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Abstract

When a plant and its controller are sufficiently linear and time-invariant so

that they can be represented by transfer functions, and this plant is under

classical control (meaning the controller can also be represented by a trans-

fer function), the model-plant mismatch (MPM) that often plagues industrial

processes can be written as a closed-form expression. This includes a vari-

ety of controllers, among which the ubiquitous Proportional, Integral and

Derivative (PID) controller. The MPM expression can then be used to iden-

tify a representative transfer function of the “true plant” from the currently

available plant model. The MPM expression works for single-input single-

output as well as multiple-input multiple-output systems. The closed-loop

data required for application of the expression has to be sufficiently exciting.

If significant disturbances perturb the plant their values need to be avail-
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able. In this article the expression is applied to industrial data to show its

applicability.

Keywords: mismatch, model-based control, model-plant mismatch, PID

control, transfer function

1. Introduction

The situation where only poor process models are available for control is

a common one. When there is a notable difference between a process and the

available model of the process, it is said that model-plant mismatch (MPM)

is present. This situation is not only common, but will usually contribute to

deteriorated controller performance. The availability of poor process models

is known to be a source of poor control performance, in fact this is listed

as one of the most significant reasons for poor control performance in the

minerals-processing industry by [1]. The fact that MPM is however not

limited to the minerals-processing industry is a reason why research into this

area has received some focus in the recent past [2].

For processes where only poor models are available, [1] states that the

peripheral control tools are as important as the controller itself. Periph-

eral control tools constitute all the elements in the control loop, other than

the controller itself, that function to improve controller performance. These

include fault detection and isolation, data reconciliation, observers, soft sen-

sors, optimisers and model parameter tuners. Some of these peripheral tools

are addressed for an ore grinding mill circuit in [3, 4, 5].

Many controller design methods make use of a plant model. A good plant

model usually helps to improve controller performance, but the dynamics
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of industrial processes can change significantly over time (as is shown for

the example of a milling circuit in [6]). As soon as the plant dynamics

change, MPM is present and the controller designed based on the original

model will produce sub-optimal control moves. Examples of the sources of

changes in plant dynamics are maintenance or equipment changes as well

as changes in operating conditions or parameters. In order to restore the

controller performance the process needs to be re-identified and the controller

redesigned, which is a costly and time-consuming exercise [7]. Apart from

the formerly mentioned problems, process re-identification also often involves

intrusive plant tests that disturb the normal operation of the plant [2].

An alternative to full process re-identification is to firstly identify the

elements in the process transfer function matrix that contain significant mis-

match and to only re-identify these. Algorithms for MPM detection have

been proposed by [2] and [8]. These algorithms identify the transfer func-

tion matrix elements that contain mismatch as well as the significance of

the mismatch. This is useful information that can be used to help assess

the need for process re-identification. These algorithms do however not sup-

ply any additional information about the “true plant”, hence there is still a

need for process re-identification (although not as expensive as full process

re-identification) and ad-hoc controller re-tuning.

Model identification techniques that make use of closed-loop data have

been introduced some time ago (see for example [9] and [10]). A good

overview of closed-loop identification is given by [11] in which different closed-

loop identification techniques are discussed and their characteristic properties

are compared. The methods described by [11] are mostly based on statistical
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approaches and do not make explicit use of the transfer functions represent-

ing the system, unlike the method presented in this article. A more recent

approach to on-line closed loop identification is given in [12]. Here the joint

plant and controller model is identified using subspace model identification,

and thereafter the plant model is separated assuming the controller model is

known a priori.

This paper presents a closed-form expression for the model-plant mis-

match (as first derived in [13]), which can be used to update the model such

that it may be representative of the actual plant. This expression is shown to

work for multiple-input multiple-output (MIMO) systems. The main differ-

ence between this article and [13] is the application of the MPM expression

to industrial data.

Although this method is related to closed-loop identification, it does make

use of the explicit expression for the mismatch to identify the representative

plant model. This implies that the model structure is known a priori and

can simply be updated through the mismatch expression.

