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Medication is applied to the HIV-infected nodes of high-risk contact networks with the aim of
controlling the spread of disease to a predetermined maximum level. This intervention, known as
pinning control, is performed both selectively and randomly in the network. These strategies are
applied to 300 independent realizations per reference level of incidence on connected undirectional
networks without isolated components and varying in size from 100 to 10000 nodes per network.
It is shown that a selective on/off pinning control strategy can control the networks studied with
limited steady-state error and, comparing the medians of the doses from both strategies, uses 51.3%
less medication than random pinning of all infected nodes. Selective pinning could possibly be used
by public health specialists to identify the maximum level of HIV incidence in a population that
can be achieved in a constrained funding environment.
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I. INTRODUCTION

HIV spread and incidence continues to be a challeng-
ing public health problem, and the development of new
approaches to estimate future incidence attracts a great
deal of attention. This is partly due to the difficulties
that current approaches have in producing such esti-
mates, such as the reliance on sparse household survey
data prone to self-reporting bias, and the costly nature of
laboratory-based methods. There are generally two ap-
proaches currently followed to obtain HIV incidence in-
formation, that of large cohort studies and that of math-
ematical models [1]. The latter is by far the cheapest and
most popular.
One of the most important risk factors for the transmis-
sion of HIV is the number of sexual partners per indi-
vidual [2]. If one represents the sexual partners of each
person in a particular community as a contact network,
intuitively the proportion of high-risk people with many
partners will be small and the proportion with only one
or a few partners comparatively large. Networks with
such a degree distribution are typical in the real-world
and can be modelled by the degree distribution proposed
by [3], shown in Eq. (1).

pk =

{
0, for k = 0
k−αe−k/κ

Liα(e−1/κ)
, for k ≥ 1

(1)

Note here that Liα(x) represents the nth polyloga-
rithm of x.

This distribution, with power-law exponent α = 2 and
degree cutoff at κ = 5 is applied to the networks in this
work as shown in Fig. 1. The investigation of a scale-
free network distribution has not been done in this work
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due to the absence of an epidemic threshold in such net-
works [4]. This result implies that the techniques of bond
percolation and compartmental disease modelling, which
is Susceptible-Infected-Removed (SIR) and Susceptible-
Infected-Susceptible (SIS) models, cannot be applied to
a scale-free network. This is due to the proliferation of
a disease on a scale-free topology regardless of its trans-
missibility, even if control is applied with either strategy
in this work.
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FIG. 1. Normalised degree distribution (pk) of the simulated
networks. The distribution is normalised to a fraction be-
tween zero and one. Parameters are fixed at α = 2 and
κ = 5. The average number of links (M) for each network of
N nodes are: N=100 (M=280), N=1000 (M=2792), N=5000
(M=13968), N=10000 (M=27938). All networks have mean
degree of 2.8.

Representing disease spread via proliferation through
a contact network opens up the possibility to model and
simulate the spread of HIV between nodes over time, es-
pecially given that the infection process is globally stable
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FIG. 2. Three tiers of models are simulated. A node-model
is connected into a network of multiple nodes. The nodes of
the network are then compartmentalised according to their
susceptible, infected or removed (death) status, thus forming
a population mass-action SIR model.

for all infection rates apart from the epidemic threshold
Tc [5]. The influence of any intervention on a contact
network can also be determined and optimal solutions
can be sought.
One such intervention related to networks is named pin-
ning control. Pinning control is a control-theoretic tech-
nique by which the dynamics of network nodes are ma-
nipulated by adding a control term to the node models
(for example giving medication to a person as described
in this paper). The control system design at the individ-
ual level could be (and more often is) a feedback control
that is added [6], but in the case of the nodes of the
HIV disease network represented in this work, this node-
level control is open-loop. The treatment is antiretroviral
medicine applied to infected nodes. This manner of pin-
ning nodes (or influencing the microscopic dynamics of
a network), can drive the network towards a particular
equilibrium [7]. With unsynchronised or oscillating net-
works, pinning control has the capability to synchronise
the complete network towards a particular steady-state
by pinning only a few nodes [8], or in some cases by pin-
ning only a single node.
For disease networks, which are already synchronised by
virtue of their steady-state characteristics, the focus is on
the impact of the pinning control method on this steady-
state rather than on synchronisation.

