only to be expected that a
higher level of performance is mirrored in a higher level of confidence (Figures 2 and 3).

The majority of students from both countries see also procedural questions as more com-
mon in their mathematics curriculum (Figure 8), while conceptual questions are seen as more
common outside their mathematics curriculum (Figure 9). A speculative explanation for this
result could be that students experience mathematics as being more procedural than concep-
tual and that they experience the applications of mathematics outside the mathematics cur-
riculum as more conceptually oriented. A simpler explanation is probably that mathematics
courses, as taught at both institutions, place more emphasis on procedures than on conceptu-
al ideas. This would need to be further investigated by long term qualitative observations of
features of lectures, problem solving sessions, textbooks used, and examinations.

On this test, South African students were more fluent in procedural mathematics than
their Swedish counterparts, whereas the Swedish students were more proficient than the
South Afficans in conceptual mathematics questions (Figure 5). In fact, for South Aftrican
students there was a statistically significant difference (on 1% level) between their proce-
dural and conceptual performance, whereas for the Swedish students the difference was
not significant. This information seems to indicate that the teaching of undergraduate
mathematics could even be more procedural in South Africa than in Sweden. However,
such conclusions would again need further qualitative investigations of how teaching and
examination tasks look at the two institutions.

Interestingly enough, however, a larger portion of Swedish students considered proce-
dural questions as common inside their mathematics courses (Figure 8) and a larger por-
tion of South African students saw conceptual questions as more common outside their
mathematics curriculum (Figure 9). This finding is supported by the fact that although
more than half of both groups consider both procedural and conceptual mathematics as
relevant to their engineering studies in general, a majority of the remaining Swedish

19



students regard procedural mathematics more relevant to their engineering studies while
the South African students consider conceptual mathematics as more relevant (Figure 10).
This implies that although South African students perform better than their Swedish
counterparts in procedural mathematics and are more confident about their procedural
mathematics than about their conceptual understanding, they are of the opinion that con-
ceptual mathematics is more important to their training in general. Swedish students, on
the other hand, outperform their South African counterparts in conceptual mathematics
and also have more confidence in their conceptual understanding than the South Africans.
In spite of this, they still believe procedural mathematics is more important to their train-
ing as engineers. These differences may reflect different emphases between these institu-
tions on the nature of the basic mathematics courses and on making specific engineering
perspectives visible early in the studies.

It is not clear how to compare the results shown in Figures 9 and 10. It is evident that
these students found both conceptual and procedural items relevant to engineering studies
with a low number of uncertain students, while the picture looks quite different when the
students were asked about the presence of the same items for studies outside mathematics;
here the response category “Both” was much lower and the number of uncertain students
much higher. To become an engineer, both conceptual and procedural knowledge are im-
portant, but to study the courses outside mathematics (within their studies to become engi-
neers) the conceptual items are considered more common or the student is uncertain. As
the procedural items were seen as more common for the mathematics courses, one inter-
pretation of these data is that mathematics is equally important to becoming an engineer as
the courses outside mathematics. Another possible implication is that the mathematics
courses as well as the courses outside mathematics should be more oriented towards both
concepts and procedures. This would agree with prior research that emphasize the deep in-
terdependence between the two constructs.

We also note that while two of the Swedish groups considered procedural mathematics
as more common outside the mathematics curriculum, the third group (from the other
campus of the Swedish university) agreed with the two South African groups that concep-
tual mathematics was more common outside the mathematics curriculum. This outcome
may be due to differences in the design of the engineering programs between the one
Swedish campus and the other, pointing to possible implicit features of such programs that
would benefit from being highlighted by research.

Thus, we observed several commonalities as well as differences between how the engi-
neering students at educational institutions in two different countries experienced and con-
ceptualized procedural and conceptual aspects of mathematics in their mathematics studies,
as well as in the other parts of their engineering studies. Across different performance levels
of the test, one commonality was that an emphasis on both these aspects was seen as impor-
tant for their studies to become an engineer. This result is significant as it points to a com-
mon need of mathematics in engineering education across institutions. On the other hand,
we interpret some of the differences previously discussed as an indication that the design of
the same type of education, and emphases made in the different courses concerning the
conceptual/procedural aspects of mathematics, do influence students’ views of both mathe-
matics and its role in engineering education.

It is important to add that our conclusions are based on the findings from only one uni-
versity in each of the two countries. The differences in population may potentially be at-
tributes to the university rather than the country. This could be a potential limitation to the
validity of the results.
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FINAL REMARKS

A student’s pathway towards becoming an engineer, within a tertiary education pro-
gram, has been described by Stevens, O’Connor, Garrison, Jocuns, and Amos (2008) in
terms of the three related dimensions of disciplinary knowledge, identification (as an engi-
neer), and navigation (admittance, passing courses, etc. through an educational program).
The overall interest in this paper is the role of mathematics in engineering education, with
a focus on what kind of mathematics is and should be taught in terms of conceptual under-
standing and procedural fluency. To what extent is mathematics (and what kind of mathe-
matics) experienced by the students as “accountable disciplinary knowledge” (Stevens et al.,
2008, pp. 356-357), that is, knowledge when performed is counted as engineering knowl-
edge? Standard examination tasks in the basic mathematics courses, most commonly pro-
cedural in character, do not belong to this category, but strongly influence the navigation
dimension. How then, can mathematics become a part of a student’s identity as an engi-
neer? This may be developed later in subsequent courses outside mathematics. The next
part of the project will contain data from more senior students as well as practicing engi-
neers to provide further information on these issues.

The students in this study were at the beginning of their studies and one cannot expect
most of them to have a clear conception of what is required from them as practicing engi-
neers. However, still having completed a major part of their mathematics studies as well as
some introductory “applied” subjects they should have enough experience to have devel-
oped a fairly good picture of the character of the mathematics courses as well as the role of
mathematics for other subjects. Therefore, the information collected with the instrument
should be of relevance when discussing issues concerning mathematics teaching in engi-
neering education. However, it is necessary to have information also from more senior stu-
dents as well as engineering educators and practicing engineers to be able to further analyze
the implications of these data and discuss the role and appropriate emphases of mathemat-
ics education for engineering programs.

Quantitative data of the kind presented here can provide useful information on qualita-
tive issues such as different emphases on procedural or conceptual approaches to mathe-
matics education within engineering programs. Knowledge about how large groups of stu-
dents experience these constructs from the point of view of their mathematics studies and
their engineering studies in general is a necessary background in any attempt to change a
curriculum with respect to these constructs. Considering the discussions found in previous
research, it may be questionable to try to operationalize these analytical categories into test
items that discriminate between them. However, based on the pilot testing and qualitative
response analysis of the test items used in this study (Engelbrecht et al., 2009), the results
presented here show significant differences in how students experience these constructs
within their engineering education.

Commonalities in outcomes between the two countries, such as a higher confidence in
their performance on procedural tasks than conceptual tasks and the view that both
categories of tasks are relevant for their engineering studies, indicate that efforts need to be
made to increase students’ confidence in conceptually oriented tasks. For example, ob-
served differences in outcomes were that procedural items were seen to be more common
in their mathematics studies by the Swedish students while the South African students
find both conceptual and procedural items common, and that the latter group saw the con-
ceptually oriented mathematical items as more common in their studies outside the math-
ematics courses as well. These data show that the use of mathematics in other subjects
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within engineering education can be experienced differently by students from different in-
stitutions indicating that the same type of education can handle the application of mathe-
matics in different ways at different institutions. This opens up alternative ways of organiz-
ing a traditionally very stable branch of education.
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