The most common form of advanced control in the process industry is

linear model predictive control [14]. Implementing a linear MPC requires a

linear process model, typically in the form of an LTI transfer function. Most

plants that use advanced control will therefore at some point have a good,

representative model of the process. Making the previously known transfer

function the starting point for the method is therefore a justified decision, as

this is commonly available.

The sources of mismatch mentioned earlier are either due to discrete

events (such as plant shut-downs) or e.g. slowly degrading instruments that
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cause the model to slowly drift over time. It is therefore sufficient to make

use of this method after such events (depending on their frequency) or at

certain times when the control performance has deteriorated. This supervised

approach is preferable for processes where this is the case, rather than on-line

model tracking, which would be preferable in processes where the model may

change drastically at a high frequency.

The newly identified model may then be used to update the controller,

such that it can perform in an optimal manner. The expression is however

only valid for systems that contain a controller and plant model that can

be expressed by means of transfer functions. This does include an array of

controllers, but probably most importantly it includes PID controllers.

PID control is still very predominant in the processing industry. An

industrial survey on grinding mill circuits by [15] found that more than 60%

of the respondents make use of PID control, which implies a large scope for

implementation of the presented expression.

Another limitation on the expression is that it requires the input sig-

nals to be sufficiently exciting in order to make the implementation sensible.

This limitation is however also present for the MPM detection algorithms

presented by [2] and [8], and also for most plant identification methods.

The requirement for sufficient excitation means that either sufficiently

large (and known) changes are required for the independent variables (such

as achieved with sizeable set-point changes) or sufficiently large (and known)

disturbances should be present, or both. The expression handles known

disturbances directly, but does not handle unknown disturbances. If it is

unavoidable to use data without the presence of large unmeasured distur-
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bances their values should first be estimated for example by making use of

a Kalman filter ([16]). If this is not possible, the MPM expression described

in this paper may not yield the desired results.

Identifying the mismatch in the manner proposed in this paper is equiv-

alent to identifying the additive uncertainty in the model [17], where the

additive model uncertainty is also expressed as the difference between the

plant and the model. Another possibility is presented by [18] where the out-

put multiplicative uncertainty is explicitly defined by matching the output

of the uncertainty model to the outputs of a set of known models.

The paper firstly presents the derivation of the MPM expression and

shows how the representative transfer function model of the true plant may

be obtained from it. Thereafter the expression is used in a MIMO application

example to show its usefulness. Finally the expression is applied to industrial

data and the representative plant transfer function is calculated by means of

the MPM expression.

2. Model-plant mismatch expression

Consider the one degree of freedom, negative feedback control loop shown

in Fig. 1 in which all signals and transfer functions are represented in the

Laplace domain. G is the plant that generates the true output y(s), Ĝ is the

model of the plant that generates the model output ŷ(s), Q is the controller,

v(s) is any disturbance that may be present and r(s) is the reference signal

(set-point).

The derivation of the MPM expression which follows is done for a general

MIMO system in which all signals may be vectors and all transfer functions
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Figure 1: Block diagram of a control loop with model outputs being generated.

may be matrices. G, Ĝ and Q are all continuous-time, linear time-invariant

(LTI) systems, represented in the Laplace domain. G and Ĝ have the di-

mensions ny × nx and Q has the dimensions nx × ny. y, ŷ, r and v are

ny × 1 vectors and u is an nx × 1 vector. For this derivation the number of

manipulated variables in the controller must equal the number of controlled

variables in the plant, and consequently nx = ny.

The reference to the Laplace operator (s) will be dropped for ease of

representation. Let the residual (e) be the difference between the actual

output and the model output as

e = y − ŷ, (1)

e = Gu+ v − Ĝu, (2)

e = ∆Mu+ v, (3)

where ∆M = G − Ĝ is the mismatch. This definition for the mismatch is

equivalent to the definition for additive uncertainty presented by [17, p.293].