A. Models

Three tiers of linked models are used as shown in Fig.
2, each on a different scale in the population. The first
tier is a node model representing an individual. Secondly,
a contact network model links individual nodes with one
another and thirdly an SIR population model incorpo-
rates the death of nodes in the network.
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FIG. 3. Example transmission function (λi), where the added
risk factor Rf = 500 indicates a very high risk HIV spread.
The function is chosen to saturate just below a log-viral load
of 5, for 100% transmission.

1. Node and network model

The node model incorporates the immune response of
an individual to HIV infection. For this work, the node
model is represented by the well-known 3D model of HIV
in-vivo [9–11]. This model was the basis of the question
for the control of HIV asked in [12], with parameters
listed in Table I, as estimated in [13].

Each infected node has an inherent probability of
transmitting disease to another node, influenced mainly
by its viral load level. It is assumed that nodes receiving
the infection are all equally susceptible and that nodes
transmitting infection do so at the highest probability
reachable given their risk profile. Additional risk is added
via a factor Rf , and high risk is represented by Rf > 100.
Additional risk factors that are included into the risk
factor Rf include the presence of Sexually Transmitted
Diseases (STDs), drug use and frequency of intercourse
without protective measures such as condoms.

The highest risk groups are represented by the simula-
tions in this work in order to suitably use an SIR model at
the population level and to achieve disease spread above
the epidemic threshold. Under normal risk circumstances
HIV is not nearly as transmissible as represented here,
but for the purpose of comparing control strategies this
is a feasible configuration.

The per-sexual-act transmission probability of the i’th
node is λi, with increased risk added via the risk factor
Rf as represented by Eq. (2) and shown in Fig. 3. The
input to the function is node i’s viral load vi [14].

λi = Rf ∗
(

1−
[
1− 9.36× 10−4

]e(.92∗(log10(vi)−4))
)
,

with 0 ≤ λi ≤ 1

and λi = 0, for vi = 0 (2)
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TABLE I. Summary of the node model parameters used in Eq. (3) [13, 15].

Parameter / Function Description Value / Range
Ti Uninfected CD4+ T-cells – copies/mm3

T ∗
i Infected CD4+ T-cells – copies/mm3

vi Free virions – copies/mm3

Ti0 Initial uninfected CD4+ T-cells of first infected patient 1000 copies/mm3

T ∗
i0 Initial infected CD4+ T-cells of first infected patient 1 copy/mm3

vi0 Initial free virions of first infected patient 100 copies/mm3

s Source term for uninfected CD4+ T-cells 10.7 / (mm3 day)
d Death rate of uninfected CD4+ T-cells 0.015 / (mm3 day)
θ Infectivity rate of free virus particles 4.5 × 10−6 / (mm3 day)
δ Natural death of infected CD4+ T-cells 0.58 / day
k Rate of virions produced per infected CD4+ T-cell 896.49 virions / (cell day)
µ Death rate of virus 2.05 / day

Nodes are linked via the viral load state of the immune
response model of each node, into a network represented
by Eq. (3). All parameters used in Eq. (3) are obtained
from literature. Here vi is the viral load from the node
model of the i’th node, T ∗i is the infected CD4+ T-cells,
µ is the natural death of virus in the body, aij is the
connectivity matrix of the network and Γ(x) is the acti-
vation function for transmission in the network. Given
in Iverson Notation, where [vj > 0] evaluates to 1 if the
condition in the bracket is true:

Ṫi = s− dT − θTv + ∆iui

Ṫ ∗i = θTv − δT −∆iui

v̇i = kT ∗i − µvi + Γ (λi(t))

N∑
j 6=i

aij [vj > 0] (3)

Here, to control the node (in this paper to “pin” the
node), the control ui is activated by ∆i as

∆iui =

{
0, for ∆i = 0

εRTIβTv, for ∆i = 1
(4)

The function Γ(x) is defined as follows:

Γ(x) =

{
0, for U([0, 1]) ≤ x
1, for U([0, 1]) > x

(5)

where U([0, 1]) is a uniformly distributed random number
between 0 and 1. To describe Eq. (3): At each time
step of simulating the network model, transmission of a
single virion from a neighbour j to node i is possible with
probability λi, only if node j is already infected.

2. Population SIR model

An SIR model is used to be able to simulate an epi-
demic that reaches a particular maximum number of
newly infected nodes (incidence) and then declines. This

maximum represents the steady-state in context of the
simulations done here. The SIR model is given as

dS

dt
= −βIS

dI

dt
= βIS − νI

dR

dt
= νI (6)

Linking the network model in Eq. (3) with the SIR
model in Eq. (6), and following the same notation as
used in Eq. (3):

S =

N∑
i=1

[vi = 0]

I =

N∑
i=1

[vi > 0]

R = N − S − I (7)

For the SIR model, N is the total number of nodes in
the network. Also, β is the average transmissibility or
rate of infection and ν is the rate of death or removal.
The transmissibility of a specific node has already been
defined in (2). The average transmissibility (β) of the
network and the SIR model is taken as the sum of the in-
dividual transmissibilities from each of the infected nodes
in the network as presented in Eq. (2), divided by the
total number of infected nodes (I), as follows:

β =

N∑
i=1

λi

I
(8)

With the SIR model, the incidence I reaches a specific
maximum number of newly infected nodes when dI/dt =
0 and then declines. The aim of this work is to control I
to reach this point when I = Iref .

The average transmissibility of a disease in a bond
percolation model is also known as the bond occupa-
tion probability. For an outbreak of a disease to occur
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TABLE II. Summary of the control system and network parameters used in this work.

Parameter / Function Description Value / Range
Iref Reference HIV incidence 0 − 100%
Imax Maximum incidence of HIV for a network 0 − 100%
Isse Steady-state error of HIV incidence 0 − 100%
β Average transmissibility of the network 0 − 1

β̂ Bond-percolation estimate of average transmissibility 0 − 1
u On/Off pinning controller output 0 − 100%
K Controller gain 1
λi Transmissibility of node i 0 − 1
Rf Added risk factor for HIV transmission 500
N Total number of network nodes 0 - 10000
S Number of nodes susceptible to HIV infection 0 - N
I Number of infected nodes 0 - N
R Number of removed (by death) nodes 0 - N
ν Mean probability of death for infected nodes 0.05

on a network, it has to spread from an initially infected
node to other nodes in the network across the links be-
tween the nodes. This means that if one were to indicate
that such transmission occurred across a particular set of
links (or occupy such links in a bond percolation model,
which happens with probability β), the ultimate size of
the epidemic would be precisely the size of the cluster of
nodes that can be reached from the initially-infected node
by traversing only across infected (known as “occupied”)
links.

B. Assumptions

The main assumptions made in this work are:

• Nodes in the network are homogenous and hetero-
sexual, with identical HIV immune responses and
consuming the same amount of medication.

• Sexual contact is assumed to be heterosexual, thus
the network links represent a heterosexual network
of sexual contacts.

• Reverse Transcriptase Inhibitors (RTIs) alone are
effective in limiting the spread of HIV in the net-
work. (Multiple drugs, as recommended by the
World Health Organisation (WHO) standard treat-
ment guidelines for maximal virus suppression, are
not used in this work.)

• A single virion is transferred at infection.

• Sexual relationships are not broken during the time
of the simulation.

In light of the given assumptions, this work aims to show
how a control-based strategy could possibly be used by
public health specialists to quantify the level of HIV in-
cidence in a population. The results achieved could be
made more realistic by relaxing these assumptions in a
systematic manner.