During this derivation however ∆M is used to represent uncertainty of any

magnitude, as opposed to the weighted uncertainty with a restriction on the

maximum singular value in [17] (σ̄(∆(jω)) ≤ 1). The control signal (u(s)) is
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given by

u = Q (r − y) , (4)

u = Q (r − [Gu+ v]) , (5)

u = Qr −QGu−Qv, (6)

(I +QG) u = Qr −Qv, (7)

u = (I +QG)−1Q (r − v) , (8)

u = Q (I +GQ)−1 (r − v) , (9)

where the push-through rule for matrix manipulation [17, p.68] was used to

go from (8) to (9). The matrix inverse operation of (8) requires that the

product QG be strictly proper. Substitution of (9) into (3) then gives

e = ∆MQ (I +GQ)−1 (r − v) + v, (10)

e = ∆MQ
(

I + {∆M + Ĝ}Q
)

−1

(r − v) + v, (11)

e = ∆MQ
(

I +∆MQ+ ĜQ
)

−1

(r − v) + v. (12)

The expression G = ∆M + Ĝ is used to go from (10) to (11). After this

substitution all the terms in (11) are known, save for the disturbance if it is

unmeasured. Further matrix algebra leads to

(e− v) (r − v)−1 = ∆MQ
(

I +∆MQ+ ĜQ
)

−1

, (13)

(e− v) (r − v)−1
(

I +∆MQ+ ĜQ
)

= ∆MQ, (14)

(e− v) (r − v)−1
(

I + ĜQ
)

= ∆MQ

− (e− v) (r − v)−1∆MQ,
(15)
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(e− v) (r − v)−1
(

I + ĜQ
)

=

[

I − (e− v) (r − v)−1
]

∆MQ.
(16)

Rewriting the equation with ∆M isolated on the left-hand side gives the

closed-form mismatch expression as:

∆M =
[

I − (e− v) (r − v)−1
]

−1
·

(e− v) (r − v)−1
(

I + ĜQ
)

Q−1.
(17)

This expression may be used to derive the mismatch if the disturbances

are known. If the disturbances are however unmeasured or even unknown,

data from a period of operation free from significant disturbances can be

used (if this is possible), and with v = 0, (17) becomes

∆M =
[

I − er−1
]

−1
er−1

(

I + ĜQ
)

Q−1. (18)

If however unmeasured disturbances cannot be ignored, disturbance estima-

tion techniques (see for example [19]) may be used to account for their values.

The problem with large unmeasured disturbances also plagues classical

system identification techniques. This is because the output error (the dif-

ference between the measured output and the model output) can be large in

the presence of large disturbances, even if the model is perfect [20].

Usually signals (such as r(s)) will not be square for MIMO systems and

will consequently not have an inverse in the true sense. This issue is discussed

further in Appendix A. Sufficient excitation (see [21]) is required in either

the disturbance or the reference signal in order for the application of (17) to

be sensible. Without sufficient excitation ∄ (r − v)−1.

The expression G = ∆M+Ĝmay now again be used to obtain the transfer
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function of the actual plant as

G =
[

I − (e− v) (r − v)−1
]

−1
·

(e− v) (r − v)−1
(

I + ĜQ
)

Q−1 + Ĝ.
(19)

If (18) is used as the mismatch expression, the plant transfer function is

given by

G =
[

I − er−1
]

−1
er−1

(

I + ĜQ
)

Q−1 + Ĝ. (20)

Notice from the derivation that there is no mathematical limit on the size

of ∆M . The limit on how large ∆M may be is therefore only based on the

usable data that can practically be extracted, e.g. without control valves

saturating.

3. MIMO application example

The application of the MPM expression to a SISO system is straight-

forward, as presented in [13]. Some provisions are however suggested in

Appendix A for when the expression is applied to a MIMO system.

In order to illustrate the working of the MPM expression in the MIMO

case, the algorithm is applied to a 2 × 2 ball mill grinding circuit for which

MPM is introduced. Consider the ball mill grinding circuit of Fig. 2 which

is described in [22].

The manipulated variables are the fresh ore feed rate [u1 (t/h)] and the

dilution water flow rate [u2 (m
3/h)]. The controlled variables are the product

particle size [y1 (%− 200 mesh)] and the circulating load [y2 (t/h)]. The

nominal values and constraints for the manipulated and controlled variables

are given in Table 1. Care should be taken when using the method to not
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Figure 2: Ball mill grinding (reproduced from [22]).

Table 1: Nominal values and constraints for the 2x2 ball mill grinding circuit variables

Var. Description Nom Min Max Unit

u1 Fresh ore feed rate 65 60 70 t/h

u2 Dilution water flow rate 45 40 50 m3/h

y1 Product particle size 70 68 72 %

y2 Circulating load 150 140 170 t/h

use data where the output or control variable values are saturated against

the limits. This is because the saturation function is not linear and therefore

not compatible with the MPM expression.

The MIMO transfer function model of the milling circuit is given by





y1(s)

y2(s)



 =





g11(s) g12(s)

g21(s) g22(s)









u1(s)

u2(s)



 , (21)
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where

g11(s) =
−0.58

2.5s+ 1
e−0.68s, (22)

g12(s) =
4(1− 0.9938e−0.47s)

(2s+ 1)(6s+ 1)
e−0.2s, (23)

g21(s) =
2.2

6s+ 1
e−0.6s, (24)

g22(s) =
2.83

3.5s+ 1
e−0.13s. (25)

Milling circuits are often controlled by decentralized PI(D) controllers [1, 15]

as was also implemented for this circuit by [22]. The diagonal PI controller

is in the form

Q(s) =





Kc1

(

1 + 1
τI1s

)

0

0 Kc2

(

1 + 1
τI2s

)



 , (26)

with Kc1 = −2, τI1 = 3.3 min, Kc2 = 0.42 and τI2 = 5.2 min. Next this plant

will be perturbed up to the point that robust performance is not achieved

with the current controller. This gives a good indication of the point at which

process re-identification may be necessary. The robust performance test is

carried out as described by [17]. The first step of this test is to represent the

uncertainty in each channel in the model through an uncertainty weight of

the form

wI(s) =
τs+ r0

(τ/r∞)s+ 1
(27)

where r0 is the relative uncertainty at steady-state, 1/τ is the approximate

frequency where the uncertainty reaches 100% and r∞ is the magnitude of

the weight at higher frequencies. The performance weight is specified as

wP (s) =
s/M + ωB

s+ ωBA
(28)
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N

û

uû yû

w z

Figure 3: General block diagram with uncertainty included (reproduced from [17, p.114]).

where ωB is the required bandwidth and A and M are respectively the upper

bounds on the sensitivity function at low and high frequencies. Typically A ≈

0 and M ≥ 1. Next the generalized control configuration for representing

uncertainty in the plant is derived (see [17, p.113]) as is illustrated in Fig. 3

where w are the exogenous inputs and z the outputs. Nominal stability is

achieved if N is internally stable. The tests for robust stability and robust

performance make use of the structured singular value µ.

µ(N) is defined as: Find the smallest structured ∆ which makes the

matrix I − N∆ singular, then µ(N) = 1/σ̄(∆), where σ̄ is the maximum

singular value. For robust stability:

µ∆ (N11) < 1, ∀ω (29)

and N must be nominally stable. For robust performance:

µ∆̂ (N) < 1, ∀ω, ∆̂ =





∆ 0

0 ∆P



 (30)

and N is still required to be nominally stable. The test for robust perfor-

mance is carried out for 10% gain uncertainty with

WI =
0.21s+ 0.1

0.1s+ 1





1 0

0 1



 (31)
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Figure 4: Robust performance test results for 10% uncertainty (solid line) and for the

perturbed plant (dashed line).

and

WP =
0.45s+ 0.05

s





1 0

0 1



 . (32)

The performance weight specifies integral action and a closed-loop bandwidth

of 0.05. This test shows that the performance specification is achieved for

10% uncertainty (Fig. 4 shows the structured singular value µ∆̂(N) for this

test [solid line]).