II. METHODS

A. Bond percolation estimates of epidemic size

To predict the maximum number of individuals that
will become infected in a network, this work draws on
percolation theory from statistical physics [16], and in
particular on bond percolation applied to epidemic net-
works [3]. Bond percolation relies on the degree distribu-
tion of nodes in a contact network (reflected in Fig. 1). If
it is applied to the spread of disease [17], the probability
that an infected node transmits a pathogen to any of its
connected nodes is calculated. If its neighbour nodes are
not yet infected, and the probability for transmission is
sufficient, the disease is percolated throughout the net-
work.
This percolation happens at an average transmissibility
β in the network, and if this average can be determined
for the entire period that the infection process in a net-
work is under scrutiny, the maximum number of infected
individuals in the particular network can be determined.
[18] states that in an undirected network, the probability
of an epidemic and the expected fraction of the network
infected during an epidemic, are equal.
Bond percolation is used to determine the average trans-

missibility β̂ needed to reach a given a final epidemic size

Iref . The value β̂ is then used in this work as the ref-
erence control signal for the network. To be able to do
this, verification is done to determine whether the bond
percolation estimates indeed produce final epidemic sizes
in the SIR model as proposed, given a particular average
transmissibility. The desired epidemic size is then trans-
lated back to the verified average transmissibility β and
an attempt is made to control the network to this value.
Considering what is measured in the network, the average
transmissibility is the key parameter. When the output
incidence I is used by itself in the feedback control sys-
tem for a network without taking β into consideration,
the network will not reach the required target incidence.
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1. Probability generating functions

Probability generating functions in this section have
been defined by [3]. Their purpose is for easier analysis of
a network topology’s disease percolation characteristics.

In general, the m’th power of a generating function
generates the sum of a property k of an object (in this
case the object is a node and k is the node degree) over
m independent realisations of that object (which are the
m nodes of the network) and the first derivative of a
generating function produces the mean of the probability
distribution.
The following generating functions, further described in
[19], are thus constructed.

First, G0(x) provides the degree distribution:

G0(x) =

∞∑
k=0

pkx
k (9)

with pk the probability that a node has degree k.
Including disease into the network, propagating at aver-
age transmissibility β, the equation becomes:

G0(x;β) = G0(1 + (x− 1)β) (10)

The following generating function constitutes the ex-
cess degree. This means that it generates a distribu-
tion equal to the degree of nodes minus the occupied or
infected links to those nodes. The generating function
G1(x) is given by:

G1(x) =

∞∑
k=0

qkx
k (11)

where qk can also be calculated as:

qk =
(k + 1)pk+1

z
(12)

with (k + 1) signifying the actual degree of a node and
k the number of links by which infection did not spread
to the node, with the average degree z of nodes in the
network given by:

z = Ġ0(1) =
∑
k

kpk (13)

Similarly as for G0(x), Eq. (11) is extended to include
the propagation of disease on the network, given by:

G1(x;β) = G1(1 + (x− 1)β) (14)

From [20], one can see that the basic reproductive num-
ber (R0) is defined as given in (15). This number signi-
fies the average number of secondary infections resulting
from a single node in the network:

R0 = βĠ0(1) (15)

From this, the epidemic threshold transmissibility βc is
defined as the specific average transmissibility in the net-
work at which the average number of secondary infections

resulting from a single node is greater than 1. For this,
R0 is equal to 1, and:

βc =
1

Ġ1(1)
(16)

Then the generating function H1(x) for the total number
of nodes reachable by following a specific link, is given by:

H1(x;β) = xG1(H1(x;β);β) (17)

The generating function for the distribution of the total
number of nodes reachable from a randomly chosen node
is given by:

H0(x;β) = xG0(H1(x;β);β) (18)

When βc ≤ 1 (below the epidemic threshold R0), the
network will experience outbreaks of average size 〈s〉 [3],
where

〈s〉 = 1 +
βĠ0(1)

1− βĠ1(1)
(19)

Above the epidemic threshold, most nodes in the network
will become infected. The proportion of the network in-
fected can be estimated by:

Iref = 1−H0(1;β) (20)

In this paper the epidemic size is used as reference in-
put Iref to the pinning control system and the aver-
age transmissibility β needed to reach Iref is calculated
numerically. The bond percolation functions H0(x;β)
and H1(x;β) are simulated numerically, using a recur-
sive function, to converge to the required solution.