The plant is then perturbed to be

g11(s) =
−0.464

2s+ 1
e−0.68s, (33)

g12(s) =
4(1− 1.1014e−0.47s)

(2s+ 1)(6s+ 1)
e−0.2s, (34)

g21(s) =
2.2

6.6s+ 1
e−0.6s, (35)

g22(s) =
2.547

3.5s+ 1
e−0.13s, (36)

which is less severe than the mismatch introduced into the system by [22] but
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Figure 5: Response of controlled variables for a step in the particle size showing the set-

point (dotted line), the nominal response (dashed line) and the perturbed response (solid

line).

more severe than allowed by the robust performance analysis weight. Now

robust performance is not achieved as illustrated in Fig. 4 (the structured

singular value is now shown by the dashed line). The uncertainty (and also

the changed plant model) should now be calculated. The nominal and per-

turbed responses for a step in the particle size set-point are shown in Fig. 5

and Fig. 6. The nominal and perturbed responses for a step in the circulating

load set-point are shown in Fig. 7 and Fig. 8.

Once the output signals have been generated the mismatch can be iden-

tified. The mismatch is calculated using (18) to be

∆M = G− Ĝ =





0.0232e−0.68s

s2+0.9 s+0.2
−0.0066e−0.67 s

s2+0.667 s+0.0833

−0.0333e−0.6s s
s2+0.3182 s+0.0253

−0.0809e−0.13s

s+0.2857



 , (37)

from which the actual transfer function is calculated to be exactly the same

as the original transfer function as given in (22) - (25).
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Figure 6: Response of manipulated variables for a step in the particle size showing the

nominal response (dashed line) and the perturbed response (solid line).

0 10 20 30 40 50 60 70 80
69.5

69.6

69.7

69.8

69.9

70

70.1

70.2

70.3

70.4

70.5

Time (hours)

P
a

rt
ic

le
 s

iz
e

 (
%

 −
 2

0
0

 m
e

s
h

)

0 10 20 30 40 50 60 70 80

150

151

152

153

154

155

156

157

Time (hours)

C
ir
c
u

la
ti
n

g
 l
o

a
d

 (
t/

h
)

Figure 7: Response of controlled variables for a step in the circulating load showing the

set-point (dotted line), the nominal response (dashed line) and the perturbed response

(solid line).
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Figure 8: Response of manipulated variables for a step in the circulating load showing the

nominal response (dashed line) and the perturbed response (solid line).

4. Industrial case study

To show the application of the method on industrial data, a case study

is presented in this section for a splitter column which is part of a Polymer

Hydrotreating unit. The data presented was collected during a step testing

campaign conducted in 2014.

The purpose of the Polymer Hydrotreater is to convert olefins to the

corresponding paraffins to produce a slate of petrol and diesel or jet fuel.

After the hydrotreating reaction has taken place, the material is sent to a

stripper column (which mainly removes unwanted components) and finally

into the splitter column. The splitter column (see Fig. 91 for a simplified

process diagram) separates the lighter petrol cut from the heavier diesel or

jet fuel cut. The unit can either produce diesel of jet fuel depending on the

flashpoint2 of the material in the bottoms of the splitter.

1TIC - temperature indicating controller; FIC - flow indicating controller; PDC - dif-

ferential pressure controller; PIC - pressure indicating controller
2The flashpoint is the lowest temperature at which the material will vaporize to form
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Figure 9: Polymer Hydrotreater splitter column.

The main variables to be controlled in this splitter column are:

• the temperature near the top of the column (on the tray just below

where the reflux is added),

• and the percentage vaporization of fluid leaving the heater (this is a

good indication of the temperature).

Together these variables largely define the operation of the column. The top

temperature controller cascades to a reflux flow controller and the percentage

vaporization controller cascades to a fuel gas pressure controller. Both control

loops are in cascade configurations and the slave loops are sufficiently fast

to ensure that the bandwidth of the slave loops are much larger than the

an ignitable mixture in air.
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Figure 10: Step test data for a period of 5 hours.

bandwidth of the respective master control loops. The closed-loop transfer

function of the inner loop is therefore approximately one (Tslave ≈ 1) [23].

With this approximation the focus can shift to the master control loops.

A 5-hour excerpt of step test data is shown in Fig. 103. Note that the step

test data have been standardized to start from zero for intellectual property

reasons. This will however not have any effect on subsequent modelling as the

constant bias is usually removed from all signals before system identification

[21].

The tuning parameters for the controllers are shown in Table 2. All time

constants shown are in minutes and the controllers have the form

Q = Kc

(

1 +
1

τIs
+

τDs

ατDs+ 1

)

, (38)

3SP - set-point
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Table 2: Tuning parameters for splitter column controllers.

Loop Kc τI τD

Top temp. 1 8 0.5

% Vaporization 0.5 2 0

with α = 0.1.

It is usually possible to sufficiently represent a binary distillation column

with a linear model if both products are of high purity and the reflux is large

[24], which is the case in our example. The operating point also does not

change significantly during the step testing campaign. These reasons along

with the fact that it is possible to obtain a representative linear model for

the plant from the data4, allows us to consider this process to be sufficiently

linear.

In order to apply the model-plant mismatch expression an initial model is

needed (Ĝ in (19)). Hereafter the plant has to be perturbed, and operating

data from the perturbed plant should be captured for use. As it is not

possible for production reasons to perturb this industrial plant, the closed-

loop operating data available are therefore assumed to be for the perturbed

plant (G in (19)).

Model identification of the splitter column was done using third party

vendor software. Selected step-test campaign data were used, and the result-

ing 2 × 2 transfer function matrix is shown in (40) (with time in minutes).

Note again that this model is denoted as G because it is considered to be

4This will be shown later in this section, see Table 5.
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Table 3: Summary of the referenced models

Model TF Description How obtained

G (40)

Perturbed plant model.

Assumed unknown for the

application of the MPM ex-

pression

SID using 3rd party soft-

ware

Ĝ (41)

Assumed original model

from which controller was

designed

Adapted G based on plant

changes

G∗ (48) Calculated model
Obtained from (17) with

plant data

the perturbed plant. This model is assumed to be unknown and is simply

shown here for the comparison that will be made once the MPM expression

has been applied. A summary of the models referred to in this section is

given in Table 3.





Top temp.

% Vapor.



 = G ·





Reflux

Fuel gas



 , (39)

G =





−0.58
10 s+1

4
15 s+1

e−3 s

0 3.8
2.8 s+1

e−0.5 s



 . (40)

Consider now the scenario where there was a plant shut-down during

which changes were made to the original plant (represented by Ĝ). Suppose

that during the shut-down the thermowell housing the element sensing the

top temperature in the column was cleaned of a build-up of residue. This

removes some lag when measuring the top temperature. Suppose also that
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the transmitter was re-calibrated for a smaller range. These two changes will

cause the time constants of G1,1 and G1,2 to decrease by similar amounts

when compared to Ĝ1,1 and Ĝ1,2, as well as causing the gains of both these

transfer function elements to increase by similar amounts. Suppose that the

changes are 20% in either case. This value is chosen large enough to have

a significant impact on the output responses as can be seen in Fig. 11 and

Fig. 12. This means the original model of the plant was:

Ĝ =





−0.464
12 s+1

3.2
18 s+1

e−3 s

0 3.8
2.8 s+1

e−0.5 s



 . (41)

To reiterate, Ĝ is considered to have been the original model of the plant.

The plant model is then assumed to have changed to G. The plant data

available are assumed to be obtained from the closed-loop system where the

plant is represented by G. These data will now be used to apply the MPM

expression.

Q and Ĝ are known; r, u, and y are determined from the data. There are

no measured disturbances that greatly affect the process. A section of data

is therefore selected for which no significant unmeasured disturbances seem

to affect the plant so that (19) can be applied. Such an excerpt of data is

shown in Fig. 11 for the top temperature when a set-point change is made.