2. Verification of the accuracy of epidemic estimates

For large networks (N = 100000), bond percolation
estimates have been verified by [3]. Smaller networks
(N = 100) are also verified in this paper for completeness.
In Fig. 4, the solid line represents the bond percolation
estimates of the epidemic size, given a particular average
transmissibility. Each circle on the graph represents the
average epidemic size from 300 networks simulated at a
fixed average transmissibility.

It can be seen that percolation estimates slightly over-
estimate the epidemic size at lower transmissibilities and
slighly underestimate the epidemic size at higher trans-
missibilities. This verification confirms, by inspection,
that the predictions may be used as input to the control
system proposed.

To obtain the estimated average transmissibility given
the epidemic size (Iref ), requires the use of Fig. 4 and
the numercial solution of β in Eq. (21).

G0(H1(1; β̂); β̂) = 1− Iref (21)
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FIG. 4. Bond percolation estimates of the epidemic size (In
this paper Iref ) plotted against the average transmissibility
β. Estimates are represented by the solid line and each circle
represents the simulated average of 300 independent networks
of size N=100. Similar results were presented by [3], for net-
works of size N=100000, verifying the estimates for scale.

B. Feedback on/off pinning control of a network

The purpose of using feedback control is to be able
to compare the ability of two strategies of medication
to control the networks to reach a target epidemic size.
The two strategies are random pinning and selective pin-
ning. Random pinning provides medication to all in-
fected nodes. Selective pinning medicates the proportion
of infected nodes with the highest number of suscepti-
ble nodes connected to them in order of highest to low-
est. A feedback control system of the form shown in Fig.
5 is applied to the HIV contact networks. The control
system measures average transmissibility of HIV in the
network and proportionally medicates more (or less) peo-
ple based on the difference between the bond percolation
predicted transmissibility and the actual transmissibility.
This medication is given in an on-off pulsed manner to

represent doses, where a pulse is made when β ≥ β̂ and

no pulsing when β < β̂.
A network node is controlled (pinned) by setting ∆i from
Eq. (4) equal to 1 (Pin the node) or equal to 0 (Don’t
pin the node).

A summary of all the control and performance param-
eters used in this section is given in Table II.

The flow of the feedback control system shown in Fig.
8 is described below:

a. Input The input to the feedback loop is the re-
quired average maximum network incidence Iref . Note
that this target can only be estimated by taking the aver-
age across several hundred networks, given the definition
of bond percolation estimates from which Iref is calcu-
lated.

b. Input translation The input, Iref is translated to

an average transmissibility β̂ using by using Eq. (21).

c. Error calculation The difference between the es-
timated transmissibility β̂ and the simulated average net-
work transmissibility β is calculated and used as input
to the controller.
d. Controller The controller selects the proportion

of individuals in the network to receive medication. The
ith node is pinned by setting its ∆i parameter to 1 in Eq.
(4). The output of the controller is limited to 1, given
that this represents the control of all nodes in the net-
work. If the random pinning strategy is used, all infected
nodes are given medication. This strategy is random be-
cause the infection process is random. If selective pinning
is used, the proportion of infected nodes to receive med-
ication is calculated by Eq. (22). Nodes are then pinned
in order of their highest number of connected susceptible
individuals until the proportion u is reached. The control
output u saturates at 1.

u =


0, for β < β̂

K × (β − β̂), for β ≥ β̂
1, for β ≥ (2× β̂)

with 0 ≤ u ≤ 1 (22)

e. Gain The controller gain K is chosen to be 1 in
this work.

f. Actuator The actuator is the application of med-
ication (RTIs) to the immune response systems of the
pinned nodes in the network. A node is pinned by set-
ting ∆i from Eq. (4) equal to 1. The drug used to
simulate medication is a reverse transcriptase inhibitor
named Tenofovir with an efficiency of 65% [15].

g. Process The process is the disease network and
SIR model encapsulating it. The input to the process is
the number of nodes to be pinned (controlled) and the
output is the current incidence of HIV in the network.

h. Output The maximum of the output incidence
from the process is calculated. This value is Imax.