Note that ŷ is generated by propagating the measured u through the known

system Ĝ as

ŷ = Ĝu. (42)

A similar section of data is shown in Fig. 12 for when a step change in the

percent vaporization is made.
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Figure 11: Data for the top temperature showing the plant input (dotted line), plant

output (solid line), model output (dashed line), and the error (dash-dot line).
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Figure 12: Data for the heater flue gas % vaporization showing the plant input (dotted

line), plant output (solid line), model output (dashed line), and the error (dash-dot line).
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The last signal needed for the application of the MPM expression is e

in the Laplace domain. There are many ways in which this signal may

be obtained, see for example [25] for an overview of such methods. The

method however used here is via a direct transfer function estimation method

(described in [26]). The error model driven by the reference signal is defined

as

er−1 = eMr
(s) =

B0(s)

A0(s)
(43)

with

y − ŷ = eMr
r, (44)

B0(s) and A0(s) are polynomials in s defined as ([26]):

B0(s) =

m
∑

i=0

bis
i (45)

A0(s) =
n−1
∑

i=0

ais
i + sn (46)

and n ≥ m, where n is the number of poles and m is the number of zeros of

eMr
(s). The method makes use of the equation error to fit a continuous-time

transfer function model to discrete-time data, and was recently included in

the continuous time system identification toolbox in Matlab. The equation

error is a linear algebraic function of the model parameters in the form [27]:

εEE(t) = A0y(t)− B0u(t). (47)

This method supplies the signal in the Laplace domain, which means that

all the signals needed to apply the MPM expression are now available.
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Table 4: Percentage difference between identified model G and calculated model G∗

Model G(1, 1) G(1, 2) G(2, 2)

Gain K 16.7 % 16.3 % 0.3 %

Time constant τ 4.0 % 5.8 % 5.7 %

Time delay θ - 0 % 0 %

Once the MPM expression of (20) has been applied the calculated plant

transfer function (denoted as G∗) is obtained to be

G∗ =





−0.677
10.40 s+1

4.65
15.87 s+1

e−3 s

0 3.81
2.96 s+1

e−0.5 s



 . (48)

It can be seen that the calculated transfer function G∗ is not significantly

different from the identified model for the actual plant transfer function G in

(40). The relative differences between the transfer function element parame-

ters is shown in Table 4. The main reason for the presence of any difference

here is because of imperfect model identification.

The question remains whether the calculated transfer function is truly

a better reflection of the plant than the model Ĝ derived previously. To

illustrate this the model outputs of Ĝ and G∗ are compared to the “actual”

plant output in Fig. 13, Fig. 14, and Fig. 15 for the three non-trivial transfer

function elements of G. To make the MPM detection worthwhile, the fit

between the output related to G∗

1,1 and G∗

1,2 and the plant data should be

much higher than for the output related to Ĝ1,1 and Ĝ1,2. This is indeed the

case as can be seen from Table 5 in which the normalized root mean square

errors (NRMSE) for these comparisons are shown.
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Figure 13: Model comparison for G1,1 showing the plant output (solid line), original model

Ĝ output (dashed line), and the calculated model G∗ output (dotted line).
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Figure 14: Model comparison for G1,2 showing the plant output (solid line), original model

Ĝ output (dashed line), and the calculated model G∗ output (dotted line).
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Figure 15: Model comparison for G2,2 showing the plant output (solid line), original model

Ĝ output (dashed line), and the calculated model G∗ output (dotted line).

Table 5: NRMSE for the fit between models and plant output data

Model G(1, 1) G(1, 2) G(2, 2)

Ĝ 44.14 % 51.48 % 87.15 %

G∗ 75.01 % 76.53 % 87.63 %
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5. Application to controller design

Once the mismatch (∆M) has been identified correctly, the expression

G = ∆M + Ĝ may be used to obtain the representative transfer function

of the plant. The representative transfer function of the plant may then

be used to redesign the controller. In the case for the MPM identified in

Section 4, this would mean that the PID controller (38) for the output “Top

Temperature”, should be redesigned.

There are many ways of tuning PI(D) controllers. Some of the more com-

mon methods include the Ziegler-Nichols method, the Cohen-Coon method,

the IMC tuning relations [28], the SIMC expansion thereof [29], Lambda

tuning (which is a specific case of the IMC relations), tuning based on the

minimization of the integral error, pole placement, and loop shaping (see [30]

for more examples). Most of these methods however make explicit use either

of the plant transfer function or of the model parameters that characterize

the transfer function.

There are also many other controller design methods that do not specif-

ically lead to PI(D) controllers but do produce controllers representable by

means of transfer functions. These methods include linear quadratic Gaus-

sian (LQG) control, as well as H2 and H∞ control.

The method chosen for controller design is not so important, what is

however important is that the reader appreciates how commonly the plant

transfer function is used in controller design. In these cases MPM will cause

the controller to perform outside of its original design intent. If the MPM is

severe enough this could lead to the dynamic performance specifications not

being met or even instability. In such a case the MPM expression presented in
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this article may be used to update the available plant model and the controller

design procedure may be repeated. This will lead to better adherence to the

control specifications.

6. Conclusion

This paper presents a closed-form expression for the MPM that may be

present in a feedback control system where the controller is representable

by means of a transfer function. The expression may be used to identify a

representative plant transfer function from closed-loop operational data. The

expression is directly applicable for SISO systems where the plant is easily

identified. In the MIMO case some provisions are needed to ensure correct

results. The plant model was correctly identified in an example with a MIMO

plant. The main contribution of this paper as opposed to [13] was to show

how this same expression was successfully applied to industrial data. The

updated plant transfer function can then be used to redefine the controller.

This expression does however need sufficiently exciting signals to make

its application sensible. By using industrial data containing noise, Section

4 shows that the expression may also be applied when measurement and/or

process noise is present. The requirement for sufficient excitation however

includes the need for the amplitude of step changes to be significantly larger

than the noise amplitude.

Because this is a data driven method the fidelity of the data is important.

Deviations in the data such as may be caused for example by sensor failures

or valves getting stuck in place are not handled directly by the method. The

same care taken when selecting data for system identification should be taken
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when selecting data when applying this method.

The MPM expression also handles measured disturbances, but unmea-

sured disturbances may affect the accuracy of the identified model. Care

should therefore be taken to use plant data that do not contain significant

unmeasured disturbances.

Appendix A. MIMO application provisions

It was stated in Section 2 that signals such as r(s) are usually not square,

which is a problem for MIMO applications. This is because a non-square

matrix does not have an inverse in the traditional sense. Say for example the

output (y(s)) is n× 1 generated by applying an n× 1 input signal (u(s)) to

an n× n plant (G(s)) as

y = Gu, (A.1)










y1
...

yn











=











g11 · · · g1n
...

. . .
...

gn1 · · · gnn





















u1

...

un











, (A.2)

from which y(s) is calculated to be










y1
...

yn











=











g11u1 + · · ·+ g1nun

...

gn1u1 + · · ·+ gnnun











. (A.3)

The MPM method determines a transfer function from the “inverse” of the

input signal as,

G = yu−1. (A.4)

In the SISO case this is not a problem as G, y(s) and u(s) are scalars. In

the MIMO case however the expression cannot be applied directly as the
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non-square signal u(s) does not have an inverse. If however the input signal

is rewritten as the diagonal matrix

U =











u1 · · · 0
...

. . .
...

0 · · · un











, (A.5)

the output becomes

Y =











g11u1 · · · g1nun

...
. . .

...

gn1u1 · · · gnnun











. (A.6)

Now U is square and does have a matrix inverse. Applying equation (A.4)

now gives

G = Y U−1, (A.7)

G =











g11u1 · · · g1nun

...
. . .

...

gn1u1 · · · gnnun





















u1 · · · 0
...

. . .
...

0 · · · u2











−1

, (A.8)

=











g11 · · · g1n
...

. . .
...

gn1 · · · gnn











, (A.9)

which is equal to the original transfer function.

The input signal can easily be written in the form of a square matrix as

in (A.5). The output is however not usually available as a square matrix. It

is however apparent that the first entry of (A.6) is equal to the first output

in (A.3) if u2 · · ·un = 0. This means that a portion of the output signal
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generated without excitation in u2 · · ·un can be used to calculate the first

entry of (A.6). The same argument holds for the calculation of the other

entries of (A.6).

A similar situation holds true for measured disturbances. If disturbances

are however unmeasured, care would need to be taken to use a portion of

data that is disturbance free as unmeasured disturbances are not explicitly

handled by the expression.
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