C. Simulations

Simulations of all networks are done over a maximum
of 2000 days. Network sizes of nodes N=100, N=1000,
N=5000 and N=10000 are used. Random and selec-
tive pinning are applied to 300 independent realizations
of connected networks without isolated components, for
each reference incidence level from 20% to 60% in incre-
ments of 10%. For the control system shown in Fig. 5
to function correctly, the average Imax of the 300 realiza-
tions for each Iref was taken.

III. RESULTS

A. Controlled β and Incidence

Having applied random and selective pinning to vary-
ing sizes of networks, the outcomes can be seen in Fig.
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Eq.(21)

Bond percolation

K

Controller

Simulate Eq.(3)

Contact network / SIR model

max{I}uIref β̂ − I from Eq.(7) Imax

β

+

FIG. 5. Feedback control system.

6. For all investigated transmissibilities, the control per-
formance (over- or undershooting of the target) for both
strategies are similar. At lower references of around 20%
the incidence is controlled to within 5% of the refer-
ence. For small networks of N = 100, the control of
incidence always performs to within 5% for all strate-
gies. As the network size increases, the less accurate the
control to higher reference incidences (above 20%) be-
comes. The constant control gain value of K = 1, is
the most likely explanation for this from a control per-
spective. From a network perspective, this means that
larger networks are impacted differently by control than
smaller networks. At higher transmissibilities and with
larger networks (N ≥ 1000), both control strategies are
unable to reach the target incidence if the gain is kept
constant.
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FIG. 6. The average maximum incidence for each reference
signal Iref . Each marker represents the average of 300 in-
dependently simulated networks. Asterisks (∗) are randomly
pinned networks (all nodes pinned) and triangles (M) repre-
sent selectively pinned networks. The reference points, Iref ,
are represented by circles (◦).

B. Average Steady-State Error

The average steady-state error simulation results can
be seen in Fig. 7. The closer the markers (the mean value
over 300 networks’ data) are to zero, the more accurately
the control system drove the network towards the desired
reference. With both random and selective pinning, the
lower references resulted in negative errors for all sizes of
network. By inspection, there is almost no difference in
steady-state error between selective and random pinning,
for all sizes of network investigated.
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FIG. 7. The average steady-state error between the average
maximum incidence and the reference maximum incidence.
Each marker represents the average of 300 network simula-
tions with asterisks (∗) the random pinning strategy and tri-
angles (M) the selective pinning strategy.

C. Control effort

Control effort expenditure is reported as the compari-
son between the medians of doses used for each pinning
control strategy. This is necessary because neither distri-
bution of doses is Gaussian or symmetric. The measure
of doses itself is obtained by taking the sum of all con-
trol action pulses over time, per network instance, and
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FIG. 8. The log of the cumulative total doses, log(Dtot), for
the two types of pinning control strategies over 5 years. Aster-
isks (∗) represent random pinning and triangles (M) selective
pinning. Each yearly data point is the cumulative control
effort from 1500 independent networks spanning the studied
reference levels Iref .

multiplying this with the total number of nodes N in a
network. Thereafter, the sum of the control action across
all 300 network instances per data point is taken to ob-
tain the total control action for the respective data point.
After a period of 5 years, the calculated total doses per
strategy appears to be much closer in value to each other
than in preceding years. Each year of simulation presents
the selective pinning control as using cumulatively more
control action than the year before, whilst the random
pinning strategy seems to cumulatively use all its control
action within the first year of simulation. Thereafter, the
cumulative random pinning does not vary considerably.
This effect can be seen in Fig. 8.
A statistical analysis was performed on the cumulative
doses after 5 years, both for networks stratified according
to size and across network sizes. The results can be seen
in Table III. Firstly, the normality of the data across all
network sizes for selective pinning and random pinning
was compared with respect to their distributions. The
data was found not to be normally distributed, and the
two strategies differed in their fundamental distributions.
The Kolmogorov-Smirnov (KS) test for non-parametric
data was used to confirm that the distributions of both
dosing strategies are different, with p-value of less than
2 × 10−16. The Inter-Quartile-Ranges (IQR) are also
given. The ratio of the medians of the two sets of overall
data suggests that, for the simulations performed, selec-
tive pinning control uses 51.3% less doses compared to
random pinning after 5 years. The difference was statis-
tically significant using the Mann-Whitney U-test, with a
p-value less than 2×10−16, similar to the KS-test. Strat-
ifying for network size, the medians suggest that selective
pinning uses 76% less doses for N=100, 48% less doses for
N=1000, 24% less doses for N=5000 and 44% less doses

for N=10000 nodes.

TABLE III. Descriptive statistics for the doses applied un-
der the two pinning control strategies of Selective (M) and
Random (∗) pinning across all values of Iref , after 5 years.

N Statistic Selective (M) Random (∗)
Sample Size 1500 1500

100 Median 145.87 600
IQR [73.55, 672.70] [400, 800]
Median Ratio (M:∗) 0.24
Sample Size 1500 1500

1000 Median 4641 9000
IQR [1052, 8436] [5000, 12000]
Median Ratio (M:∗) 0.52
Sample Size 1500 1500

5000 Median 38030 50000
IQR [5943, 80160] [30000, 75000]
Median Ratio (M:∗) 0.76
Sample Size 1500 1500

10000 Median 56070 100000
IQR [10840, 147200] [60000, 170000]
Median Ratio (M:∗) 0.56
Sample Size 6000 6000

All Median 6823.0 14000
IQR [872.7, 43150] [1000, 70000]
Median Ratio (M:∗) 0.48

IV. DISCUSSION

Two network-wide control strategies, random and se-
lective pinning, were proposed. Both strategies were im-
plemented with an On/Off type controller that medicates
(with one dose each) a specific number of nodes when the
actual incidence is above the reference incidence.
It has been shown that contact networks with a high
transmissibility and removal of nodes can be controlled
to a target incidence by On/Off proportional control, al-
though a constant gain results in an increasing steady-
state error as the network size increases.
The control schemes proposed here have an important
impact on HIV incidence, in particular, the maximum
incidence can be controlled to within 20% with either
strategy and a constant gain.
Selective pinning results in a similar average steady-state
error for the target incidence. This means that neither
strategy outperforms the other on accuracy.
The statistical analysis performed on the total control ef-
fort applied across all simulations per strategy suggests,
by comparing the medians of the dosing data, that selec-
tive pinning uses 51.3% less medicine compared to ran-
dom pinning.
The main limitations of this work due to the assumptions
in Section I B are:

• In real-world HIV networks, each individual’s im-
mune response is different. The node models would
need to be updated for each node for more accurate
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results. To obtain enough information to estimate
the parameters of each individual is a very resource-
intensive task.

• HIV rarely spreads with such high rates of trans-
missibility as used in this work. The results here
therefore only applies to very high risk HIV contact
networks.

• For simplicity, a single drug (an RTI named Teno-
fovir) has been used with an efficiency of 65%
[15]. Multiple drugs are the recommended treat-
ment scheme, hence the node models should be up-
dated before comparing the results obtained to a
real-world scenario.

V. CONCLUSIONS

This work quantified the impact of two different pin-
ning control schemes on high-risk contact networks in
which HIV is transmitted. The average transmissibil-

ity could be controlled to reach a particular target av-
erage maximum incidence in the simulated networks. It
was found that selective pinning is equally as accurate as
random pinning in reaching the reference incidences. A
statistical analysis of the two dosing strategies suggested
that selective pinning requires, according to the median
of doses, 51.3% less medication (control action) compared
to random pinning. These results were achieved with a
constant gain controller.
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